Ngày soạn : Ngày dạy :
Tiết 5 : HÌNH THANG CÂN
I. Mục tiêu :
- Củng cố đònh nghóa và dấu hiệu nhậân biết hình thang cân
- Học sinh biết sử dụng các tính chất của hình thang cân để làm các bài tập về
chứng minh tính song song , nhận biết về hình thang cân , tính toán .
II. Chuẩn bò của thầy và trò
GV : Cho học sinh vẽ hình chuẩn bò cho bài học mới
HS : n bài cũ và làm các bài tập
III. Các bước tiến hành
1.n đònh tổ chức :
2./ Kiểm tra bài cũ :
HS 1: Nêu đònh nghóa và tính chất của hình thang cân ?
HS 2 : Chữa bài 12 / trang 74
HS 3 : Chữa bài 15 / trang 75
3. Bài mới :
Phần ghi bảng Hoạt động của thầy và trò
Bài 18/trang 75
A
B
D
C E
GT ABCD ( AB // CD) ; AC = DB ,
BE //AC
KL a. ∆BDE cân
b. ∆ACD = ∆BDC
c. ABCD là hình thang cân
Chứng minh :
a. AB // CE ; AC // BE ⇒ BE = AC
mà AC = BD , nên BE = BD ⇒ ∆BDE
cân tại B
b.
∆BDE cân ⇒
·
·
BDE BED=
·
·
ACD BED=
( đồng vò)
⇒
·
·
ACD BDC=
Xét ∆ACD và ∆BDC có
·
·
ACD BDC=
,
AC=BD , CD là cạnh chung ⇒ ∆ACD =
∆BDC (c.g.c)
c. ∆ACD = ∆BDC ⇒ góc D = góc C ,
mà ABCD là hình thang .
Vâïy ABCD là hình thang cân
Bài 31/trang 63 – SBT
GV : Cho HS đọc và vẽ hình bài 18
Hỏi : Muốn chứng minh ∆BDE là tam
giác cân ta làm thế nào ? Muốn có cạnh
DB = BE ta dựa vào đâu ? BD quan hêï
với đoạn thẳng nào ? Liêu AC có bằng
BE không ? vì sao ?
Hỏi : Muốn chứng minh ∆ACD = ∆BDC
ta cần phải tìm gì ? Hai tam giác có
những điều kiện bằng nhau nào ? Cần
phải thêm điều kiện nào ? Muốn để có
hai góc ACD và BDC bằng nhau ta làm
thế nào ?
Hỏi : Để ABCD là hình thang cân ta cần
có thêm điều kiện nào ? Dựa vào đâu để
hai góc ADC và BCD bằng nhau ?
GV : Nhấn mạnh lại dấu hiệu nhận biết
hình thang cân .
Hướng dẫn HS chứng minh theo cách
khác : Kẻ thêm đường cao AH và đường
A
B
D
C
O
E
F
Chứng minh
Tứ giác ABCD là hình thang cân , nên
∆OAB là tam giác cân ⇒ OA = OB (1)
∆ABD = ∆BAC ( c.c.c) ⇒
µ
µ
1
A C=
·
·
ABD BAC=
hay
· ·
ABE BAE=
⇒ ∆EAB cân ⇒ EA = EB
(2)
Từ (1)và (2) ⇒ OE là đường trung trực
của AB
Chứng minh tương tự OE là đường trung
trực củaCD .
cao BK , dễ thấy AH = BK , nên ∆AHC =
∆BKD ⇒ góc ACD = góc BDC ; ∆ADC
= ∆BCD ⇒ góc C = góc D .
GV : Cho HS làm bài 31/trang 63 – SBT
HỎi : Muốn chứng minh OE là đường
trung trực của AB ta cần phải chứng minh
điều gì ?
- Để OA = OB ta dựa vào đâu ?
- Muốn có EB = EA ta làm thế nào ?
- Để chứng minh ∆EAB cân ta làm
thế nào ?
4. Hướng dẫn về nhà :
- n các tính chất của hình thang , hình thang cân
GV cho HS chép bài tập thêm về nhà : Cho tam giác ABC , gọi D là trung điểm của
AB , qua D kẻ đường thẳng song song với BC cắt AC tại E và đường thẳng song song
với AB kẻ từ C tại F . Chứng minh : CF = AD và E là trung điểm của AC
- Làm các bài tập :trong SGK : ; trong SBT : 25,28,29,30 / trang 63