1) Cho góc nhọn xAy. Trên tia Ax lấy điểm B.
Đường tròn đường kính AB , tâm O cắt tia Ay
tại C và tia phân giác Az của góc xAy tại D.
Tia BC cắt tia phân giác Az tại I và tia BD kéo
dài cắt tia Ay tại H.
a) Chứng minh: HI
⊥
AB
b) Chứng minh :
∆
ABH cân và suy ra hệ
thức: BA.BD = BO.BH
c) Cho
·
0
xOy 60 ,OB = 5cm= . Tứ giác
AODC là hình gì ? Tính chu vi tứ giác
AODC.
2) Cho
∆
ABC có các góc nhọn nội tiếp đường
tròn tâm O. Các đường cao AD, BE, CF cắt
nhau ở H. Gọi AI là đường kính của đường
tròn (O)
a) Chứng minh rằng: BHCI là hình bình
hành.
b) Gọi M là trung điểm của BC. Chứng
minh: OM = ½ . AH
c) Gọi K là giao điểm của BE với đường
tròn (O) (K ≠ B) . Chứng minh rằng : K
đối xứng với H qua AC.
d) Chứng minh hệ thức: DB.DC = AD.HD
3) Cho tam giác ABC vuông góc ở A, đường cao
AH. Vẽ đường tròn (O), đường kính BH.
Đường tròn này cắt AB ở D (khác B). Vẽ
đường tròn (O’) đường kính CH, đường tròn
này cắt AC ở E (khác C)
a) Hai đường tròn (O) và (O’) có vị trí như
thế nào với nhau ? Chứng minh.
b) Tứ giác ADHE là hình gì ?
c) Chứng minh rằng: DE là tiếp tuyến chung
của hai đường tròn (O) và (O’)
d) Tính độ dài DE biết HB = 8cm, HC = 18
cm.
4) Cho nửa đường tròn (O), đường kính AB =
2R,điểm E thuộc nửa đường tròn. Gọi M, N
theo thứ tự là trung điểm của AE và BE.
a) Tứ giác OMEN là hình gì ?
b) Vẽ các tiếp tuyến Ax, By với nửa đường
tròn (Ax, By cùng phía với E đối với
AB), OM và ON cắt Ax và By theo thứ
tự ở C và D. Chứng minh rằng: ba điểm
C, D, E thẳng hàng và CD là tiếp tuyến
của nửa đường tròn.
c) Gọi I là giao điểm của OE và MN. Khi
điểm E di chuyển trên nửa đường tròn thì
điểm I di chuyển trên đường nào ?
5) Cho tam giác đều ABC nội tiếp trên đường
tròn (O). Trên cung nhỏ Ac lấy điểm D. Trên
dây BD lấy điểm M sao cho DM = DC.
a) Chứng minh rằng:
∆
MCD là tam giác
đều.
b) Tìm quỹ tích các điểm M khi điểm D di
động trên cung nhỏ AC.
6) Cho hình vuông ABCD. Trên cạnh AB lấy
điểm M. Đường thẳng qua C và vuông góc với
CM cắt các tia AB, AD lần lượt tại E và F. Tia
CM cắt đường thẳng AD tại N. Cmr:
a) Các tứ giác AMCF, ANEC nội tiếp.
b) CM + CN = EF
7) Từ một điểm M nằm ngoài đường tròn (O),
ta vẽ hai tiếp tuyến MA và MB với đường tròn.
Trên cung nhỏ AB lấy một điểm C. Vẽ CD
⊥
AB, CE
⊥
MA, CF
⊥
MB. Gọi I là giao điểm
của AC và DE, K là giao điểm của BC và DF.
Cmr:
a) Các tứ giác AECD, BFCD nội tiếp.
b) CD
2
= CE.CF
c) IK // AB
8) Cho đường tròn (O) đường kính AB. Từ
điểm H trong đoạn thẳng AO, vẽ dây cung CD
⊥
AB.
a) Hai đoạn thẳng CH và HD có bằng nhau
không ? Vì sao ?
b) Cmr:
·
·
CBA=DCA
c) Cmr: CD là dây cung ngắn nhất trong các
dây cung đi qua H.
