Tải bản đầy đủ (.doc) (24 trang)

Sử dụng phép quay vị tự, quay vecto giải bài toán hình học phẳng

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (4.32 MB, 24 trang )

Sử dụng phép quay,phép vị tự quay,phép quay véc tơ
giải một số bài toán hình học phẳng
-----------------------------------Phần 1. MỞ ĐẦU
1.Lý do chọn đề tài:

Bài toán hình học phẳng là bài toán nằm trong cấu trúc bắt buộc của các đề thi học sinh giỏi .
Trong chương trình dạy và học toán ở phổ thông , phép biến hình và các phép dời hình trong mặt
phẳng thường được lựa chọn để giải nhiều các dạng toán khác nhau . Hiện nay , nội dung phép
biến hình trong mặt phẳng được đưa vào chương trình hình học lớp 11 ,nhưng các tài liệu tham
khảo về phép biến hình không nêu rõ phương pháp ứng dụng để giải các bài toán về hình học
phẳng một cách có hệ thống. Trong chuyên đề này, tôi tập trung khai khác sử dụng phép
quay,phép vị tự quay và phép quay véc tơ để giải một số bài toán hình học phẳng theo các dạng
toán cụ thể nhằm giúp học sinh có thêm một công cụ ,một phương pháp sử dụng phép biến hình
vào việc giải quyết một số dạng toán về hình học phẳng.
2. Mục đích nghiên cứu:

Chuyên đề nhằm hệ thống kiến thức phép quay,phép vị tự quay,phép quay véc tơ , trình
bày các ứng dụng của các phép biến hình này vào việc giải quyết một số dạng bài toán trong
hình học phẳng. Chuyên đề không có tính chất liệt kê mà mục đích muốn tìm hiểu sâu hơn về
phép quay và có sự so sánh về những ưu điểm của việc sử dụng phép quay,phép vị tự
quay,phép quay véc tơ áp dụng vào từng bài toán cụ thể cho hợp lý . Chẳng hạn, đối với phép
quay có tâm, việc áp dụng thường phức tạp do tính lệ thuộc vào tâm quay, cho nên đôi khi
phải sử dụng hai hoặc ba phép quay đồng thời. Trong phép quay véc tơ, các yếu tố được dịch
chuyển dễ dàng, vì thế việc sử dụng cũng tiện lợi hơn, hay là khi giải quyết một số bài toán
bằng phép quay không được thì phải sử dụng kết hơp giữa phép quay và phép vị tự. Chuyên
đề này là tài liệu tham khảo cho các đồng nghiệp trong công tác bồi dưỡng học sinh giỏi quốc
gia và giúp học sinh có kiến thức nền tảng và có thêm một định hướng cho các dạng bài toán
về hình học phẳng.

1



Phần 2. NỘI DUNG

Sử dụng Phép quay,Phép vị tự quay,Phép quay véc tơ ,
giải một số bài toán hình học phẳng
A .Ứng dụng của phép quay vào giải quyết một số bài toán hình học phẳng
I.Phép quay :
1.1 Định nghĩa:
Cho điểm O và góc lượng giác α . Phép biến hình biến mỗi điểm O thành chính nó, biến mỗi điểm M

OM = OM '
khác O thành M’ sao cho 
được gọi là phép quay tâm O góc α . Kí hiệu: Q( O ,α ) .
OM
,
OM
'
=
α
(
)


Điểm O được gọi là tâm quay còn α là góc quay của phép quay đó.

Ta kí hiệu M ' = Q( O ,α ) ( M ) nghĩa là M’ là ảnh của M qua phép quay tâm O góc quay α .
* Lưu ý: chiều dương của phép quay là chiều ngược chiều kim đồng hồ (chiều dương của đường tròn
lượng giác).
1.2. Tínhchất:
Tính chất 1: Phép quay bảo toàn khoảng cách giữa hai điểm bất kì .

