Tải bản đầy đủ (.doc) (43 trang)

Luận văn phân tích ổn định của vỏ cầu nhẫn vật liệu cơ tính biến thiên

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (733.38 KB, 43 trang )

ĐẠI HỌC QUỐC GIA HÀ NỘI
TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN
------------------------------------

NGUYỄN THỊ DUNG

PHÂN TÍCH ỔN ĐỊNH VỎ CẦU NHẪN
VẬT LIỆU CƠ TÍNH BIẾN THIÊN

LUẬN VĂN THẠC SĨ KHOA HỌC

Hà Nội

1


LỜI CẢM ƠN

Để hoàn thành khóa luận này em đã nhận được sự giúp đỡ tận tình của
thầy giáo hướng dẫn, sự ủng hộ của các thầy cô giáo trong khoa Toán – Cơ –
Tin học và sự động viên của gia đình và bạn bè.
Với tất cả tình cảm của mình em xin bày tỏ lòng kính trọng và biết ơn
sâu sắc đến thầy giáo hướng dẫn GS.TSKH Đào Huy Bích đã tận tình giúp đỡ
hướng dẫn em trong suốt thời gian thực hiện khóa luận.
Đồng thời em xin chân thành gửi lời cảm ơn tới các thầy cô giáo trong
khoa Toán– Cơ – Tin học đã nhiệt tình bảo ban, truyền đạt kiến thức kinh
nghiệm cho em trong suốt 4 năm đại học.
Cuối cùng em xin được gửi lời cảm ơn chân thành tới gia đình, các anh
chị và bạn bè đã giúp đỡ em hoàn thành khóa luận này.

Học viên



Nguyễn Thị Dung

2


MỤC LỤC

Trang
Mở
đầu…………………………………………………………………...4
Chương 1: Các phương trình và hệ thức cơ sở
1.1: Quan hệ biến dạng chuyển vị của vỏ cầu…………………………..6
1.2: Quan hệ nội lực biến dạng của vỏ cầu……………………………...8
1.3: Phương trình cân bằng………………………………………........10
Chương 2: Phân tích ổn định của vỏ cầu
2.1: Trạng thái màng trước khi mất ổn định……………………………12
2.2: Phương trình ổn định………………………………………………13
2.3: Phương pháp giải ………………………………………………….15
Chương 3: Khảo sát số về ổn định của vỏ cầu bằng vật liệu
có cơ tính biến thiên
3.1: Khảo sát ổn định của vỏ cầu chỉ chịu tác dụng của lực tới hạn .....25
3.2: Khảo sát ổn định của vỏ cầu chỉ chịu tác dụng của lực tới hạn q..27
3.3: Khảo sát ổn định của vỏ cầu chịu tác dụng đồng thời của p và q..30
Tài liệu tham khảo…………………………………………………....32
Phụ lục……………………………………………………...……….….