9) Cho đường tròn (O) đường kính AB = 2R.
Vẽ dây CD vuông góc với đường kính AB và
cắt AB ớ H. Gọi M là trung điểm của cung CB
và I là giao điểm của CB và OM.
a) Cmr: AM là tia phân giác của
·
CMD
b) Cmr: Tứ giác OHCI nội tiếp.
c) Cmr: Đường vuông góc kẻ từ M đến AC
cũng là tiếp tuyến của đường tròn tại M.
d) Gọi d là đường thẳng vuông góc với mặt
phẳng chứa đường tròn tại A. Trên d lấy
điểm S sao cho SA = 3R.
e) Cmr: mpSCD
⊥
mpSAB
f) Biết số đo của góc CBA là 30
0
. Tính thể
tích hình chóp SABC.
10) Cho tam giác ABC. Kẻ đường cao BD và
CE cắt nhau tại H.
a) Cmr: Các tứ giác AEHD, BEDC nội tiếp.
Xác định tâm và vẽ các đường tròn đó.
b) Cmr: AH
⊥
BC
c) Cmr: EB.HC = HB.DC
11) Cho tam giác ABC có ba góc nhọn nội tiếp
trong đường tròn (O). Vẽ các đường cao BD và
CE.
a) Cmr: Tứ giác BEDC nội tiếp. Xác định
tâm I của đường tròn đó.
b) Cm: AE.AB = AD.AC
c) Gọi K là trung điểm của DE. Cmr: KI
⊥
DE. Từ đó suy ra: KI // OA.
12) Cho hình thang ABCD nội tiếp trong
đường tròn (O) cố định (BC là đáy lớn).
a) Cm : ABCD là hình thang cân.
b) Giả sử đường chéo AC và BD cắt nhau ở
E. Cmr: Tâm I của đường tròn ngoại tiếp
tam giác COE luôn thuộc một đường
thẳng cố định.
13) Cho nửa đường tròn (O), đường kính AB =
2R. Vẽ hai tiếp tuyến At, Bz cùng phía với nửa
đường tròn. Từ điểm C bất kì trên nửa đường
tròn (C
≠
A và B) ta vẽ tiếp tuyến với nửa
đuờng tròn cắt At tại M, cắt Bz tại N.
a) Cmr: MN = AM + BM
b) Cmr: góc
·
·
0
MON=ACB=90
c) Tính : CA
2
+ CB
2
theo R
d) Cmr: Tứ giác OAMC và OBNC nội tiếp.
14) Cho tam giác ABC vuông ở A (AB<AC),
đường cao AH. Trên tia HC lấy HD = HB. Gọi
E là chân đường vuông góc vẽ từ C lên đường
thẳng AD.
a) Cmr :
∆
ABH =
∆
ADH
b) Cmr : bốn đỉnh A, E, H, C cùng nằm trên
một đường tròn.
c) Cmr : CB là tia phân giác của góc ACE.
d) Cho biết góc
·
0
ACE 30=
. Tứ giác AHEC
là hình gì ?
15) Cho nửa đuờng tròn (O), đường kính AB.
Trên nửa mặt phẳng có bờ là đường thẳng AB
có chứa nửa đường tròn, người ta kẻ tiếp tuyến
Ax và một dây AC bất kì. Tia phân giác của
góc CAx cắt nửa đường tròn tại D, các tia AD
và BC cắt nhau tại E.
a) Cmr:
∆
ABE cân tại B
b) Dây AC và BD cắt nhau tại K. Cmr: EK
⊥
AB
c) Tia BD cắt tia Ax tại F. Cmr: tứ giác
AKEF là hình thoi.
d) Cho góc
·
0
BAC 60=
. Cmr: AK = 2KC
16) Cho hai đường tròn (O) và (O’) cắt nhau tại
A và B. Một đường thẳng thay đổi qua A cắt
(O) tại C (khác A) và cắt (O’) tại D (khác A)
a) Cho biết CD
⊥
AB. Cmr : BD là đường
kính của đường tròn (O’) và BC là đường
kính của đường tròn (O)
b) Cmr: CD // OO’
c) Cmr: Khi CD thay đổi qua A thì góc
CBD có số đo không đổi.
17)