Tính chất 2:Phép quay biến đường thẳng thành đường thẳng ,đoạn thẳng thành đoạn thẳng bằng nó,biến
tam giác thành tam giác bằng nó, biến đường tròn thành đường tròn có cùng bán kính.
1.3.Một số kết quảuuquan
dụng vào giải các bài tập hình học phẳng
ur utrọng
uur uuáp
u
r uuur
Kết quả 1; Q( O ,α ) : AB → CD ( AB, CD) = α (mod 2π ), (AB, CD) = α (mod π )
Kết quả 2:Nếu có hai đoạn thẳng AB và CD bằng nhau và AB không song song với CD. Khi
uuur
uuur
đó tồn tại duy nhất một phép quay biến AB thành CD . Tâm O của phép quay
là giao điểm hai
uuur
uuur
đường trung trục của AC và BD, góc quay bằng góc giữa hai véc tơ AB và CD .
2.1.Ứng dụng phép quay vào các bài toán chứng minh tính chất hình học :
Bài 1:Cho lục giác lồi ABCDEF nội tiếp đường tròn tâm O có các cạnh AB, CD, EF bằng bán kính
đường tròn đó. Gọi M, N, P lần lượt là trung điểm của các cạnh BC, DE, AF.
Chứng minh rằng: Tam giác MNP là tam giác đều.
Lời giải:
Phân tích: Để chứng minh rMNP là tam giác đều, ta sẽ chỉ ra phép quay Q(P, 60 0 ) biến N  M

2


Q( P , 600 )

Thật vậy:


B A
F E

Lấy I, K là trung điểm EF và BE

PI / /AE (PI,KI) = 600
⇒

KI / /BF PI = KI
Ta có

Fa E
Q(O,600 ) : 

D a C

Suy ra

→

1

IN
=
KM
=
FD

2

Ta có: 
(1)

→ 


0
( IN ,KM) = 60
Xét

Q( P , 600 ) :

I K
N  N'



Q( P , 600 )

→

→ →

(2)

Từ (1) và (2) suy ra
→
→
KN ' = KM ⇒ M ≡ N’


Suy ra:

Q( P , 600 ) : I 

K
M N

→

: IN → KN '

( IN , KN ' ) = 60 0

 → →
0
Lúc đó: ( IN ,KN ') = 60
 IN = KN '

→

Q(O, 60 0 ): FD → EC

suy ra rMPN đều.

3


Bài 2. Hình vuông ABCD nội tiếp hình bình hành MNPQ (A ∈ Mn, B ∈ NP, C ∈ PQ, D ∈ QM). Gọi M' là
chân đường vuông góc hạ từ M xuống AD, NN' ⊥ AB, PP' ⊥ BC, QQ' ⊥ CD. Chứng minh M'N'P'Q' là hình
vuông.


Gọi AC cắt BD tại O.Thì O cũng là tâm của hình bình hành MNPQ
Xét Q 0, 90o : A a B; M a M 1
(
)
uuuu
r uuuur
⇒ AM → BM 1
⇒ AM ⊥ BM 1 ⇒ BM 1 ⊥ AN
Q 0, 90o : D a A; Q a Q1
(
)
uuur uuuu
r
⇒ DQ → AQ1
⇒ DQ ⊥ AQ1 mà DQ//NB ⇒ AQ1 ⊥ NB

=> BM1 cắt AQ1 tại H là trực tâm tam giác ANB và H là tạo ảnh chung của MQ và MA trong R(0, 90 o)
=> H là tạo ảnh của M trong Q( 0, 90 ) . Mặt khác H ∈ NN'
o

uuur uuur
Nên Q( 0, 90 ) : M a H ⇒ DA → AB
o

⇒ ∆MDA → ∆HAB mà MM' ⊥ DA, HN' ⊥ AB ,suy ra Q( 0, 90o ) : ⇒ M ' a N '

Tương tự , Q( 0, 90 ) : N' a P'; Q( 0, 90 ) P' a Q'; Q( 0, 90 ) Q' a M'. Nên M'N'P'Q' là hình vuông.
o


o

o

Bài 3.Tam giác ABC có AC > AB, trên AC lấy N sao cho NC = AB, trên tia BA lấy M sao cho MB = AC
·
·
, MN cắt trung trực BC tại K. Chứng minh: BKC
+ BAC
= 180O .

Lời giải:

4


uuur uuur
Do AB = NC => Xét Q( O, α ) . AB → NC

=> O là giao của trung trực AN và BC
=> O, K, H thẳng hàng với H là trung điểm BC và A, B, C ,O đồng viên.
uuur uuur
+ Do MB = AC => Xét Q( O, α ) : MB → AC
=> O' là giao điểm trung trực của AM và BC
Và A, B, C có đồng viên. Do đó O ≡ O ' và O là tâm (∆AMN )
Ta có BM = AC, AB = NC => AM = AN ,
·
AO ⊥ MN và AO là phân giác của góc MAN