3



Mở đầu : VẬT LIỆU CÓ CƠ TÍNH BIẾN THIÊN ( FGM )
Vật liệu có cơ tính biến thiên (FGM) là lớp vật liệu mới được tạo ra
nhằm để cải thiện tính kết cấu trong cấu trúc không gian. FGM là một loại vật
liệu composite có đặc điểm là những thuộc tính của chúng thay đổi từ từ và
liên tục từ mặt này sang mặt khác của kết cấu do đó làm giảm ứng suất tập
trung, giảm ứng suất nhiệt và ứng suất dư. Những vật liệu này thường được
sản xuất từ hỗn hợp gốm và kim loại hoặc là tổ hợp của nhiều kim loại khác
nhau. Loại vật liệu này có thể chịu được sự thay đổi nhiệt độ lớn, đảm bảo ổn
định hình dạng, chịu va chạm, mài mòn hay rung động. Với những đặc điểm
ưu việt đó mà lớp vật liệu này đang được nghiên cứu và ứng dụng rộng rãi
trong thực tế đặc biệt là trong các nghành công nghiệp đóng tàu, hàng không,
vũ trụ, cơ khí, xây dựng v.v...
Đáp ứng những đòi hỏi của thực tiễn, trong những năm gần đây, đã có
nhiều công trình nghiên cứu cho kết quả về sự ổn định của kết cấu bằng loại
vật liệu này. Đối tượng được nghiên cứu nhiều về ổn định và dao động
thường là bản hoặc vỏ. V. Birman [13] đã đưa ra các hệ thức về ổn định của
bản composite FGM, E. Feldman và J. Abouli [5] nghiên cứu về ổn định đàn
hồi của bản FGM bị nén, J. N. Reddy [6] đưa ra phương pháp nghiên cứu về
sự uốn của bản tròn và bản hình vành khăn FGM. Đối với vỏ nón, Tani đã
nghiên cứu tính mất ổn định động của vỏ nón cụt đẳng hướng dưới tải dọc
trục tuần hoàn khi đã bỏ qua biến dạng uốn trước khi mất ổn định [10] và
dưới áp lực thay đổi chu kỳ có tính đến các biến dạng này [11] bằng việc sử
dụng lý thuyết vỏ Donnell và phương pháp sai phân hữu hạn. Cũng sử dụng
phương pháp này ông đã phân tích ảnh hưởng của độ võng ban đầu đến ổn
định nhiệt của vỏ nón cụt đẳng hướng [12]. Xu và đồng sự sử dụng phương

4


pháp Galerkin và phương pháp cân bằng điều hòa để nghiên cứu dao động tự do

của vỏ nón cụt dày bằng vật liệu composite lớp [14]. Paczos và Zielnica áp dụng
phương pháp Ritz để nghiên cứu sự ổn định của panel vỏ nón có lớp kép đàn hồi
dẻo dưới tác động của tải nén và áp suất [9]. Đào Huy Bích và đồng sự đã sử
dụng phương pháp Bubnov – Galerkin giải bài toán theo chuyển vị và nghiên
cứu ổn định của panel nón FGM dưới tác dụng của lực nén và áp suất đều [1].
Nath và Alwar [7] đã sử dụng phương pháp khai triển chuỗi Chebyshev
để nghiên cứu và phân tích đáp ứng phi tuyến tĩnh và động của vỏ cầu được
ngàm. Dumir đã tìm được đáp ứng cực đại tức thời trong dao động phi tuyến
của chỏm cầu trên nền đàn hồi dưới tác dụng của tải phân bố đều song song
với trục đối xứng [8]. Phân tích phi tuyến về ổn định của vỏ cầu thoải FGM
chịu áp suất ngoài bằng phương pháp giải tích gần đúng được trình bày trong
công trình của Đào Huy Bích [3]. Gần đây, Đ. H. Bích cùng Đ.V.Dũng và
L.K Hòa tiến hành phân tích ổn định phi tuyến tính tĩnh và động của vỏ cầu
FGM có tính đến ảnh hưởng của nhiệt độ [4]. Trong bài viết đó, các tác giả đã
sử dụng lý thuyết vỏ cổ điển và phương pháp Bubnov – Galerkin để xác định
lực tới hạn tác dụng lên vỏ trong trường hợp ổn định tĩnh và phương pháp số
Runge – Kutta để nghiên cứu ổn định động của vỏ. Ngoài ra, Đ.H.Bích và
H.V Tùng cũng đã công bố kết quả phân tích phi tuyến vỏ cầu đối xứng trục
bằng vật liệu có cơ tính biến thiên dưới tác dụng của lực phân bố đều đồng
thời chịu ảnh hưởng của nhiệt độ [2].
Luận văn nghiên cứu sự ổn định của vỏ cầu nhẫn có cơ tính biên thiên
dưới tác dụng của lực song song với trục đối xứng và áp suất ngoài. Phương
pháp được sử dụng trong bài là phương pháp Bubnov – Galerkin và áp dụng
tiêu chuẩn tĩnh về ổn định từ đó xác định lực tới hạn của vỏ cầu. Tác giả cũng
đã sử dụng phần mềm Matlab để tính toán số nhằm khảo sát lực tới hạn khi
các yếu tố về tính chất vật liệu, kích thước kết cấu thay đổi và đưa ra một vài

5



nhận xét tương ứng.

