Tải bản đầy đủ (.doc) (34 trang)

Câu hỏi và bài tập trắc nghiệm giải tích 12 chương 2 Lũy thừa, Logarit, Hàm số lũy thừa, Hàm số mũ, Hệ phương trình Mũ và Logarit, Bất phương Mũ và Logarit

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (346.93 KB, 34 trang )

TNG HP CU HI TRC NGHIMCHNG II: GII TCH 12
Câu 1: Tính: M =

2 2 + 53.54
103 :102 ( 0,25)

0

, ta đợc

A. 10
B. -10
C. 12
D. 15
2
Câu 2: Cho a là một số dơng, biểu thức a 3 a viết dới dạng luỹ thừa với số mũ hữu tỷ là:
7
5
6
11
A. a 6
B. a 6
C. a 5
D. a 6
Câu 3: Cho f(x) = 3 x. 6 x . Khi đó f(0,09) bằng:
A. 0,1
B. 0,2
C. 0,3
D. 0,4
4
Câu 4: Hàm số y = ( 4x 2 1) có tập xác định là:


A. R

1 1
2 2

Câu 5: Biểu thức K =

3

1 1



C. R\ ;

B. (0; +))

D. ; ữ
2 2

2 3 2 2 viết dới dạng luỹ thừa với số mũ hữu tỉ là:
3 3 3

5

1

A. 2 18
3ữ



1

B. 2 12
3ữ


1

C. 2 8
3ữ


D. 2 6
3ữ


2

Câu 6: Tính: M = ( 0, 04 ) 1,5 ( 0,125 ) 3 , ta đợc
A. 90
B. 121
C. 120
D. 125
Câu 7: Cho f(x) =
A. 1

x 3 x2
6


x
11
B.
10

13
ữ bằng:
10
13
C.
D. 4
10

. Khi đó f

Câu 8 : Cho a > 0 và a 1. Tìm mệnh đề đúng trong các mệnh đề sau:
A. log a x có nghĩa với x
B. loga1 = a và logaa = 0
C. logaxy = logax.logay
D. log a x n = n log a x (x > 0,n 0)
Câu 9: 49 log 2 bằng:
A. 2
B. 3
C. 4
D. 5
4

2
4


Câu 10: Rút gọn biểu thức x x : x (x > 0), ta đợc:
7

A.

4

x

B.

3

x

C.

(

x



)(

D. x 2

)(

)


Câu 11: Rút gọn biểu thức K = x 4 x + 1 x + 4 x + 1 x x + 1 ta đợc:
A. x2 + 1
B. x2 + x + 1
C. x2 - x + 1
D. x2 - 1
Câu 12: Cho f(x) = 3 x 4 x 12 x5 . Khi đó f(2,7) bằng:
A. 2,7
B. 3,7
C. 4,7
D. 5,7
Cõu 13: Cho hn s y = log 3 (2 x + 1) . Chn phỏt biu ỳng:
A. Hm s ng bin vi mi x>0.
B. Hm s ng bin vi mi x > -1/2
C. Trc oy l tim cn ngang
D. Trc ox l tim cn ng
Câu 14: Nếu log 7 x = 8 log7 ab 2 2 log 7 a 3b (a, b > 0) thì x bằng:
A. a 4 b 6
B. a 2 b14
C. a 6 b12
D. a 8 b14
Câu 15: log 4 4 8 bằng:
1


A.

1
2


B.

3
8

C.

5
4

D. 2

Câu 16: Hàm số nào dới đây thì nghịch biến trên tập xác định của nó?
C. y = log e x

B. y = log 3 x

A. y = log 2 x

Câu 17: Chọn mệnh đề đúng trong các mệnh đề sau:
A. 4 3 > 4

1,4

C. 1 ữ < 1 ữ
3
3

B. 3 3 < 31,7


2

D. y = log x



2



e

D. 2 ữ < 2 ữ
3 3

Câu 18: Số nào dới đây nhỏ hơn 1?
2

( )

e
A. 2 ữ
B. 3
C. e
D. e
3
Câu 19: a 32 loga b (a > 0, a 1, b > 0) bằng:
A. a 3 b 2
B. a 3 b
C. a 2 b 3

D. ab 2
1
1 2
12

y y
2
Câu 20: Cho K = x y ữ 1 2
+ ữ . biểu thức rút gọn của K là:

x xữ




A. x

B. 2x

C. x + 1

D. x - 1

Câu 21: Nếu log x 2 3 2 = 4 thì x bằng:
A.

1
3

B. 3 2


2

C. 4

D. 5

Câu 21: Hàm số y = ln 1 sin x có tập xác định là:

2




B. R \ { + k2, k Z}

A. R \ + k2 , k Z
Câu 23: Bất phơng trình: 3 ữ
A. [ 1; 2 ]

2x

4
B. [ ; 2 ]

3


3





C. R \ + k, k Z

D. R

x

3
ữ có tập nghiệm là:
4
C. (0; 1)
D.

3
1
2 : 4 + ữ 32
9
Câu 24: Tính: M =
, ta đợc
3
0 1
3
2
5 .25 + ( 0,7 ) . ữ
2
33
8
5

2
A.
B.
C.
D.
13
3
3
3
2

( )

Câu 25: Cho a > 1. Tìm mệnh đề sai trong các mệnh đề sau:
A. log a x > 0 khi x > 1
B. log a x < 0 khi 0 < x < 1
C. Nếu x1 < x2 thì log a x1 < log a x 2
D. Đồ thị hàm số y = log a x có tiệm cận ngang là trục hoành
Câu 26: Tập nghiệm của phơng trình: 2 x

2

x 4

=

1
là:
16
D. { 2; 2}


A.
B. {2; 4}
C. { 0; 1}
Câu 27: Đồ thị (L) của hàm số f(x) = lnx cắt trục hoành tại điểm A, tiếp tuyến của (L) tại A có phơng
trình là:
A. y = x - 1
B. y = 2x + 1
C. y = 3x
D. y = 4x - 3

2


x
x
Câu 28: Cho 9 x + 9 x = 23 . Khi đo biểu thức K = 5 + 3x + 3 x có giá trị bằng:

13 3
3
C.
D. 2
2
x 2 + y 2 = 20
Câu 29: Hệ phơng trình:
với x y có nghiệm là:
log 2 x + log 2 y = 3
5
A.
2


1
B.
2

(

A. ( 3; 2 )
B. ( 4; 2 )
C. 3 2; 2
Câu 30: Phơng trình 4 2x +3 = 84 x có nghiệm là:
B.

2
3

D. Kết quả khác

4
D. 2
5
3y +1 2 x = 5
Câu 31: Hệ phơng trình: x
có nghiệm là:
y
4 6.3 + 2 = 0
A. ( 3; 4 )
B. ( 1; 3 )
C. ( 2; 1)
D. ( 4; 4 )


A.

6
7

)

C.

Câu 32: Phơng trình: 3x + 4 x = 5x có nghiệm là:
A. 1
B. 2
C. 3
D. 4
Câu 33: Xác định m để phơng trình: 4 x 2m.2 x + m + 2 = 0 có hai nghiệm phân biệt? Đáp án là:
A. m < 2
B. -2 < m < 2
C. m > 2
D. m
Câu 34: Phơng trình: l o g x + l o g ( x 9 ) = 1 có nghiệm là:
A. 7
B. 8
C. 9
D. 10
3 7
Câu 35: log 1 a (a > 0, a 1) bằng:
a

7

A. 3

B.

2
3

C.

5
3

D. 4

Câu 36: Cho 3 < 27 . Mệnh đề nào sau đây là đúng?
A. -3 < < 3
B. > 3
C. < 3

D. R

a2 3 a2 5 a4
ữ bằng:
15 a 7



12
9
A. 3

B.
C.
D. 2
5
5
Câu 38: Phơng trình: 2 x + 2 x 1 + 2 x 2 = 3x 3x 1 + 3x 2 có nghiệm là:

Câu 37: log a

A. 2
B. 3
C. 4
D. 5
Câu 39: Bất phơng trình: log 4 ( x + 7 ) > log 2 ( x + 1) có tập nghiệm là:
A. ( 1;4 )
B. ( 5;+ )
C. (-1; 2)
D. (-; 1)
Câu 40: Phơng trình: 2 x = x + 6 có nghiệm là:
A. 1
B. 2
C. 3
D. 4
1
log
10
Câu 41: 64 2
bằng:
A. 200
B. 400

C. 1000
D. 1200
2

x y = 6
có nghiệm là:
ln x + ln y = 3ln 6

Câu 42: Hệ phơng trình:
A. ( 20; 14 )
Câu 43: Phơng trình:

B. ( 12; 6 )

C. ( 8; 2 )

1
2
+
= 1 có tập nghiệm là:
4 lg x 2 + lg x

3

D. ( 18; 12 )


A. { 10; 100}

1


; 10
10


B. { 1; 20}

C.

D.

x + y = 7
với x y có nghiệm là?
lg x + lg y = 1

Câu 44: Hệ phơng trình:

A. ( 4; 3 )
B. ( 6; 1)
C. ( 5; 2 )
D. Kết quả khác

x
Câu 45: Hàm số f(x) = xe đạt cực trị tại điểm:
A. x = e
B. x = e2
C. x = 1
2
Câu 46: Cho f(x) = x ln x . Đạo hàm cấp hai f(e) bằng:
A. 2

B. 3
C. 4
D. 5

D. x = 2

Câu 47: Bất phơng trình: 9 x 3x 6 < 0 có tập nghiệm là:
A. ( 1;+ )
B. ( ;1)
C. ( 1;1)
D. Kết quả khác
Câu 48: Tập hợp các giá trị của x để biểu thức log5 ( x 3 x 2 2x ) có nghĩa là:
A. (0; 1)

B. (1; +)

125
Câu 49: Cho lg2 = a. Tính lg
theo a?
4

A. 3 - 5a

B. 2(a + 5)

C. (-1; 0) (2; +) D. (0; 2) (4; +)
C. 4(1 + a)

D. 6 + 7a


Câu 50: Trong các phơng trình sau đây, phơng trình nào có nghiệm?
A.

x

1
6

+1=0

B.