·
= BOC
= KOC
Vì vậy ·ANM = BAC
2
2

·
·
=> KNA
= KOC
⇒ O, N, K, C đồng viên
·
·
·
·
·
·
·
=> HKC
= KOC
+ OCK
= KNA
+ ONM
= ANO
= OAN
·
·
·
·

·
·
=> BKC
= MAN
⇒ BKC
+ BAC
= MAN
+ BAC
= 180o

Bài 4: Cho tam giác ABC. Trên AB, BC, CA về phía ngoài tam giác ta dựng tam giác cân ABC 1, BCA1,
· C = 90O , CB
· A = 120O . Tính các góc ∆ A1B1C1.
CAB1 thỏa mãn ·AC1 B = 150O , BA
1
1

5


Lời giải:

Xét Q( C1 , 150o ) : B a A

Q B , 120o : A a C
(1 )
=> Q = Q( O1 , 120o ) .Q( C1 , 150o ) là phép quay -90o tâm M biến B a C
Và M được xác định như sau:
Q( C ;−75O ) : C1 B1 a C1M
1


Q( B ;−60O ) : B1C1 a B1M
1

Mặt khác Q( A , -90 ) : B a C , suy ra Q( A1 , -90o ) ≡ Q( M, -90o ) ,suy ra M ≡ A1
1

o

µ = 75o , B
µ = 60o , µ
=> ∆ A1B1C1 có các góc C
A1 = 45o
1
1
3.1. Ứng dụng phép quay vào các bài toán chứng minh thằng hàng đồng quy

Bài 5. Cho tứ giác ABCD t/m BC=AD và BC không song song với AD. E, F lần lượt thuộc DAvà BC sao
cho BF = DE. ,EF lần lượt cắt AC, BD tại R và Q; AC cắt BD tại P. Với E, F thay đổi .Chứng minh
(∆PRQ) đi qua điểm cố định khác P.

6


Lời giải:

Do DA = BC xét phép quay

Q(O,α ) :


uuur uuur
DA → BC

=> O là giao của trung trực AD và trung trực BC
=> O cố định.
Do DE = BF, E thuộc AD, F thuộc BC
uuur uuur
Q(O,α ) : DA → BC tức Q(O,α ) : D a B; A a C
Nên

Q(O,α ) :

Ea F

Theo tính chất (*) DEQO, ORFC nội tiếp.
Kẻ OH, OI, OT, Ọ, OK lần lượt vuông góc AD, BD, EF, AC, BC
Theo định lý về đường thẳng simson ta có: H, T, I thẳng hàng; T, J, K thẳng hàng
(đường thẳng simson của XEOF)
Vì vậy I, J, K thẳng hàng
=> O, Q, P, R nội tiếp (simson đảo)
=> (∆PQR) đi qua O cố định khác P

Tính chất (*)

7


Xét

Q(O) :


uuur uuur
AB → CD

Gọi AB cắt CD tại E; AC cắt BD tại F
Thì các tứ giác AECO, BEDO, ABFO, OFCD nội tiếp và O thuộc trung trực của AC và BD
uuur uuur
(Tính chất * vẫn đúng trong trường hợp phép vị tự quay tâm O biến AB → CD
Bài 6. Cho tam giác ABC cố định. D, E thay đổi trên tia AB, AC sao cho BE = CD,BE cắt CD tại P
·
.Chứng minh phân giác DPE
đi qua điểm cố định.

Lời giải:

Do BE = CD => Xét phép quay

Q(O, β )

uuur uuu
r
DC → BE

Theo tính chất (*) => O thuộc trung trực của BD và CE và BPOD, CPOE nội tiếp.
·
·
·
·
=> DPO
= DBO

, OPE
= OCE

·
·
·
·
BPD
= BOD
, CPE
= COE
·
·
·
·
mà BPD
= CPE
⇒ BOD
= COE
·
·
Lại có ∆BDO cân ở O, ∆COE cân ở O ⇒ DBO
= OCE

8


·
·
·

Vì vậy DPO
=> PO là phân giác DPE
.
= OPE
·
Kẻ BM//AC, M ∈ PO ⇒ ·AEB = EBM
·
·
·
·
Mà PCEO nội tiếp ⇒ ·AEB = CEP
= COP
= CPO
, lại có BPO
⇒ ∆BPM υ∆OPC (c.g.c) ⇒

PB PM
PB PO
=

=
PO PC
PM PC

·
·
·
=> CM//AB do đó ACMB là hình bình hành,Suy ra M cố
⇒ ∆BPOυ∆MPC (c.g .c) ⇒ PCM
= POB

= BDP

định , từ đó suy ra PO đi qua M cố định.
·
·
·
Bài 7. Cho tam giác ADC. Bên ngoài tam giác lấy B và E thỏa mãn. BAC
= CAD
= DAE
, ·ABC = ·ACD = ·ADE .