Chương 1: CÁC PHƯƠNG TRÌNH VÀ HỆ THỨC CƠ SỞ
Trong phần này trình bày mối quan hệ biến dạng, chuyển vị, mối quan hệ nội
lực biến dạng, phương trình cân bằng của bài toán vỏ cầu nhẫn chịu lực phân bố
đều song song trục đối xứng và áp suất ngoài.

1.1

Quan hệ biến dạng, chuyển vị của vỏ cầu

Xét vỏ cầu với độ dày h, bán kính đáy Error: Reference source not
found, bán kính vỏ cầu là R. Vỏ cầu được làm từ hỗn hợp kim loại và gốm.
Gắn hệ trục tọa độ φ, Error: Reference source not found theo hướng kinh
tuyến và vĩ tuyến tương ứng và z theo hướng bán kính của vỏ cầu như hình 1.

6


Hình 1.
Chất liệu của bề mặt ngoài và bề mặt trong của vỏ cầu tương ứng là gốm
và kim loại. Cấu tạo gốm của vật liệu đã cải thiện được khả năng chịu nhiệt độ
cao nhờ tính dẫn nhiệt thấp. Thành phần kim loại dễ uốn giúp vật liệu tránh bị
đứt gẫy bởi ứng suất nhiệt gây ra do sự biến thiên nhiệt độ cao trong thời gian
rất ngắn. Hỗn hợp này gồm các phân tố thể tích của vật liệu thành phần thay
đổi liên tục theo độ dày của vỏ. Theo Javaheri và Eslami, modul đàn hồi E và
hệ số Poisson thay đổi theo chiều dày z, theo quy luật hàm lũy thừa.
Gọi Error: Reference source not found và Error: Reference source not
found tương ứng là các phân tố thể tích của kim loại và gốm. Chúng liên hệ


7


với nhau bởi hệ thức:

Error: Reference source not found

trong đó :

với k là số mũ đặc
trưng tỉ phần khối lượng (k≥0).
Modul đàn hồi

Để đơn giản ta chọn Error: Reference source not found const vì sự khác
biệt của hệ số Poison của các vật liệu không lớn. Trong bài toán với vỏ cầu
thoải để tính toán thuận tiện ta đặt: Error: Reference source not found với r là
bán kính hình tròn song song với mặt đáy. Khi đó: Error: Reference source
not found do φ nhỏ nên Error: Reference source not found , Error: Reference
source not found. Bằng cách này các điểm ở mặt giữa có thể được biểu diễn
theo 2 tọa độ Error: Reference source not found và Error: Reference source
not found.
Theo lý thuyết Kirchoff-Love mối quan hệ tuyến tính giữa chuyển vị và
biến dạng được biểu diễn bởi:

trong đó:

8


với:

u, v, w là chuyển vị của các điểm ở mặt giữa theo hướng các tọa độError:
Reference source not found, � và z tương ứng. Error: Reference source not
found; Error: Reference source not found; Error: Reference source not found
là biến dạng ở mặt giữa. Error: Reference source not found tương ứng là sự
thay đổi độ cong và độ xoắn.
1.2

Quan hệ nội lực biến dạng của vỏ cầu

Theo định luật Hooke ta có liên hệ ứng suất biến dạng của vỏ cầu:

9


Tích phân các phương trình sức căng và momen theo độ dày của vỏ cầu
ta được biểu thức nội lực và momen tổng hợp.

trong đó:

Với:

10


Từ (1.4) và (1.5) ta có :

Ngược lại từ (1.4) ta có :

11



1.3

Phương trình cân bằng

Xét vỏ cầu với độ dày h, bán kính đáy Error: Reference source not
found, bán kính vỏ cầu là R chịu tác dụng của áp suất ngoài q và lực P song
song với trục đối xứng.
Phương trình cân bằng cho vỏ cầu mỏng theo lý thuyết Love có dạng :