1

Câu 51: Phơng trình: 2 2x +6 + 2 x +7
A. -3
B. 2

1

C. x 5 + ( x 1) 6 = 0
= 17 có nghiệm là:
C. 3
D. 5

x4 +5 = 0

D.

1

4

x 1 = 0

Cõu 52: Gi s ta cú h thc a2 + b2 = 7ab (a, b > 0). H thc no sau õy l ỳng?
a+b
= log 2 a + log 2 b
3
a+b
= log2 a + log 2 b
D. 4 log2
6

A. 2 log 2 ( a + b ) = log 2 a + log 2 b

B. 2 log 2

a+b
= 2 ( log 2 a + log 2 b )
3
Câu 53: Phơng trình: log 2 x = x + 6 có tập nghiệm là:

C. log2
A. { 3}

B. { 4}

Câu 54: Hàm số y = ln
A. (-; -2)


(

C. { 2; 5}

)

D.

x 2 + x 2 x có tập xác định là:

B. (1; +)

C. (-; -2) (2; +)

D. (-2; 2)

Câu 55: Tìm mệnh đề đúng trong các mệnh đề sau:
A. Hàm số y = log a x với 0 < a < 1 là một hàm số đồng biến trên khoảng (0 ; +)
B. Hàm số y = log a x với a > 1 là một hàm số nghịch biến trên khoảng (0 ; +)
C. Hàm số y = log a x (0 < a 1) có tập xác định là R
D. Đồ thị các hàm số y = loga x và y = log 1 x (0 < a 1) thì đối xứng với nhau qua trục hoành
a
Câu 56: Số nào dới đây thì nhỏ hơn 1?
A. log ( 0, 7 )

B. log 3 5


C. log e
3


4 x+1 862x
Câu 57: Hệ bất phơng trình: 4x+5
có tập nghiệm là:
271+x
3

A. [2; +)

B. [-2; 2]

C. (-; 1]

D. [2; 5]
4

D. log e 9


x + 2y = 1
có mấy nghiệm?
x + y2
= 16
4

Câu 58: Hệ phơng trình:
A. 0

B. 1


C. 2

D. 3

Câu 59: 3 log 2 ( log 4 16 ) + log 1 2 bằng:
2

A. 2
B. 3
C. 4
D. 5
Câu 60: Nếu log 2 x = 5 log 2 a + 4 log 2 b (a, b > 0) thì x bằng:
A. a 5 b 4
B. a 4 b5
C. 5a + 4b D. 4a + 5b
x
y
2 + 2 = 6
Câu 61: Hệ phơng trình: x + y
với x y có mấy nghiệm?
2 = 8

A. 1

B. 2

Cõu 62: Hm s y = log

C. 3


5

D. 0

1
cú tp xỏc nh l:
6x

A. (6; +)
B. (0; +)
Câu 63: Tính: K = 43+ 2 .21 2 : 2 4 + 2 , ta đợc:
A. 5
B. 6
C. 7

C. (-; 6)

D. R

D. 8

Cõu 64: Tp xỏc nh ca hm s y = log 3 (2 x + 1) l:
1
A. D = (; ).
2

1
B. D = (; ).
2


1
C . D = ( ; +).
2

A. ax > 1 khi x < 0
B. 0 < ax < 1 khi x > 0
C. Nếu x1 < x2 thì a x < a x
D. Trục hoành là tiệm cận ngang của đồ thị hàm số y = ax
1

1
D. D = ( ; +)
2

2

Câu 65: Cho log 2 5 = a; log3 5 = b . Khi đó log6 5 tính theo a và b là:
A.

1
a+b

B.

ab
a+b

C. a + b

D. a 2 + b 2


Câu 66: Rút gọn biểu thức: 81a 4 b 2 , ta đợc:
A. 9a2b
B. -9a2b
C. 9a 2 b
Câu 67: log 6 3.log3 36 bằng:
A. 4
B. 3

C. 2

D. Kết quả khác

D. 1

a2 3 a2 5 a4
ữ bng:
15 7

a


12
9
A. 3
B.
C.
D. 2
5
5

x 1
2x
1
Cõu 69: Cho biu thc A = x 1 + 3. 2 4 2 . Khi 2 x = 3 thỡ giỏ tr ca biu thc A l:
2
3
3 3
9 3
9 3
A.
B.
C.
D.
2
2
2
2

Cõu 68: log a

Câu 70: Cho > . Kết luận nào sau đây là đúng?
A. <
B. >
C. + = 0
Câu 71: Mệnh đề nào sau đây là đúng?
4
5
A. 3 2 < 3 2
B.


(

) (

)

(

11 2
5

) >(
6

11 2

D. . = 1

)

7


(

) (
3

C. 2 2 < 2 2


)

(

4

) (
3

D. 4 2 < 4 2

Câu 72: 102 + 2 lg 7 bằng:
A. 4900
B. 4200

C. 4000

)

4

D. 3800


Câu 73: Trên đồ thị (C) của hàm số y = x 2 lấy điểm M0 có hoành độ x0 = 1. Tiếp tuyến của (C) tại
điểm M0 có phơng trình là:
A. y =


x +1

2

B. y =



x +1
2
2

C. y = x + 1


2


2

D. y = x + + 1

Câu 74: Cho lg2 = a. Tính lg25 theo a?
A. 2 + a
B. 2(2 + 3a)
C. 2(1 - a)
D. 3(5 - 2a)
Câu 75: Trong các hàm số sau đây, hàm số nào đồng biến trên các khoảng nó xác định?
3
A. y = x-4
B. y = x 4
C. y = x4

D. y = 3 x
Câu 76: Với giá trị nào của x thì biểu thức log 6 ( 2x x 2 ) có nghĩa?
A. 0 < x < 2
B. x > 2
C. -1 < x < 1
D. x < 3
2

Cõu 77: Tp xỏc nh ca hm s y = 7 x + x 2 l:
A.D = R.

B.D = R \ { 1; 2}

Câu 78: Nếu

1
a + a = 1 thì giá trị của là:
2

A. 3

(

C.D = ( 2;1) D.D = [ 2;1]

)

B. 2

C. 1


D. 0

2 1

Câu 79: Rút gọn biểu thức a 2 1 ữ
(a > 0), ta đợc:
a
A. a
B. 2a
C. 3a
D. 4a
Câu 80: Rút gọn biểu thức b ( 3 1) : b 2 3 (b > 0), ta đợc:
A. b
B. b2
C. b3
D. b4
2

11

Câu 81: Rút gọn biểu thức:

x x x x : x 16 , ta đợc:

A. 4 x
B. 6 x
C. 8 x
D. x
Câu 82: log 0,5 0,125 bằng:

A. 4
B. 3
C. 2
D. 5
9
2
6 4
Câu 83: Tính: M = 8 7 : 8 7 3 5 .3 5 , ta đợc
A. 2
B. 3
C. -1
D. 4
Câu 84: Cho hàm số y = 4 2x x 2 . Đạo hàm f(x) có tập xác định là:
A. R

C. (-;0) (2; +)

B. (0; 2)
1
2

D. R\{0; 2}

Câu 85: Nếu log a x = log a 9 log a 5 + log a 2 (a > 0, a 1) thì x bằng:
A.

2
5

B.


3
5

C.

Cõu 86: Cho biu thc B = 3log
A.B = log 3 (3 x)

3

6
5

D. 3
x
. Biu thc B c rỳt gn thnh:
3 9
x
C.B = log 3 ( ) D. ỏp ỏn khỏc
3

x 6 log 9 (3 x) + log 1

B.B = 1 + log 3 ( x)

Cõu 87: Cho 0 < a < 1. Tỡm mnh sai trong cỏc mnh sau:
A. ax > 1 khi x < 0
6



B. 0 < ax < 1 khi x > 0
C. Nu x1 < x2 thỡ a x < a x
D. Trc honh l tim cn ngang ca th hm s y = ax
1

2

Cõu 88: Tp xỏc nh ca hm s y = ln(2 x 2 + e 2 ) l:
1
).
2e
4
Cõu 89: Rỳt gn biu thc K = x x + 1
A.D = R.

B.D = (;

(

)(

e
1
C.D = ( ; +).
D.D = ( ; +)
2
2
4
x + x + 1 x x + 1 ta c:


)(

)

A. x2 + 1
B. x2 + x + 1
C. x2 - x + 1
D. x2 - 1
Câu 90: Cho a > 0 và a 1, x và y là hai số dơng. Tìm mệnh đề đúng trong các mệnh đề sau:
A. log a

x log a x
=
y log a y

B. log a

C. log a ( x + y ) = log a x + log a y

1
1
=
x log a x

D. log b x = log b a.log a x

lg xy = 5
với x y có nghiệm là?
lg x.lg y = 6


Câu 91: Hệ phơng trình:
A. ( 100; 10 )

B. ( 500; 4 )

C. ( 1000; 100 )

D. Kết quả khác

Câu 92: Hàm số y = x + ( x 2 1) có tập xác định là:
e

A. R

B. (1; +)

C. (-1; 1)

D. R\{-1; 1}

Cõu 93: o hm cp 1 ca hm s y = ln(2 x 2 + e 2 ) l:
4 x + 2e
4x
C.
2
2 2
2
(2 x + e )
(2 x + e 2 )

Cõu 94: Cho hm s y = log 3 (2 x + 1) . Chn phỏt biu sai:
A.