Gọi M là trung điểm DC. Chứng minh AM, EC, BD đồng quy.
Lời giải:

·
·
·
Đặt BAC
= CAD
= DAE


Xét Q( A,α ) :

Ba C
Ca D
Da E
⇒ BCD → ∆CDE

⇒ ∆BCD : ∆CDE


Gọi giao điểm của CE và BD là N
=> Các tứ giác AEDN, ABCN nội tiếp
·
·
·
·
⇒ NAD
= DEN
= DEC
= BCD

=> DC là tiếp tuyến (AEDN) ,tương tự có DC là tiếp tuyến (ABCN)

9


AM cắt CD = M' ⇒ DM '2 =M'A . M'N, CM '2 = M'A . M'N
⇒ DM '2 = CM '2 => DM'=CM' => M' là trung điểm DC => M' ≡ M

Do đó AM, BD, CE đồng quy.
Bài 8. Cho lục giác đều ABCDEF. Điểm M, N lần lượt thuộc AC, AE thỏa mãn
Tìm k để B, M, N thẳng hàng.
Lời giải:

Do lục giác ABCDEF đều
=> AC=AE; ∆ AEC đều


AM NE

=
nên MC = NA; AM = NE
MC NA

Do MA = NE. Xét phép quay tâm O, Q(0, β ) : E a A, N a M
=> O thuộc trung trực của AE và MN
Và A, M, O, N đồng viên
Do A, M, O, N đồng viên
·
·
·
·
=> OAC
= MNO
= NMO
= EAO
·
=> AO là phân giác EAC

10

AM NE
=
=k.
MC NA


·
Xét ∆ ACE đều có O thuộc trung trực AE, AO là phân giác EAC
=> O là tâm ∆ AEC hay O là tâm lục


giác đều ABCDEF
·
Để M1M1N thẳng hàng ⇒ ·ABM + ·ANM + NAB
= 180o

(Mà AN ⊥ AB ) ⇔ ·ABM + ·ANM = 90o ⇔ ·ABM + ·AOM = 90o
·
·
Do B và O đối xứng nhau qua AC ⇔ ·ABM = ·AOM ⇒ ·AOM = 45o ⇒ MOC
= 75o ⇒ OMC
= 75o

Suy ra tam giác MOC cân tại M.
Đặt OC = OA = R ⇒ AC = 3R; MC = OC = R
Nên k =

AM AC − MC
3R − R
=
=
= 3 −1
MC
MC
R

Bài 9.Trong mặt phẳng cho 2 tam giác: ABC,ADE thỏa mãn AD ⊥ AB, AE ⊥ AC, AD=AB, AE=AC và
hai tam giác này ở ngoài nhau. Chứng minh rằng đường thẳng chứa trung truyến của tam giác này cũng là
chân đường cao hạ từ A xuống tam giác kia.
Lời giải:


Gọi M là trung điểm của BC, AH ⊥ DE
Gọi F là điểm đối xứng với C qua A
·
⇒ FAE
= 90o và AE = AF

11


Xét Q 0, 90o : E a F

(

)

Da B
∆ADE → ∆ABF
 ED = FB
r
⇒  uuur uuu
⇒
 ED → FB
 ED ⊥ FB

Mặt khác ta có AM là đường trung bình ∆ FBC => AM//FB
Do đó AM ⊥ ED mà AH ⊥ ED => A,M, H thẳng hàng.

*)Khi giải quyết một số bài toán bằng phép quay không được thì phải sử dụng kết hơp giữa
phép quay và phép vị tự ,sau đây ta xét một số bài tập hình phẳng sử dụng tích của hai

phép biến hình này.