Trong đó q là áp suất ngoài tác động lên vỏ.
Sử dụng (1.10) và (1.11) phương trình (1.12) được viết lại dưới dạng :

12


Сhương 2: PHÂN TÍCH ỔN ĐỊNH CỦA VỎ CẦU
Trong chương này nghiên cứu trạng thái màng trước khi vỏ cầu mất ổn
định. Từ đó xây dựng phương trình ổn định, tiến hành giải bài toán bằng
cách áp dụng tiêu chuẩn tĩnh và phương pháp Bubnov – Galerkin.

2.1

Trạng thái màng trước khi mất ổn định.

Trạng thái lực màng trước khi mất ổn định của vỏ cầu chịu lực phân bố P
song song với trục đối xứng và áp suất phân bố đều q được xác định từ hệ
phương trình sau:

trong đó tải trọng tác dụng lên toàn vòm cầu có dạng:


Thay vào (2.1) ta được:

13


suy ra:

Thay Error: Reference source not found vào (2.2) ta xác định được
Error: Reference source not found:

2.2

Phương trình ổn định.

Các phương trình ổn định tuyến tính có thể nhận được bằng cách sử
dụng tiêu chuẩn ổn định tĩnh.
Ký hiệu Error: Reference source not found là chuyển vị ở trạng thái cân
bằng xuất phát, ứng với trạng thái cân bằng lân cận ta có chuyển vị Error:
Reference source not found.
(u;v;w) là chuyển vị ở trạng thái cân bằng lân cận tương ứng cùng dạng
tải trọng như dạng cân bằng Error: Reference source not found, Error:
Reference source not found

là gia số chuyển vị

nhỏ

tùy ý. �Error:


Reference source not found là gia số lực tổng hợp và momen tổng hợp ứng
với Error: Reference source not found
Các lực tổng hợp và momen Error: Reference source not found; Error:
Reference source not found; Error: Reference source not found�Error:

14


Reference source not found và Error: Reference source not found�Error:
Reference source not found đều thỏa mãn các phương trình (1.10); (1.11);
(1.12), lấy hiệu hai phương trình nhận được tương ứng và tuyến tính hóa
phương trình mới nhận này ta có:

Thay (1.1) vào (1.4) và (1.5) ta được các lực tổng và momen theo chuyển
vị ở hai trạng thái, qua đó xác định được gia số chuyển vị, gia số lực và
momen, giữ lại các đại lượng tuyến tính đối với Error: Reference source not
foundvà Error: Reference source not found. Tiếp tục thay các đại lượng này
vào (2.4); (2.5) và (2.6) ta thu được phương trình ổn định với các ẩn Error:
Reference source not foundvà Error: Reference source not found. Để đơn giản
và không nhầm lẫn, từ đây ta ký hiệu Error: Reference source not found
Error: Reference source not found
15

(2.7)


trong đó: Error: Reference source not found

16



17


Điều kiện biên: Giả thiết cầu nhẫn tựa đơn tại Error: Reference source
not found ta có:

2.3. Phương pháp giải.
Để giải quyết bài toán ta sử dụng phương pháp Bubnov – Galerkin, với
điều kiện biên (2.9) được thỏa mãn nếu ta chọn:

Thay (2.10) vào (2.7) ta được hệ phương trình tương ứng:

trong đó:

18


19


20


21


Vì Error: Reference source not found nên Error: Reference source not

22



found, ta nhân cả hai vế của phương trình (2.11) và (2.12) với Error:
Reference source not found, phương trình (2.13) với Error: Reference source
not found rồi lấy tích phân trên khoảng Error: Reference source not found:

trong đó
Error: Reference source not found lần lượt là vế trái của các phương trình
(2.11), (2.12), (2.13). Từ đó ta được hệ phương trình:
Error: Reference source not found (2.14)
Với:

23


24


Hệ phương trình (2.14) có nghiệm không tầm thường khi và chỉ khi định
thức:

25


×