4x
(2 x + e 2 ) 2
2

A.
B.
C.
D.

B.

D=

x
(2 x + e 2 ) 2
2

Hm s nghch bin vi mi x>-1/2.
Hm s ng bin vi mi x > -1/2
Trc oy l tim cn ng
Hm s khụng cú cc tr

Cõu 95: Cho biu thc A =

1

2x


+ 3. 2 4
x 1

x 1
2

. Tỡm x bit

2
A.x = 2
B.x = 1
C .x 2
D.x 1
Cõu 96: Hm s y = ln 1 sin x cú tp xỏc nh l:


A. R \ + k2, k Z
B. R \ { + k2 , k Z}
2

2)
B. [ 2; 1]

Câu 97: Bất phơng trình:

(

x2 2x


A2 2 A
+
= 1 .
81 9


3




C. R \ + k, k Z

D. R

( 2 ) có tập nghiệm là:
C. [ 1; 3]
D. Kết quả khác
3

A. ( 2;5 )
Câu 98: Phơng trình: ln ( x + 1) + ln ( x + 3 ) = ln ( x + 7 )
A. 0
B. 1
C. 2
D. 3
2
Câu 99: Cho hàm số y = ( x + 2 ) . Hệ thức giữa y và y không phụ thuộc vào x là:
A. y + 2y = 0
B. y - 6y2 = 0

C. 2y - 3y = 0
1
1
1
Câu 100: Cho biểu thức A = ( a + 1) + ( b + 1) . Nếu a = 2 + 3 và b = 2 3
A. 1
B. 2
C. 3
D. 4

(

Cõu 101: o hm cp 1 ca hm s y = log 3 (2 x + 1) l:
7

)

(

)

1

D. (y)2 - 4y = 0
thì giá trị của A là:


A.

−2

(2 x + 1) ln x

B.

2ln x
(2 x + 1)

Câu 102: Biểu thức K =

3

C.

2
(2 x + 1) ln x

.D =

2
( x + 1) ln x

232 2
viết dới dạng luỹ thừa với số mũ hữu tỉ là:
3 3 3

5

1

1


18
12
A.  2 ÷
B.  2 ÷
3
3
4
C©u 103: log 1 32 b»ng:

1

8
C.  2 ÷
3

6
D.  2 ÷
3

8

5
A.
4

5
D. 3
12
C©u 104: TËp nghiÖm cña ph¬ng tr×nh: 5x −1 + 53− x = 26 lµ:

A. { 2; 4}
B. { 3; 5}
C. { 1; 3}
D. Φ

B.

4
5

C. -

C©u 105: Cho log 2 5 = a . Khi ®ã log 4 500 tÝnh theo a lµ:
1
( 3a + 2 )
2

B.

A. 3a + 2

C. 2(5a + 4)

D. 6a - 2
2

Câu 106: Nghiệm của bất phương trình y < 1/49 là: biết y = 7 x + x −2
 m < −1
A. 
m>0


 m > −1
B. 
 m<0

C. − 1 < x < 0 .D.x > 0

Câu 107: Đạo hàm cấp 1 của hàm số y = ln(2 x 2 + e 2 ) tại x = e là:
4
4
.D 4
3
9e
9e
x
x
Câu 108: Cho phương trình 4 − 3.2 + 2 = 0 . Nếu thỏa mãn t = 2x và t > 1. Thì giá trị của biểu thức
A.

4
9e

B.

4
9e 2

C.

2017t là:


B. − 2017

A.2017

D. − 4034

C .4034

Câu 109: Giá trị của e y − 2 x 2 là: biết y = ln(2 x 2 + e 2 )
A.e

B.e2

C.e3

.D.e 4

Câu 110: Điểm nào sau đây thuộc đồ thị hàm số y = log 3 (2 x + 1) là:
B.(−1;0)

A.(1;1)

C .(1;0)

D.(−1;1)

Câu 111: Cho 0 < a < 1Tìm mệnh đề sai trong các mệnh đề sau:
A. loga x > 0 khi 0 < x < 1
B. loga x < 0 khi x > 1

C. Nếu x1 < x2 thì log a x1 < log a x 2
D. Đồ thị hàm số y = loga x có tiệm cận đứng là trục tung
/
Câu 112: Giá trị của y .(2 x + 1) ln x +

A.5

B.6

2 log 9 (2 x + 1)5
là: biết y = log 3 (2 x + 1)
y
C .7
.D = 8

2
Câu 113: Với giá trị nào của x thì biểu thức log 6 ( 2x − x ) có nghĩa?
A. 0 < x < 2
B. x > 2
C. -1 < x < 1
D. x < 3
1
C©ub114: 4 2 log 3+3log 5 b»ng:
A. 25
B. 45
C. 50
D. 75
2

8


8


Câu 115: Xác định m để y / (−e) = 3m −
A.m = 3

4
2
2
3 , biết y = ln(2 x + e )
9e
C .m = 1

B.m = 2
x −1
2x
1
Câu 116: Cho biểu thức A = − x −1 + 3. 2 − 4 2 . Tìm x biết
2

D.m = 0
A =3

Câu 117: Điểm nào sau đây không thuộc đồ thị hàm số y = ln(2 x 2 + e 2 ) :
B.(−e; 2 + ln 3)
C.(e; 2 + ln 3)
D.( −1; 2)
1
Câu 118: Cho y = ln

. Hệ thức giữa y và y’ không phụ thuộc vào x là:
1+ x
A.(0; 2)

A. y’ - 2y = 1
B. y’ + ey = 0
C. yy’ - 2 = 0
D. y’ - 4ey = 0
Câu 119: Xác định m để A(m; 2) thuộc đồ thị hàm số y = ln(2 x 2 + e2 ) :
A.m = 0

B.m = 1
C.m = 2
D.m = 3
x −1
2x
1
Câu 120: Cho biểu thức A = − x −1 + 3. 2 − 4 2 . Nếu đặt 2 x −1 = t (t > 0) . Thì A trở thành
2
9
9
A. − t
B. t
C. − 9t
D.9t
2
2

Câu 121: Cho hàm số y = x(e x + ln x ) . Chọn phát biểu đúng:
A. Hàm số đồng biến với mọi x>0.

B. Hàm số đồng biến với mọi x <0
C. Hàm số đồng biến với mọi x.
D. Hàm số nghịch biến với mọi x>0.
Câu 121: Giá trị nhỏ nhất của hàm số y = 7 x + x − 2 trên [0;1] là:
2

A.0

B.1
C.2
C©u 122: NÕu logx 243 = 5 th× x b»ng:

A. 2

B. 3

.D.3

C. 4

D. 5

Câu 123: Giá trị lớn nhất của hàm sô y = log 3 (2 x + 1) [0;1] là:
A.0

B.1

C.2

D.3


Câu 124: Gọi a và b lần lượt là giá trị lơn nhất và bé nhất của hàm số y = ln(2 x 2 + e2 ) trên [0;e]. khi đó
Tổng a + b là:
A.1+ln2
B. 2+ln2
C. 3+ln2
D.4+ln2
x + x−2
Bài 125: Cho hàm số y = 7
2

2

Câu 126: Đạo hàm cấp 1 của hàm số y = 7 x + x − 2 là:
A. y / = 7 x
C. y = 7
/

2

+ x−2

x2 + x − 2

( x + 1) ln 7.

B. y / = 7 x

(7 x + 1) ln 7.


D. y = 7
/

2

+ x−2

(2 x + 1) ln 7.

x2 + x −2

(2 x + 7) ln 7.
2

Câu 127: Đạo hàm cấp 1 của hàm số y = 7 x + x − 2 tại x = 1 là:
A.0

B.1

C.2

.D.3
Câu 128: Cho hàm số y = 7
. Tìm x biết log 7 y = 4 là:
m = 3
 m = −3
 m = −3
 m=3
A. 
B. 

C. 
.D. 
m = 2
 m=2
 m = −2
 m = −2
Câu 129: Xác định m để A(m; -2) thuộc đồ thị hàm số y = log 3 (2 x + 1) là:
9
4
4
9
A.m = −
B.m =
C.m = −
D.m =
4
9
9
4
x2 + x − 2

9


2

Câu 130:Cho hàm số y = 7 x + x − 2 . Xác định m để y / (1) = 3m ln 7
A.m = 3

B.m = 2


C .m = 1

D.m = 0

Câu 131: Điểm nào sau đây không thuộc đồ thị hàm số y = 7
B.(−2;1)

A.(1;1)

C .(0;

x2 + x − 2

1
)
49

:

D.(0; 49)
2

Câu 132: Xác định m để A(m; 1) thuộc đồ thị hàm số y = 7 x + x − 2 :
m =1
A. 
m = 2

 m = −1
 m =1

 m = −1
B. 
C. 
.D. 
m=2
 m = −2
 m = −2
1
C©u 133: NÕu log a x = (log a 9 − 3 log a 4) (a > 0, a ≠ 1) th× x b»ng:
2
A. 2 2
B. 2
C. 8
D. 16
2

Câu 134: Tập nghiệm của bất phương trình y/ < 0 là: biết y = 7 x + x − 2
A.x > 1/ 2

B.x < 1/ 2

C.0 < x < 1/ 2
D.x > 0
Câu 135: Đạo hàm cấp 1 của hàm số y = log 3 (2 x + 1) tại x = 0 là:
A.0
B.1
C.2 .D = 3
Câu 136: Đạo hàm của hàm số y = x(e x + ln x ) tại x = 1là:
A.2e + 1
B.2e − 1

C.2e + 2
D.2e + 2
x
Câu 137: Cho hàm số y = x(e + ln x ) . Chọn khẳng định sai trong các khẳng định sau:
A. y (1) = 1 + 2e
B. y / (1) = 1 + 2e
C . y (0) = 0
D. y / (e) = e e (1 + e) + 2

C©u 138: Gi¶ sö ta cã hÖ thøc a2 + b2 = 7ab (a, b > 0). HÖ thøc nµo sau ®©y lµ ®óng?
a+b
= log 2 a + log 2 b
3
a+b
D. 4 log 2
= log 2 a + log 2 b
6

A. 2 log 2 ( a + b ) = log 2 a + log 2 b
C. log 2

B. 2 log 2

a+b
= 2 ( log 2 a + log 2 b )
3

Câu 139: Cho hàm số y = x(e x + ln x ) . Chọn khẳng định đúng:
A. Hàm số có đạo hàm tại x = 0.
B. Hàm số không có đạo hàm tại x = 1.