B .Ứng dụng của phép vị tự quay vào giải quyết một số bài toán hình học phẳng
II. PHÉP VỊ TỰ QUAY
2.1 Định nghĩa: Tích của một phép vị tự và một phép quay với cùng một tâm gọi là phép vị tự quay
Kí hiệu :

Z(O , α , k ) = Q(0,α ) oV0k

(V0k oQ(0,α ) )

2.2. Tính chất:
Tính chất 1 .Phép vị tự quay bảo toàn sự thẳng hàng của 3 điểm và thứ tự của chúng trên đường thẳng
chứa 3 điểm đó.
Hệ quả 1: Phép vị tự quay biến một đường thẳng thành một đường thẳng, biếnmột tia thành một tia, biến
một đoạn thẳng thành một đoạn thẳng có độ dài gấpklần độ dài của đoạn thẳng ban đầu.
Hệ quả 2: Phép vị tự quay biến một tam giác thành một tam giác đồng dạng với nó, biến một góc thành
một góc bằng nó, biến một đường tròn thành một đường tròn, trong đó tâm biến thành tâm còn bán kính có
độ dài gấp k lần bán kínhđường tròn ban đầu.
3.2.Ưng dụng phép vị tự quay vào các bài toán hình học phẳng.
Bài 1 .Cho rABC, I là trung điểm của BC. Dựng ra phía ngoài các tam giác đều rMAB và rNAC có
tâm lần lượt là O1 và O2 . Chứng minh rằng: ∆IMO2 và ∆INO1 đồng dạng.

Lời giải:

12


M A
I J

Tam giác BIJ là tam giác đều.

Q ( B ,−600 ) :

Xét phép vị tự quay:

Z(C , −30o,

1

):

3

A a O2
Ja I

Suy ra:

Z(C , −30o,
à

Z( I , −90o,

1

−60o

3


) oQB

1
3

):

:

M a O2
Ia I

M  O2

Suy ra ∆IMO2 vuông tại I và
Tương tự xét phép đồng dạng

IO2
1
=
(1)
IM
3

Z( I , 90o,

1
3

)


: N  O1

IO1
1
=
(2)
IN
3
Từ (1) và (2) suy ra ∆IMO2 và ∆INO1 đồng dạng.

Suy ra ∆INO1 vuông tại I và

Bài 2. Tam giác ABC trực tâm H, trung trực AH cắt AB, AC tại D và E, O là tâm ngoại tiếp tam giác
·
ABC. Chứng minh: OA là phân giác EOD
.
Lời giải:

Xét phép vị tự quay tâm A: D a H

13


·
·
Ta có BAH
mà ∆ ADH cân ở D, ∆ AOC cân ở O.
= OAC


Nên phép biến hình trên D a H ,O a C
Giả sử DO cắt CH tại F theo tính chất(*)
·
Ta có AFOC nội tiếp => DOA
= ·ACH

·
·
·
Tương tự ta có EOA
(đpcm)
= EOA
= ·ABH Mà ·ACH = ·ABH (cùng phụ µA )=> DOA

Bài 3. Cho hai đường tròn (O 1) và (O2) cắt nhau tại A, B. Cát tuyến thay đổi qua A cắt (O 1), (O2) tại D và
C, tiếp tuyến (O1) tại D cắt tiếp tuyến (O 2) tại C ở P. Chứng minh đường trung trực d của BP tiếp xúc
đường tròn cố định.
Lời giải.

·
·
·
·
Có PDB
+ PCB
= 180o − DAB
+ 180o − CAB
= 180o => P, D, B, C đồng viên

Ta có (BC, BP) = (BA, BD); (PB, PC) = (DA, DB) ;(BC, BA) = (BP, BD)

Xét phép tự vị quay tâm B: C a P, A a D
(O2) -> (BCPD)=> O2 a F là tâm (BCPD)
Cũng xét phép vị tự quay tâm B: P a D, C a A

14


(BCPD) -> (O1)
F a O1
Do O1F là trung trực BD, O2F là trung trực AC.
1
1
Suy ra : (FO1, FO2) = (FO1, FB) + (FB, FO2) = ( FD, FB ) + ( FB, FC ) = (PD,PB)+(PB,PC)
2
2

=(CD,CB)+(DB,DC)=-(BD,BC)=-(BO1,BO2) (mod π )
=> F, O1, O2, B đồng viên
Mà F là tâm (PCBD) => F thuộc trung trực PB mà O2F là trung trực BC
=> (d,FO2) = (BC,BP) = (BF,BO2) (Do phép vị tự quay tâm B: C a P, O2 a F )
=> d là tiếp tuyến của (O1O2B) tiếp điểm là F, suy ra điều phải chứng minh.
Bài 4.(IMO 2007).Cho 5 điểm A, B, C, D, E sao cho ABCD là hình bình hành và BCED là tứ giác
nội tiếp. Cho là một đường thẳng qua A cắt cạnh BC và đường thẳng BD tương ứng tại F và G. Giả
sử
. Chứng minh rằng là phân giác góc
.
Lời giải .

Xét phép vị tự quay S biến đoạn BC thành đoạn DG. Do


FB CD
=
nên S biến F thành C. Suy ra S biến
FC CA

trung điểm của đoạn FC thành trung điểm của CG. Theo mệnh đề tương tự với mệnh đề 3, tâm O của
S phải đồng thời thuộc đường tròn nội tiếp các tam giác CBD và CIJ nên O trùng với E. Suy ra tam giác
EBD đồng dạng với tam giác EIJnên tam giác EBD cân tại E và bài toán được giải quyết.
Bài 5(TST 2013). Cho tứ giác ABCD có các cạnh đối không song song nội tiếp đường tròn (O;R) .
Gọi E là giao điểm hai đường chéo, phân giác góc AEB cắt các đường thẳng AB,BC,CD,DA lần lượt tại
M,N,P,Q.Chứng minh rằng các đường tròn ngoại tiếp các tam giác AQM, BMN , CNP, DPQ cùng đi qua
một điểm K.

15


Lời giải :

Bổ đề. Cho hai đoạn thẳng AB và CD sao cho ABCD không là hình thang. Khi đó có một phép vị tự
quay tâm Kbiến AB thành CD. Nếu P là giao điểm của AB và CD, Q là giao điểm của AD và BC thì các
tứ giác APDK, BCPK, ABQK, CDQK nội tiếp.
Trở lại bài toán. Gọi V là giao điểm của AB và CD, U là giao điểm của AD và BC.
a) Xét phép vị tự quay biến AB thành DC. Gọi K là tâm của phép vị tự quay đó, ta có K thuộc đường tròn
ngoại tiếp các tam giác BCV, ADV, ABU,CDU . (1)

MB AM
=
nên phép vị tự quay trên cũng biến AM thành DP
PC DP
và MB thành PC.Từ đó ta cũng cóK thuộc đường tròn ngoại tiếp các tam giác AMQ,DPQ, MBP,CPN(2 )


Mặt khác do M thuộc AB, P thuộc AC và

Từ (1) và (2) ta có các đường tròn ngoại tiếp các tam giác AQM, BMN, CNP,DPQ cùng đi qua một
điểm K

**)Đối với phép quay có tâm,phép vị tự quay việc áp dụng thường phức tạp do tính lệ thuộc
vào tâm quay, cho nên đôi khi phải sử dụng hai hoặc ba phép quay đồng thời. Trong phép
quay véc tơ, các yếu tố được dịch chuyển dễ dàng, vì thế việc sử dụng cũng tiện lợi hơn,sau
đây chúng ta xét một số ứng dụng của phép quay véc tơ vào bài toán hình học phẳng.
16


C.Ứng dụng của phép quay véc tơ vào giải quyết một số bài toán hình học phẳng
III.PHÉP QUAY VECTƠ
3.1. Định nghĩa:
f:
E F
(E, F là tập hợp các vectơ trong mặt phẳng)
→

→

U → U'

f là phép quay vec tơ góc ϕ . Kí hiệu là

φ
Q


3.2. Tính chất:
1,

φ + k 2π = φ
Q
Q

2,

0 ≤ ϕ ≤ π thì ( u , u ') = ϕ

3,
4,

→ →

→ →


φ
φ
φ
Q (u + v ) =Q (u )+Q ( v )


φ
φ
Q ( k u ) = k .Q ( u )

4.2.Ứng dụng phép quay véc tơ vào các bài toán hình học phẳng.

Bài 1:Cho rABC tùy ý. Dựng về phía ngoài của nó các tam giác đều ABD và ACF. Dựng hình bình
hành ADEF.Chứng minh rằng: rBCE là tam giác đều.

Phân tích: Để chứng minh rBCE là tam giác đều

17


Q 60

0

→

→

: EB → EC

Thật vậy

Q 60

0














FA a FC

:

DB a DA

→

→

→

→

→

→

→

→

→


→

⇔ FA + DB  FC + DA
⇔ ED + DB  FC + EF
⇔ EB  EC
Vậy r BCE đều.

Bài 2:Cho hình bình hành ABCD, {P} = AC ∩ BD. M, N thứ tự là trung điểm của PD,BC.
Chứng minh rằng: Hai mệnh đề sau tương đương.
1) ∆ AMN vuông cân tại M.
2) ABCD là hình vuông.