C. Đồ thị của hàm số không đi qua Q(1;2e+1).
D. Hàm số xác định với mọi x dương.
C©u 140: Cho lg5 = a. TÝnh lg
A. 2 + 5a

1
theo a?
64

B. 1 - 6a

C. 4 - 3a

D. 6(a - 1)

Câu 141: Tìm mệnh đề đúng trong các mệnh đề sau:
A. Hàm số y = ax với 0 < a < 1 là một hàm số đồng biến trên (-∞: +∞)
B. Hàm số y = ax với a > 1 là một hàm số nghịch biến trên (-∞: +∞)
C. Đồ thị hàm số y = ax (0 < a ạ 1) luôn đi qua điểm (a ; 1)
1

x

D. Đồ thị các hàm số y = ax và y =  ÷ (0 < a ạ 1) thì đối xứng với nhau qua trục tung
a
Câu 142: Cho a > 1. Tìm mệnh đề sai trong các mệnh đề sau:
A. ax > 1 khi x > 0
B. 0 < ax < 1 khi x < 0
C. Nếu x1 < x2 thì a x < a x
D. Trục tung là tiệm cận đứng của đồ thị hàm số y = ax

Câu 143: Tìm mệnh đề đúng trong các mệnh đề sau:
A. Hàm số y = loga x với 0 < a < 1 là một hàm số đồng biến trên khoảng (0 ; +∞)
1

2

10


B. Hàm số y = loga x với a > 1 là một hàm số nghịch biến trên khoảng (0 ; +∞)
C. Hàm số y = loga x (0 < a ạ 1) có tập xác định là R
D. Đồ thị các hàm số y = loga x và y = log 1 x (0 < a ạ 1) thì đối xứng với nhau qua trục hoành
a

Câu 144: Cho a > 1. Tìm mệnh đề sai trong các mệnh đề sau:
A. loga x > 0 khi x > 1
B. loga x < 0 khi 0 < x < 1
C. Nếu x1 < x2 thì log a x1 < log a x 2
D. Đồ thị hàm số y = loga x có tiệm cận ngang là trục hoành
4

Câu 145: Biểu thức a 3 : 3 a 2 viết dới dạng luỹ thừa với số mũ hữu tỷ là:
5

2

5

7


A. a 3
B. a 3
C. a 8
D. a 3
Câu 146: Cho a > 0, a ạ 1. Tìm mệnh đề đúng trong các mệnh đề sau:
A. Tập giá trị của hàm số y = ax là tập R
B. Tập giá trị của hàm số y = loga x là tập R
C. Tập xác định của hàm số y = ax là khoảng (0; +∞)
D. Tập xác định của hàm số y = loga x là tập R
C©u 147: Cho log2 6 = a . Khi ®ã log318 tÝnh theo a lµ:
A.

2a − 1
a −1

B.

a
a +1

C. 2a + 3

D. 2 - 3a

Câu 148: Hàm số y = ln ( −x + 5x − 6 ) có tập xác định là:
A. (0; +∞)
B. (-∞; 0)
C. (2; 3)
/
Câu 149: Xác định m để y (e) = 2m + 1 biết y = log 3 (2 x + 1)

2

A.m =

1 + 2e
4e − 2

B.m =

Câu 150: Hàm số y = ln

(

1 − 2e
4e + 2

C.m =

)

D. (-∞; 2) ẩ (3; +∞)

1 − 2e
4e − 2

D.m =

x 2 + x − 2 − x có tập xác định là:

A. (-∞; -2)

B. (1; +∞)
C. (-∞; -2) ẩ (2; +∞)
x
Câu 151: Cho hàm số y = x(e + ln x ) . Chọn phát biểu sai:
A. Hàm số nghịch biến với mọi x
B. Hàm số nghịch với mọi x <0
C. Hàm số có 1 cực trị
D. Đồ thị hàm số không đi qua gốc tọa độ.
Câu 152: Hàm số y =

1 + 2e
4e + 2

1
có tập xác định là:
1 − ln x

A. (0; +∞)\ {e}
B. (0; +∞)
log
8.log
81
C©u 153:
b»ng:
4
3
A. 8
B. 9
C. 7


C. R

D. (-2; 2)

D. (0; e)

D. 12

Câu 154: Hàm số y = log5 ( 4x − x ) có tập xác định là:
A. (2; 6)
B. (0; 4)
C. (0; +∞)
D. R
Câu 155: Hàm số nào dưới đây đồng biến trên tập xác định của nó?
2

A. y = ( 0,5 )

x

x

2
B. y =  ÷
3

C. y =

( 2)


x

e
D. y =  ÷
π

x

Câu 156: Hàm số nào dưới đây thì nghịch biến trên tập xác định của nó?
A. y = log2 x

B. y = log 3 x

C. y =
11

log e x
π

D. y = log π x


Câu 157: Số nào dưới đây nhỏ hơn 1?
2
A.  ÷
3

2

B.


( 3)

e

C. πe

D. eπ

Câu 158: Số nào dưới đây thì nhỏ hơn 1?
A. log π ( 0, 7 )

B.

log 3 5

C. log π e

π

D. log e 9

3

2
x
Câu 159: Hàm số y = ( x − 2x + 2 ) e có đạo hàm là:
A. y’ = x2ex
B. y’ = -2xex
C. y’ = (2x - 2)ex


Câu 160: Cho f(x) =
A. e2

e
. Đạo hàm f’(1) bằng :
x2

B. -e

C. 4e

Câu 161: Cho biểu thức A =

Câu 162: Cho f(x) =

D. Kết quả khác

x

1
2

D. 6e
2x

− x −1

+ 3. 2 − 4


x −1
2

. Tìm x biết A = 9.3x −1

ex − e− x
. Đạo hàm f’(0) bằng:
2

A. 4
B. 3
C. 2
D. 1
2
Câu 163: Cho f(x) = ln x. Đạo hàm f’(e) bằng:
A.

1
e

B.

2
e

C.

Câu 164: Cho biểu thức A =
A.t = kπ ; k ∈ Z


1

3
e

D.
2x

2− x −1

+ 3. 2 − 4

x −1
2

4
e

. Đặt x = cos2t, khi A = 9 thì giá trị của t là:

Bt = k 2π ; k ∈ Z

C.t = π + kπ ; k ∈ Z
D.t = π + k 2π ; k ∈ Z
2
2
1
C©u 165: Hµm sè y =
cã tËp x¸c ®Þnh lµ:
1 − ln x


A. (0; +∞)\ {e}

B. (0; +∞)

C. R

D. (0; e)

1 ln x
+
có đạo hàm là:
x
x
ln x
ln x
ln x
A. − 2
B.
C. 4
D. Kết quả khác
x
x
x
π
Câu 167: Cho f(x) = ln t anx . Đạo hàm f '  ÷ bằng:
4

Câu 166: Hàm số f(x) =


A. 1
B. 2
C. 3
D. 4
sin 2x
Câu 168: Cho f(x) = e . Đạo hàm f’(0) bằng:
A. 1
B. 2
C. 3
D. 4
Câu 169: Cho biểu thức A =
A.6

1

2x

2− x −1

+ 3. 2 − 4

B.7

x −1
2

. Giá trị lớn nhất của biểu thức L = 5+A với 2 x ≤

C.9


D.8

x −1

Câu 170: Cho f(x) = 2 x +1 . Đạo hàm f’(0) bằng:
A. 2
B. ln2
C. 2ln2
Câu 171: Tính: K =
A. 10

−1

−3

2 .2 + 5 .5
3

10 : 10 −2 − ( 0, 25 )
−3

B. -10

D. Kết quả khác

4
0

, ta đợc


C. 12

D. 15
12

2
là:
9


f '( 0)

Cõu 172: Cho f(x) = tanx v (x) = ln(x - 1). Tớnh
A. -1

B.1

C. 2

(

' ( 0)

. ỏp s ca bi toỏn l:

D. -2

)

Cõu 173: Hm s f(x) = ln x + x + 1 cú o hm f(0) l:

A. 0

B. 1

Cõu 174: Hm s y = ln
A.

2

2
cos 2x

C. 2

D. 3

cos x + sin x
cú o hm bng:
cos x sin x
2
B.
C. cos2x
sin 2x

D. sin2x

Cõu 175: Cho f(x) = e x . o hm cp hai f(0) bng:
A. 1
B. 2
C. 3

D. 4
2

1

Cõu 176: Trc cn thc mu biu thc
A.