Giải: Đặt
→



→



→



→



AD = v


AB = w

MN = x
MA = y


→

→

→

→

x = MN = MD + DC + CN =



→

y = − AM =

1 → →
(− v + 3 w)
4

1 → →
(3 v + w)
4


2 → →
v = − ( x + 3 y)
5

2 → →
w = (3 x − y )
5
1) Nếu ∆ AMN vuông cân tại M



18


π
2





Q : y −x

Xét:



⇒v w ⇒


ABCD là hình vuông.

2) Nếu tam giác ABCD là hình vuông
π
2





Q :v  w




w −v
Khi đó:





x  y . Vậy tam giác AMN vuông cân tại M.

Bài 3: Cho tứ giác lồi ABCD. Dựng về phía ngoài của nó các hình vuông với các cạnh tương ứng bằng
các cạnh của tứ giác đã cho. Chứng minh rằng tâm của bốn hình vuông trên là đỉnh của một tứ giác có hai
đương chéo bằng nhau và vuông góc với nhau.
Giải: Gọi tâm 4 hình vuông dựng trên các cạnh AB, BC, CD, DA tương ứng là O1 , O2 , O3 , O4

Như vậy các tam giác O1 AB, O2 BC , O3 CD, O4 DA là tam giác vuông cân.

Gọi M, N, I, J tương ứng là trung điểm các cạnh AB, BC, CD, DA.
Ta chứng tỏ O1O3 ⊥ O2 O4
O1O3 = O2 O4
Thực hiện phép quay vec tơ với góc quay 90 0 ta có:

19





0




Q 90 (O2O4 ) = O1O3












O2O4 = O2 N + NJ + JO4




1 → → → → → → →
O2 N + ( BA + CD ) + JO4 = O2 N + BM + CI + JO4
2




90




Q : O2 N a BN






CI a IO3






BM a O 1 M







JO 4 a JD




























Vậy: O2O4 a BN + O1M + IO3 + JD = MI + O1M + IO3 = O1O3
Bài 4: Cho tứ giác lồi ABCD có AC = BD. Dựng về phía ngoài tứ giác ABCD các tam giác đều với các
cạnh thứ tự bằng AB, BC, CD, DA. Gọi O1 , O2 , O3 , O4 là tâm các tam giác đó.
Chứng minh rằng: O1O3 ⊥ O2 O4 .

Phân tích: O1O3 ⊥ O2 O4

Q

900







: O1O3 a K1. O2O4?

Giải:
Gọi M, N, I, J lần lượt là trung điểm của AD, DC, CB, BA.
Vậy IJ ⊥ MN .

20



IJ
suy ra IJ = k.MN
MN
Ta có tam giác O1 AB, O2 BC , O3 CD, O4 DA là tam giác cân với
góc ở đáy bằng 30 0 .
AB
CD
⇒ O1 A = O1 B =
O3 C = O3 D =
3
3
;
BC
DA
O2 B = O2 C =
O4 D = O4 A =
3
3

Đặt k =

Mặt khác ta có
→

→

→

→


O1O3 = O1 I + IJ + JO3
Q

900

→

AB
2 3

→

: O1 I 
→

→

IJ  k . MN
→

→

JO3 

Suy ra:

Q

DC


2 3
90 0

→

→

→

→

→
( AB + DC )
(O1O3 ) =
+ k . MN +
=

+ k . MN
2
2 3
2 3
3

=

AB

→

1


→

3

→

MN + k . MN = (

→

1
3

DC

1

→

+ 1) MN

→
1
+ 1) MN ,suy ra O1O3 ⊥ MN
3
Bài 5: Cho tam giác ABC. Dựng về phía ngoài của nó các tam giác BCP, CAQ, ABR, sao cho:
0

→


90
Vậy: Q (O1O3 ) = (

Góc (PBC) = Góc (CAQ) = 45o , Góc (BCP) = Góc (QCA) = 30o Góc (ABR) = Góc (BAR) = 15o
Chứng minh rằng: Tam giác QRP vuông cân tại R.

C

Dựng về phía ngoài tam giác ABC tam giác ABC1 đều.

30

Q

BP AQ AR
BR
=
=
=
>0
Đặt k =
BC AC AC1 BC1

A

Thực hiện phép quay vec tơ với góc quay 45o.
→

45


→

o

45o

45o

Thấy các tam giác BPC, AQC, ARC1, BRC1 đồng dạng với nhau.