3

25 + 3 10 + 3 4
3

3

ta c:

532

B. 3 5 + 3 2

C. 3 75 + 3 15 + 3 4

D. 3 5 + 3 4

Câu 177: Cho 0 < a < 1Tìm mệnh đề sai trong các mệnh đề sau:
A. log a x > 0 khi 0 < x < 1
B. log a x < 0 khi x > 1
C. Nếu x1 < x2 thì log a x1 < log a x 2
D. Đồ thị hàm số y = log a x có tiệm cận đứng là trục tung

Cõu 178: Hm s f(x) = xe x t cc tr ti im:
A. x = e
B. x = e2
C. x = 1
D. x = 2
3
2
Cõu 179: Tp hp cỏc giỏ tr ca x biu thc log5 ( x x 2x ) cú ngha l:
A. (0; 1)
B. (1; +)
C. (-1; 0) (2; +) D. (0; 2) (4; +)
Cõu 180: Hm s f(x) = x 2 ln x t cc tr ti im:
A. x = e

B. x =

Cõu 181: Cho biu thc A =
A.6

1
2

x 1

C. x =

e
2x

+ 3. 2 4


B.7

x 1
2

1
e

D. x =

1
e

. Giỏ tr bộ nht ca biu thc B = 5-A vi 2 x

C.4

D.5

Cõu 182: Hm s y = lnx cú o hm cp n l:
( n)
A. y =

n!
xn

B. y ( n ) = ( 1)

n +1


( n 1) !
x

n

( n)
C. y =

1
xn

( n)
D. y =

n!
x n +1

3

31
2 : 4 2 + 32 ữ
9
Cõu 183: Tớnh: K =
3 , ta c
0 1
3
2
5 .25 + ( 0,7 ) . ữ
2

33
8
5
2
A.
B.
C.
D.
13
3
3
3

( )

Cõu 184: Cho f(x) = x2e-x. bt phng trỡnh f(x) 0 cú tp nghim l:
A. (2; +)
B. [0; 2]
C. (-2; 4]
D. Kt qu khỏc
13

2
l:
9


Câu 185: Cho biểu thức A =

1

2− x −1

2x

+ 3. 2 − 4

x −1
2

. Biểu thức A được rút gọn thành:

A. − 9.2 x −1

B.9.2 x −1
C.9.2 x +1
Câu 186: Cho f(x) = x π .πx . Đạo hàm f’(1) bằng:

A. π(1 + ln2)

B. π(1 + lnπ)

D.9.2 x

C. πlnπ

D. π2lnπ

Câu 187: Cho x thỏa mãn (2 x − 6)(2 x + 6) = 0 . Khi đó giá trị của A =
A.25


B.26

C.27

1

2

2x

+ 3. 2 − 4
− x −1

x −1
2

là:

D.28

Câu 188: Cho f(x) = e
. Đạo hàm f’(0) bằng:
A. 0
B. 1
C. 2
D. 3
cos2 x

Câu 189: Cho biểu thức A =
A.x = 2

A.x = 2

1
2− x −1

2x

+ 3. 2 − 4

x −1
2

. Tìm x biết A > 18.

B.x > 2
C .x ≥ 2
D.x < 2
B.x = 1
C.x ≥ 2
D.x ≥ 1
Câu 190: Cho f(x) = lg 2 x . Đạo hàm f’(10) bằng:
1
A. ln10
B.
C. 10
D. 2 + ln10
5 ln10
1

2x


x −1
2

+ 3. 2 − 4 . Tìm x biết log 9 A = 2
2− x −1
A.x = 2 + log 2 9
B.x = 1 + log 2 9
C.x = 2 − log 2 9
D.x = 1 − log 2 9
A.x = 2
B.x = 1
C .x ≥ 2
D.x ≥ 1
4
Câu 192: Cho f(x) = ln ( x + 1) . Đạo hàm f’(1) bằng:

Câu 191: Cho biểu thức A =

A. 1

B. 2

C. 3

D. 4

Câu 193: Tìm x nguyên để A là ước của 9;
A.x = 2


B.x = 1

C .x = 3

Câu 194: Cho biểu thức A =

1
2

− x −1

2x

+ 3. 2 − 4

đó giá trị của x 2 + 3 x − 2 là:
A.6

B.7

. Biết rằng x nguyên dương và A là ước của 18. Khi

C.8

Câu 195: Cho biểu thức A =
9
A. − t
2

D.x = 0

x −1
2

1
2

− x −1

9
B. t
2

2x

+ 3. 2 − 4

D.9
x −1
2

2
C. − t
9

. Nếu đặt 2 x = t (t > 0) . Thì A trở thành
2
D. t
9

Câu 196: Cho f(x) = 2x.3x. Đạo hàm f’(0) bằng:

A. ln6
B. ln2
C. ln3
D. ln5
2
Câu 197: Cho f(x) = log 2 ( x + 1) . Đạo hàm f’(1) bằng:

A.

1
ln 2

B. 1 + ln2

Câu 198: Cho biểu thức A =
3
A.m =
2

1
2

− x −1

C. 2
2x

+ 3. 2 − 4

B.m = 2


x −1
2

D. 4ln2

. Với x thỏa mãn 2 x = 4m . Xác định m biết A = 9.
C .m =

14

1
2

D.m = 0


Câu 199: Cho biểu thức A =

1
2− x −1

2x

+ 3. 2 − 4

x −1
2

. Với x thỏa mãn log 2 x = 2 log 4 m với m > 0. Xác định


giá trị của m biết A = 36 .
A.m = 3

B.m = 2

C.m =

1
2

D.m = 0

Câu 200: Cho f(x) = x 2 ln x . Đạo hàm cấp hai f”(e) bằng:
A. 2
B. 3
C. 4
D. 5
Câu 201: Cho biểu thức A =

1
2− x −1

2x

+ 3. 2 − 4

x −1
2


. Xác định giá trị của m để giá trị của biểu thức

B = m 2 x + A + 2017 không phụ thuộc vào giá trị của x.

A.m = 3

B.m = 2

Câu 202: Cho biểu thức A =
A.t = 3

1
2− x −1

B.t = 2

C .m = −
2x

+ 3. 2 − 4
C.t = −

x −1
2

9
2

D.m = 0


. Đặt x = t 2 + 1 với A = 9 thì giá trị của t là:

9
2

D.t = 0
π
 

Câu 203: Cho f(x) = ln sin 2x . Đạo hàm f’  ÷ bằng:
8
A. 1

B. 2

C. 3

Câu 204: Cho biểu thức A =

1
2− x −1

D. 4
2x

+ 3. 2 − 4

x −1
2


. Với t là số tự nhiên, đặt x = t + 2 với A<18 thì giá

trị của t là:
t < −2
A. 
t>2

t >1
B. 
t < 0

t = 1
D. 
t = 0

C. − 2 < t < 2

Câu 205: Rút gọn biểu thức x π 4 x 2 : x 4 π (x > 0), ta đợc:
Câu 206: Cho biểu thức A =
A.t = kπ ; k ∈ Z

1
2− x −1

2x

+ 3. 2 − 4
D.t = π

−0,75


A. 12

9
A. .2 x
2



2

+ k 2π ; k ∈ Z

4

1 3
+  ÷ , ta được:
8

B. 16

Câu 208: Cho biểu thức A =

. Đặt x = sint, khi A = 9 thì giá trị của t là:

Bt = k 2π ; k ∈ Z

C.t = π + kπ ; k ∈ Z
2


Câu 207: Tính: K =  1 ÷
 16 

x −1
2

C. 18
1
2

− x −1

B.9.2 x −1

D. 24
2x

+ 3. 2 − 4
9
C. .2 x +1
4

x −1
2

. Biểu thức A được rút gọn thành
D. A, B, C đều đúng

2


Câu 209: Tính: K = ( 0, 04 ) −1,5 − ( 0,125 ) − 3 , ta đợc
A. 90
B. 121
C. 120
D. 125
9
2
6 4
Câu 210: Tính: K = 8 7 : 8 7 − 3 5 .3 5 , ta đợc
A. 2
B. 3
C. -1
D. 4
Câu 211 : Cho biểu thức B = 3log

3

x − 6 log 9 (3x) + log 1
3

15

x
. Đặt log 3 x = t Thì B trở thành:
9


A.B = −t − 1

B.B = −2t + 1


C .B = t − 1

Câu 212: Cho a là một số dơng, biểu thức a
7
5
6
A. a 6
B. a 6
C. a 5

2
3

D.B = −2t − 1

a viết dới dạng luỹ thừa với số mũ hữu tỷ là:
11

D. a 6
Câu 213: Biểu thức x. 3 x. 6 x5 (x > 0) viết dới dạng luỹ thừa với số mũ hữu tỷ là:
7
5
2
5
A. x 3
B. x 2
C. x 3
D. x 3
Câu 214: Cho f(x) = 3 x. 6 x . Khi đó f(0,09) bằng:

A. 0,1
B. 0,2
C. 0,3
D. 0,4
Câu 215: Trong các phương trình sau đây, phương trình nào có nghiệm?
1

A. x 6 + 1 = 0
Câu 216: Nếu

B.

1

1

C. x 5 + ( x − 1) 6 = 0

x−4 +5= 0

1

D. x 4 − 1 = 0

1 α
a + a −α ) = 1 thì giá trị của α là:
(
2

A. 3


B. 2

C. 1

D. 0

Câu 217: Mệnh đề nào sau đây là đúng?

( 3 − 2) < ( 3 − 2)
C. ( 2 − 2 ) < ( 2 − 2 )
4

A.

3

5

( 11 − 2 ) > ( 11 − 2 )
D. ( 4 − 2 ) < ( 4 − 2 )
6

B.

4

3

7


4

Câu 218: Chọn mệnh đề đúng trong các mệnh đề sau:
1,4

A. 4

− 3

>4

1
1
C.  ÷ <  ÷
3
3

B. 3 < 3

− 2

3

1,7

Câu 219: Cho πα > πβ. Kết luận nào sau đây là đúng?
A. α < β
B. α > β
C. α + β = 0



1
2

1
2

2

 

y

y

2

π

e

2 2
D.  ÷ <  ÷
3 3

D. α.β = 1

−1


+ ÷ . biểu thức rút gọn của K là:
Câu 220: Cho K =  x − y ÷  1 − 2
x x÷

 


A. x
B. 2x
C. x + 1
D. x - 1
4 2
Câu 221: Rút gọn biểu thức: 81a b , ta đợc:
2
A. 9a2b
B. -9a2b
C. 9a b
Câu 222: Nếu log x 243 = 5 thì x bằng:
A. 2
B. 3
C. 4
D. 5
Câu 223: Rút gọn biểu thức:

4

x8 ( x + 1) , ta đợc:
4

A. x4(x + 1)

B. x x + 1
C. - x 4 ( x + 1)
Câu 224: Cho 3 α < 27 . Mệnh đề nào sau đây là đúng?
A. -3 < α < 3
B. α > 3
C. α < 3
2

Câu 225: Cho biểu thức B = 3log

3

x − 6 log 9 (3 x) + log 1
3

A.B = −1

D. Kết quả khác

B.B = −2

C.B = 1

2

Câu 226: Rút gọn biểu thức b ( 3 −1) : b −2 3 (b > 0), ta đợc:
A. b
B. b2
C. b3
D. b4

π
A. 4 x
B. 3 x
C. x
D. x 2
Câu 227: a 3−2 log b (a > 0, a ạ 1, b > 0) bằng:
a

16

D. α ẻ R

x
. Giá trị lớn nhất của B với ( log 3 x ) ∈ [ −2;3]
9

D.B = 2

2

D. x ( x + 1)


A. a 3 b −2

B. a 3 b

C. a 2 b 3

D. ab 2


Câu 228: Cho 9 x + 9 − x = 23 . Khi đo biểu thức K =
A. −

5
2

B.

1
2

C.

3
2

5 + 3x + 3 − x
có giá trị bằng:
1 − 3x − 3 − x

D. 2

Câu 229: Cho f(x) = 3 x 4 x 12 x 5 . Khi đó f(2,7) bằng:
A. 2,7
B. 3,7
C. 4,7
D. 5,7

(


Câu 230: Cho biểu thức A = ( a + 1) + ( b + 1) . Nếu a = 2 + 3
−1

−1

)

−1

(

và b = 2 − 3

)

−1

thì giá trị của A

là:
A. 1

B. 2

C. 3

Câu 231: Cho biểu thức B = 3log

D. 4


x − 6 log 9 (3x) + log 1

3

3

A.B = 1 − 3

B.B = −1 − 3

Câu 232: Cho f(x) =

x 3 x2
6

x
11
B.
10

A. 1

x
. Khi log 3 x = 3 thì giá trị của B là:
9

C .B = −1 + 3

D.B = 1 + 3


 13 
÷ bằng:
 10 
13
C.
D. 4
10

. Khi đó f 

x
. Đặt log 3 x = t Thì B trở thành:
3 9
A.B = −t − 1
B.B = −t + 1
C .B = t − 1
D. đán án khác
x
2
Câu 234: Cho biểu thức B = 3log 3 x − 6 log 9 (3x) + log 1 . Cho x thỏa mãn ( log3 x ) − 2 log3 x = −1 .
9
3

Câu 233: Cho biểu thức B = 3log

Khi đó giá trị của B là:
A.B = −1

x − 6 log 9 (3x) + log 1


3

B.B = −2

C.B = 1

Câu 235: Cho lg2 = a. Tính lg25 theo a?
A. 2 + a
B. 2(2 + 3a)
Câu 236: Cho biểu thức B = 3log
A.x = −

1
27

B.x =

Câu 237: Rút gọn biểu thức:
A. 4 x

3

C. 2(1 - a)

D.B = 2

D. 3(5 - 2a)

x

. Xác định x biết B = 2
3 9
2
2
C .x = −
D.x =
27
27

x − 6 log 9 (3x) + log 1

1
27
11

x x x x : x 16 , ta được:

B. 6 x

C. 8 x

D. x

x
. Xác định x thỏa mãn B > log 3 2017 log 2017 2
3 9
x > 3
A.0 < x < 3
B.x < 3
C .0 < x

D. 
x < 0
x
Câu 239: Cho biểu thức B = 3log 3 x − 6 log 9 (3 x) + log 1 . Đặt x = 2t +1 . Xác định t biết rằng B +1=0.
3 9
A.t = −1
B.t = −2
C.t = 1
D.t = 2

Câu 238: Cho biểu thức B = 3log

3

x − 6 log 9 (3x) + log 1

17


Câu 240: Cho biểu thức B = 3log

x − 6 log 9 (3 x) + log 1

3

3

x
. Có bao nhiêu giá trị x nguyên thỏa mãn
9


−2 ≤ B ≤ 2

A. 2 giá trị

B. 3 giá trị

C. 4 giá trị

D. 5 giá trị

Câu 241: Cho a > 0 và a ạ 1. Tìm mệnh đề đúng trong các mệnh đề sau:
A. loga x có nghĩa với ∀x
B. loga1 = a và logaa = 0
C. logaxy = logax.logay
D. loga x n = n loga x (x > 0,n ạ 0)
Câu 242: 49 log 2 bằng:
A. 2
B. 3
C. 4
D. 5
Câu 243: Cho a > 0 và a ạ 1, x và y là hai số dơng. Tìm mệnh đề đúng trong các mệnh đề sau:
7

A. loga

x log a x
=
y log a y


1
1
=
x log a x

B. log a

C. log a ( x + y ) = log a x + log a y
Câu 244: Cho biểu thức B = 3log
A.B = log 3 (3 x)

D. log b x = log b a.log a x
x
. Biểu thức B được rút gọn thành:
3 9
C.B = − log 3 (3x )
D.B = log 3 (3x)

x − 6 log 9 (3x) + log 1

3

B.B = − log 3 ( x )

Câu 245: log 4 4 8 bằng:
A.

1
2


B.

3
8

C.

Câu 246: Cho biểu thức B = 3log

5
4

D. 2

x − 6 log 9 (3x) + log 1

3

3

x
. Xác định m để biểu thức K không phụ
9

thuộc vào giá trị của x với
K = B+ (2m 2 − 1) log 3 x
A.m = 2

B.m = 1


C.m = 0

D.m = −1

Câu 247: Nếu log 2 x = 5 log 2 a + 4 log 2 b (a, b > 0) thì x bằng:
A. a 5 b 4
B. a 4 b5
C. 5a + 4b D. 4a + 5b
3 7
Câu 247: log 1 a (a > 0, a ạ 1) bằng:
a

7
2
A. B.
3
3
4
Câu 248: log 1 32 bằng:

C.

5
3

D. 4

8

5

A.
4

B.

4
5

C. -

1
Câu 249: Rút gọn biểu thức a  ÷
a

5
12

2 −1

(a > 0), ta được:

2

A. a

B. 2a

Câu 250: Cho biểu thức B = 3log

C. 3a

3

D. 3

D. 4a

x − 6 log 9 (3 x) + log 1
3

( log3 x ) ∈ [ −2;1]
A.B = −3

B.B = − 3

C.B = 3

x
. Giá trị bé nhất của M với M = 5 + 2 B với
9

D.B = 3
18


Câu 251: log 0,5 0,125 bằng:
A. 4
B. 3
1
log 10
Câu 252: 64 2

bằng:
A. 200
B. 400

C. 2

D. 5

C. 1000

D. 1200

2

Câu 253: Cho biểu thức B = 3log

x
. Khi x = 3−
9

x − 6 log 9 (3 x) + log 1

3

3

A.B = 2 − 2 2

B.B = 3 − 2 2


C.B = −3 − 2 2

Câu 254: 10 2 + 2 lg7 bằng:
A. 4900
B. 4200
C. 4000
3
Câu 255: Nếu log x 2 2 = −4 thì x bằng:
A.

1
3

B. 3 2

2

2

thì giá trị của B2 là:

D.B = 3 + 2 2

D. 3800

C. 4

D. 5

1

2
2
3
6
A.
B.
C.
D. 3
5
5
5
Câu 257: Nếu log 7 x = 8 log 7 ab 2 − 2 log 7 a 3b (a, b > 0) thì x bằng:
A. a 4 b 6
B. a 2 b14
C. a 6 b12
D. a 8 b14
1
Câu 258: Cho lg5 = a. Tính lg
theo a?
64

Câu 256: Nếu loga x = log a 9 − log a 5 + log a 2 (a > 0, a ạ 1) thì x bằng:

A. 2 + 5a
B. 1 - 6a
1
Câu 259: 4 2 log 3+3log 5 bằng:
A. 25
B. 45
C. 50

2

C. 4 - 3a

D. 6(a - 1)

8

Câu 260: Cho lg2 = a. Tính lg

D. 75

125
theo a?
4

A. 3 - 5a
B. 2(a + 5)
C. 4(1 + a)
Câu 261: Bất phương trình: 9 x − 3x − 6 < 0 có tập nghiệm là:
A. ( 1;+∞ )
B. ( −∞;1)
C. ( −1;1)
D. Kết quả khác

D. 6 + 7a

Câu 262: Cho log 2 5 = a . Khi đó log 4 500 tính theo a là:
A. 3a + 2


B.