45

P

30o

Giải:

B

15o
45

o

45o

R


o
30o 30

→

C1

Q ( RP ) = Q ( RB + BP )

21


→





→

= Q 45 ( RB ) + Q 45 ( BP )
→

→

= k . C1 B + k . BC
→

→


→

= k .(C1 B + BC ) = k . C1C
Thực hiện tiếp phép quay vec tơ với góc quay 45o ta có:
o

o




o




o




o




Q 45 (Q 45 ( RP )) = Q 45 (k . C1C ) = Q 45 (k . C1 A) + Q 45 ( AC )
o





o













= Q 45 (k . C1 A) + Q 45 (k . AC ) = RA + AQ = RQ

Như vậy Q 90 ( RP ) = RQ hay RP = RQ. Do đó tam giác QRP vuông cân tại R.
*Nhận xét: Đối với phép quay có tâm, việc áp dụng thường phức tạp do tính lệ thuộc vào tâm quay, cho
nên đôi khi phải sử dụng hai hoặc ba phép quay đồng thời. Trong phép quay véc tơ, các yếu tố được dịch
chuyển dễ dàng, vì thế việc sử dụng cũng tiện lợi hơn.Qua các ví dụ trên ta thấy phần nào tính ưu việt của
phép quay véc tơ, đặc biệt là trong những bài toán phức tạp.
Bài tập làm thêm:
1. Dựng về phía ngoài tam giác ABC các tam giác ABC1 và ACB1 sao cho góc (ABC1) = góc (CAB1) =
30o, góc (BAC1) = góc (ACB1)= 60o. Điểm M thuộc cạnh BC sao cho MB = 3MC. Hãy tính các góc
của tam giác NB1C1.
2. Cho góc vuông xOy, hai điểm A và B chạy tương ứng trên Ox và Oy sao cho OA + OB = a không
đổi. Gọi D là đỉnh thứ tư của hình chữ nhật OACB. Chứng minh rằng :đường thẳng đi qua C và vuông
góc với AB đi qua một điểm cố định.

3. Trên các cạnh của tam giác, dựng về phía ngoài các hình vuông với tâm P, Q, R. Trên các cạnh của
tam giác PQR về phía trong, dựng các hình vuông. Chứng minh rằng tâm các hình vuông đó là trung
điểm các cạnh của tam giác ABC.
4. trên các cạnh của tam giác ABC dựng về phía ngào các tam giác đều ACB1, BCA1 và dựng về phía
trong tam giác đều ABC1 với tâm M. Chứng ming rằng tam giác A1B1M cân với góc (A1MB1)=120o.
5. Cho tam giác ABC tùy ý. Dựng về phía ngoài nó các tam giác ABC 1, BCA1, CAB1 sao cho:
Góc (ABC1) = Góc (ACB1) =
α + β +γ =

n
2

α ,Góc (BAC1) = Góc (CAB1) = β ,Góc (A1BC) = Góc (A1CB) = γ

..Hãy tính các góc của tam giác ABC.

22


Phần 3. KẾT LUẬN
Trên đây, tôi đã trình bày sử dụng phép quay,phép vị tự quay,phép quay véc tơ , giải
một số bài toán hình học phẳng, các bài toán được chọn khá đa dạng và phong phú . Qua đó
giúp học sinh tiếp cận và hình thành phương pháp giải quyết một lớp các bài toán cùng loại. ,
đặc biệt là giúp các em có phương pháp sử dụng các phép biến kết hợp phép biến hình vào
việc giải quyết một số dạng toán trong hình học phẳng
Tôi viết chuyên đề nhằm mục đích cùng trao đổi với các Thầy Cô dạy bộ môn toán về
việc sử dụng phép quay,phép vị tự quay,phép quay véc tơ trong việc giải quyết một số bài
toán hình học phẳng từ đó rút ra được tính ưu việt của từng phương pháp .Vì kiến thức và thời
gian còn nhiều hạn chế nên chắc rằng chuyên đề có thiếu sót, tôi chân thành mong muốn và
đón nhận sự trao đổi, góp ý của Quý Thầy Cô để chuyên đề ngày càng hoàn thiện và sâu sắc

hơn nữa. Tôi xin chân thành cảm ơn!

Tµi liÖu tham kh¶o
1. Phép biến hình trong mặt phẳng của tác giả .Đỗ Thanh Sơn
2.Các phép biến hình trong mặt phẳng của Nguyễn Mộng Hy
3.Tạp chí toán học tuổi trẻ
23


4. c¸c bµi to¸n vÒ h×nh häc ph¼ng cña V.VPRXOLOV
5 .Chuyên đề phép biến hình của trường hè.
6. Tham khảo bài giảng của một số đồng nghiệp.

24



×