1
( 3a + 2 )
2

C. 2(5a + 4)

D. 6a - 2

−x

Câu 263: Phương trình 0,125.4
A. 3

B. 4

2x −3

 2
= 
÷
÷
 8 

C. 5

có nghiệm là:
D. 6


Câu 264: Cho log 2 6 = a . Khi đó log318 tính theo a là:
A.

2a − 1
a −1

B.
1
2

a
a +1

C. 2a + 3

Câu 265: Nếu log a x = (log a 9 − 3 log a 4) (a > 0, a ạ 1) thì x bằng:
A. 2 2

B. 2

C. 8

D. 16

Câu 266: Cho log 2 5 = a; log3 5 = b . Khi đó log6 5 tính theo a và b là:
19

D. 2 - 3a



1
ab
B.
a+b
a+b
Câu 267: 3 log2 ( log 4 16 ) + log 1 2 bằng:

A.

C. a + b

D. a 2 + b 2

2

A. 2

B. 3

C. 4

D. 5

Câu 268: log 3 8.log 4 81 bằng:
A. 8
B. 9
C. 7
D. 12
x
x

x
Câu 269: Phương trình: 3 + 4 = 5 có nghiệm là:
A. 1
B. 2
C. 3
D. 4
Câu 270: log 6 3.log3 36 bằng:
A. 4
B. 3
C. 2
D. 1
x
x
Câu 271: Cho phương trình 4 − 3.2 + 2 = 0 . Nếu đặt t = 2x với t > 0 thì phương trình tương đương với
phương trình nào:
A. t2 +3t -2 = 0
B. t2 -3t +2 = 0
C. t2 + 3t +2 = 0
D. t2 -3t - 2 = 0
Câu 272: Cho phương trình 4 x − 3.2 x + 2 = 0 . Số nghiệm của phương trình trên là:
A.1

B.2
C.3
D.4
x
x
Câu 273: Phương trình 4 − 3.2 + 2 = 0 tương đương với phương trình nào dưới đây:
A.x 2 − x = 0 B.x 2 + x = 0 C.x 2 − 3x + 2 = 0
D.x 2 + 3x − 2 = 0


“ 2 phương trình tương đương là 2 phương trình cùng tập nghiệm nhé. Đáp án A”
Câu 274: Phương trình 4 x − 3.2 x + 2 = 0 trên không tương đương với phương trình nào dưới đây
A.x 2 − x = 0

B.x 2 + x = 0

C.2 x

2

+x

− 22 x = 0

D. A, B, C

Câu 275: Với giá trị nào của m thì x = -2 là một nghiệm của phương trình (2m − 3)3x
A.m =

3
2

B.m = 2

C.m =

1
2


2

+3 x − 4

D.m = 0

Câu 276: Với giá trị nào của m thì x = 1 không phải là 1 nghiệm của phương trình
A.m =

3
2

B.m = 2

C.m =

1
2

D.m = 0

Câu 277: Phương trình có mấy nghiệm với m = 5 / 2
A.1

B.2
C.3
D.0
3x − 2
Câu 278: Phương trình 4
= 16 có nghiệm là:

3
4
A. x =
B. x =
C. 3
D. 5
4
3
lg xy = 5
Câu 279: Hệ phương trình: 
với x ≥ y có nghiệm là?
lg x.lg y = 6

A. ( 100; 10 )

B. ( 500; 4 )

Câu 280: Tập nghiệm của phương trình: 2 x

C. ( 1000; 100 )

2

−x −4

1
là:
16
D. { −2; 2}


=

A. Φ
B. {2; 4}
C. { 0; 1}
Câu 281: Phương trình 4 2x +3 = 84 − x có nghiệm là:

2
4
C.
D. 2
3
5
C©u 282: Ph¬ng tr×nh: 9 x + 6 x = 2.4 x cã nghiÖm lµ:

A.

6
7

A. 3

B.

B. 2

C. 1

D. 0


Câu 283: Phương trình: 2 x + 2 x −1 + 2 x −2 = 3x − 3x −1 + 3x −2 có nghiệm là:
20

D. Kết quả khác

= (5 − 2m)9 x −1


A. 2

B. 3

C. 4

D. 5
x

2


8

Câu 284: Phơng trình 0,125.4 2x 3 =

A. 3

B. 4

có nghiệm là:
D. 6


C. 5

Cõu 285: Phng trỡnh: 22x + 6 + 2 x + 7 = 17 cú nghim l:
A. -3
B. 2
C. 3
D. 5
x 1
3x
Cõu 286: Tp nghim ca phng trỡnh: 5 + 5 = 26 l:
A. { 2; 4}
B. { 3; 5}
C. { 1; 3}
D.
3
Câu 287: Phơng trình: lg ( 54 x ) = 3lgx có nghiệm là:
A. 1
B. 2
C. 3
D. 4
Câu 288: Phơng trình: log 2 x + log 4 x + log8 x = 11 có nghiệm là:
A. 24
B. 36
C. 45
D. 64
Cõu 289: Phng trỡnh: 9 x + 6 x = 2.4 x cú nghim l:
A. 3
B. 2
C. 1

D. 0
x
Cõu 290: Phng trỡnh: 2 = x + 6 cú nghim l:
A. 1
B. 2
C. 3
D. 4
x
x
Cõu 291: Cho phng trỡnh 4 3.2 + 2 = 0 . Tp nghim ca phng trỡnh l:
A.S = { 1; 2}

B.S = { 1; 2}

C.S = { 1;0}

D.S = { 1;0}

Cõu 292: Phng trỡnh: ln x + ln ( 3x 2 ) = 0 cú my nghim?
A. 0
B. 1
C. 2
D. 3
Cõu 293: Phng trỡnh: log2 x + log 4 x + log 8 x = 11 cú nghim l:
A. 24
B. 36
C. 45
D. 64
x
x

+
1
Câu 294: Bất phơng trình: 4 < 2 + 3 có tập nghiệm là:
A. ( 1; 3 )
B. ( 2; 4 )
C. ( log2 3; 5 )
D. ( ;log2 3 )
4 x +1 86 2x

Cõu 295: H bt phng trỡnh: 4x+5
cú tp nghim l:
271+ x

3

Câu 296: Phơng trình: lg ( x 2 6x + 7 ) = lg ( x 3 ) có tập nghiệm là:
A. { 5}

B. { 3; 4}

C. { 4; 8}

D.

Cõu 297: Phng trỡnh: log 2 x + 3 log x 2 = 4 cú tp nghim l:
A. { 2; 8}
B. { 4; 3}
C. { 4; 16}
D.
Câu 298: Cho f(x) = x2e-x. bất phơng trình f(x) 0 có tập nghiệm là:

A. (2; +)
B. [0; 2]
C. (-2; 4]
D. Kết quả khác

(
B. [ 2; 1]

2)

x 2 2x

B. x =

e

Cõu 299: Bt phng trỡnh:

( 2 ) cú tp nghim l:
C. [ 1; 3]
D. Kt qu khỏc
3

A. ( 2;5 )
Câu 300: Hàm số f(x) = x 2 ln x đạt cực trị tại điểm:
A. x = e

C. x =

1

e

Câu 301: Phơng trình: log 2 x + log 4 x = 3 có tập nghiệm là:
21

D. x =

1
e


A. { 4}

B. { 3}

C. { 2; 5}
2x + y = 4

C©u 302: HÖ ph¬ng tr×nh: 
A. ( 2; 1)

2 .4
B. ( 4; − 3 )
x

y+

1
2


= 64

D. Φ

cã nghiÖm lµ:

C. ( 1; 2 )

D. ( 5; − 5 )

C©u 303: BÊt ph¬ng tr×nh: 2x > 3x cã tËp nghiÖm lµ:
A. ( −∞;0 )
B. ( 1;+∞ )
C. ( 0;1)
D. ( −1;1)
C©u 304: Ph¬ng tr×nh: log 2 x + 3 log x 2 = 4 cã tËp nghiÖm lµ:
A. { 2; 8}
B. { 4; 3}
C. { 4; 16}
D. Φ
log2 ( 2x − 4 ) ≤ log 2 ( x + 1)
cã tËp nghiÖm lµ:
log 0,5 ( 3x − 2 ) ≤ log 0,5 ( 2x + 2 )

C©u 305: HÖ bÊt ph¬ng tr×nh: 
A. [4; 5]

B. [2; 4]

C. (4; +∞)


D. Φ

1
2
+
= 1 có tập nghiệm là:
4 − lg x 2 + lg x
1

A. { 10; 100}
B. { 1; 20}
C.  ; 10 
D. Φ
10

C©u 307: Cho hµm sè y = esin x . BiÓu thøc rót gän cña K = y’cosx - yinx - y” lµ:

Câu 306: Phương trình:

A. cosx.esinx

C. 0

B. 2esinx

2x + y = 4




Câu 308: Hệ phương trình: 

y+

1

D. 1

có nghiệm là:

x
2

2 .4 = 64
B. ( 4; − 3 )
C. ( 1; 2 )

A. ( 2; 1)
D. ( 5; − 5 )
C©u 309: Ph¬ng tr×nh: ln x + ln ( 3x − 2 ) = 0 cã mÊy nghiÖm?
A. 0
B. 1
C. 2
D. 3
Câu 310: Phương trình: x −2 + log x = 1000 có tập nghiệm là:
A. { 10; 100}

1

; 1000 

10


B. { 10; 20}

C. 

2 x.4 y = 64
cã nghiÖm lµ:
log
x
+
log
y
=
2
 2
2

D. Φ

C©u 311: HÖ ph¬ng tr×nh: 

A. ( 4; 4 ) , ( 1; 8 )
B. ( 2; 4 ) , ( 32; 64 )
C. ( 4; 16 ) , ( 8; 16 )
D. ( 4; 1) , ( 2; 2 )
C©u 312: BÊt ph¬ng tr×nh: log2 ( 3x − 2 ) > log2 ( 6 − 5x ) cã tËp nghiÖm lµ:
A. (0; +∞)


 6
 5

B.  1; ÷

1
2




C.  ;3 ÷

D. ( −3;1)

Câu 313: Phương trình: log 2 x + log 4 x = 3 có tập nghiệm là:
A. { 4}
B. { 3}
C. { 2; 5}
D. Φ
C©u 314: Ph¬ng tr×nh 43x −2 = 16 cã nghiÖm lµ:
A. x =

3
4

B. x =

4
3


C. 3

22

D. 5


3lg x − 2 lg y = 5
cã nghiÖm lµ
 4 lg x + 3lg y = 18

C©u 315: HÖ ph¬ng tr×nh: 
A. ( 100; 1000 )

B. ( 1000; 100 )

C. ( 50; 40 )

D. KÕt qu¶ kh¸c

Câu 316: Phương trình: log 2 x = −x + 6 có tập nghiệm là:
A. { 3}
B. { 4}
C. { 2; 5}
D. Φ
2 x + 2 y = 6
Câu 317: Hệ phương trình:  x +y
với x ≥ y có mấy nghiệm?
2 = 8


A. 1
B. 2
C. 3
D. 0
Câu 318: Phương trình: l o g x + l o g ( x − 9 ) = 1 có nghiệm là:
A. 7
B. 8
C. 9
D. 10
1

4

C©u 319: TËp nghiÖm cña bÊt ph¬ng tr×nh:  1  x −1 <  1  lµ:
2÷
 ÷
 
2
 5
A. ( 0; 1)
B.  1; ÷
C. ( 2;+∞ )
D. ( −∞;0 )
 4
y +1
x

3 − 2 = 5
Câu 320: Hệ phương trình:  x

có nghiệm là:
y

4 − 6.3 + 2 = 0
A. ( 3; 4 )
B. ( 1; 3 )
C. ( 2; 1)
D. ( 4; 4 )

Câu 321: Phương trình: ln ( x + 1) + ln ( x + 3 ) = ln ( x + 7 )
A. 0
B. 1
C. 2
D. 3

x + 2y = −1
có mấy nghiệm?
x + y2
= 16
4

Câu 322: Hệ phương trình: 

A. 0
B. 1
C. 2
D. 3
3
Câu 323: Phương trình: lg ( 54 − x ) = 3lgx có nghiệm là:
A. 1

B. 2
C. 3
D. 4
C©u 324: Ph¬ng tr×nh: x −2+ log x = 1000 cã tËp nghiÖm lµ:
A. { 10; 100}

1

; 1000 
 10


B. { 10; 20}

C. 

x + y = 7
với x ≥ y có nghiệm là?
 lg x + lg y = 1

D. Φ

Câu 325: Hệ phương trình: 

A. ( 4; 3 )
B. ( 6; 1)
C. ( 5; 2 )
D. Kết quả khác
x
Câu 326: Xác định m để phương trình: 4 − 2m.2 x + m + 2 = 0 có hai nghiệm phân biệt? Đáp án là:

A. m < 2
B. -2 < m < 2
C. m > 2
D. m = Φ
 x 2 + y 2 = 20
Câu 327: Hệ phương trình: 
với x ≥ y có nghiệm là:
 log 2 x + log 2 y = 3
A. ( 3; 2 )
B. ( 4; 2 )
C. 3 2; 2
D. Kết quả khác

(

)

Câu 328: Phương trình: lg ( x − 6x + 7 ) = lg ( x − 3 ) có tập nghiệm là:
2

23


A. { 5}

B. { 3; 4}

C. { 4; 8}

D. Φ


Câu 329: Bất phương trình: log2 ( 3x − 2 ) > log2 ( 6 − 5x ) có tập nghiệm là:
 6
 5

1
2

B.  1; ÷

A. (0; +∞)




C.  ;3 ÷

D. ( −3;1)

3lg x − 2 lg y = 5
có nghiệm là
4 lg x + 3lg y = 18

Câu 330: Hệ phương trình: 
A. ( 100; 1000 )

B. ( 1000; 100 )

C. ( 50; 40 )
1


D. Kết quả khác

4

x −1
Câu 331: Tập nghiệm của bất phương trình:  1 ÷ <  1 ÷ là:
2
2
 5
A. ( 0; 1)
B.  1; ÷
C. ( 2;+∞ )
D. ( −∞;0 )
 4

3
Câu 332: Bất phương trình:  ÷

A. [ 1; 2]

2 −x

x

3
≥  ÷ có tập nghiệm là:
4
4
B. [ −∞; 2 ]

C. (0; 1)
D. Φ

2 x.4 y = 64
Câu 333: Hệ phương trình: 
có nghiệm là:
 log2 x + log 2 y = 2
A. ( 4; 4 ) , ( 1; 8 )
B. ( 2; 4 ) , ( 32; 64 ) C. ( 4; 16 ) , ( 8; 16 )

D. ( 4; 1) , ( 2; 2 )

Câu 334: Bất phương trình: 4 x < 2 x +1 + 3 có tập nghiệm là:
A. ( 1; 3 )
B. ( 2; 4 )
C. ( log2 3; 5 )
D. ( −∞;log2 3 )
x − y = 6
có nghiệm là:
ln x + ln y = 3ln 6

Câu 335: Hệ phương trình: 
A. ( 20; 14 )

B. ( 12; 6 )

C. ( 8; 2 )

D. ( 18; 12 )


Câu 336: Bất phương trình: 2x > 3x có tập nghiệm là:
A. ( −∞;0 )
B. ( 1; +∞ )
C. ( 0;1)
D. ( −1;1)
A. [2; +∞) B. [-2; 2]
C. (-∞; 1]
D. [2; 5]
Câu 337: Bất phương trình: log4 ( x + 7 ) > log2 ( x + 1) có tập nghiệm là:
A. ( 1;4 )
B. ( 5;+∞ )
C. (-1; 2)
D. (-∞; 1)

Luü thõa
C©u1: TÝnh: K =  1 
A. 12

−0,75

 16 ÷
 

B. 16

A. 10

1
+  ÷ , ta ®îc:
8


−1

C. 18

−3

2 .2 + 5 .5
3

C©u2: TÝnh: K =

4

3

10 −3 :10 −2 − ( 0, 25 )

B. -10

D. 24

4
0

, ta ®îc

C. 12

D. 15


24


3

1
2:4 + 3
9ữ
, ta đợc
Câu3: Tính: K =
3
0 1
53.252 + ( 0, 7 ) . ữ
2
33
8
5
2
A.
B.
C.
D.
13
3
3
3

( )


2

2

3

2

Câu4: Tính: K = ( 0, 04 ) 1,5 ( 0,125 ) 3 , ta đợc
A. 90
B. 121
C. 120
D. 125
9
2
6 4
Câu5: Tính: K = 8 7 : 8 7 3 5 .3 5 , ta đợc
A. 2
B. 3
C. -1
D. 4
2
Câu6: Cho a là một số dơng, biểu thức a 3 a viết dới dạng luỹ thừa với số mũ hữu tỷ là:
7

5

6

11


A. a 6
B. a 6
C. a 5
D. a 6
4
Câu7: Biểu thức a 3 : 3 a 2 viết dới dạng luỹ thừa với số mũ hữu tỷ là:
A.

5

B.

a3

2

C.

5

D.

7

a3
a8
a3
x. 3 x. 6 x 5 (x > 0) viết dới dạng luỹ thừa với số mũ hữu tỷ là:


Câu8: Biểu thức
7

5

2

5

B. x 2
C. x 3
D. x 3
3
x. 6 x . Khi đó f(0,09) bằng:
B. 0,2
C. 0,3
D. 0,4

A. x 3
Câu9: Cho f(x) =
A. 0,1

x 3 x2

Câu10: Cho f(x) =

6

x
11

B.
10

A. 1

13
ữ bằng:
10
13
C.
D. 4
10

. Khi đó f

Câu11: Cho f(x) = 3 x 4 x 12 x5 . Khi đó f(2,7) bằng:
A. 2,7
B. 3,7
C. 4,7
D. 5,7
Câu12: Tính: K = 43+ 2 .21 2 : 2 4+ 2 , ta đợc:
A. 5
B. 6
C. 7
D. 8
Câu13: Trong các phơng trình sau đây, phơng trình nào có nghiệm?
A.

x


1
6

+1=0

B.

x4 +5 = 0

Câu14: Mệnh đề nào sau đây là đúng?
4
5
A. 3 2 < 3 2

(
) (
)
C. ( 2 2 ) < ( 2 2 )
3

1

1

(
) (
D. ( 4 2 ) < ( 4 2 )
B.

4


D.

C. x 5 + ( x 1) 6 = 0
11 2

6

>

11 2

3

)

1

x4 1 = 0

7

4

Câu15: Chọn mệnh đề đúng trong các mệnh đề sau:

1,4

C. 1 ữ < 1 ữ
3

3


Câu16: Cho > . Kết luận nào sau đây là đúng?
A. <
B. >
C. + = 0
A. 4 3 > 4



B. 3 3 < 31,7

2

1
2

1
2

2



y

y

1


2



D. . = 1

Câu17: Cho K = x y ữ 1 2
. biểu thức rút gọn của K là:
+ ữ


x
x



A. x
B. 2x
C. x + 1
D. x - 1
Câu18: Rút gọn biểu thức: 81a 4 b 2 , ta đợc:
A. 9a2b
B. -9a2b
C. 9a 2 b
D. Kết quả khác
25

e


D. 2 ữ < 2 ữ
3 3


×