Tải bản đầy đủ (.doc) (16 trang)

200 bài tập tích phân

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (92.49 KB, 16 trang )

NguyÔn Hïng Cêng Gi¸o viªn THPT Phï Lu
1.
2
1
x x
0
(2x 1)e dx



(§H Dîc_81 )
2. Víi
x 0;
4
π
 

 
 
x¸c ®Þnh a,b sao cho
1 a cos x bcos x
cos x 1 sin x 1 sin x
= +
− +

3. TÝnh
/ 4
3
0
dx dx
I J


cos x
cos x

π
= =

(§H BK TH_82)
4.
/ 2
0
sin x cos x 1
dx
sin x 2cosx 3
π
− +
+ +

(Bé §Ò)
5.
1
3
0
(3x 1)dx
(x 3)
+
+

(Bé §Ò)
6.
1

3
0
xdx
(x 1)+

(Bé §Ò)
7.
1
2
4
0
x 1
dx
x 1

+

(Bé §Ò)
8.
2x 2
0
e sin xdx
π

(Bé §Ò)
9.
/ 2
0
cos xdx
2 cos2x

π
+

(Bé §Ò)
10.
1
2
1
dx
x 2x cos 1
,(0< < )

α π
− α +

(Bé §Ò)
11.
2a
2 2
a
x a dx ,(a>0)−

(Bé §Ò)
12.
/ 2
3
0
4sin xdx
1 cos x
π

+

(Bé §Ò)
13.
a
2 2
0
x a dx+

(Bé §Ò)
14.
2
0
1 sin xdx
π
+

(Bé §Ò)
15.
3 /8
2 2
/8
dx
sin x cos x
π
π

(Bé §Ò)
NguyÔn Hïng Cêng Gi¸o viªn THPT Phï Lu
16.

2
1
dx
x 1 x 1+ + −

(Bé §Ò)
17. Gpt
x
2
0
(u x )du sin x− =

(Bé §Ò)
18.
b
2
1
x ln xdx

(BK_94)
19.
/ 2
2
0
x cos xdx
π

(BK_94)
20.
2

2
2 / 3
dx
x x 1−

(BK_95)
21.
0
cos x sin xdx
π

(BK_98)
22. Cho hµm sè:
f(x) sin x.sin2x.cos5x=
a. T×m hä nguyªn hµm cña g(x).
b. TÝnh tÝch ph©n:
2
x
2
f(x)
I dx
e 1
π
−π
=
+

(BK_99)
23.
ln 2

2x
x
0
e
dx
e 1+

(BK_00)
24.
1
2
0
x 1
dx
x 1

+

(XD_96)
25.
/ 4
0
cos x 2sin x
dx
4cos x 3sin x
π
+
+

(XD_98)

26.
1
3
0
3dx
1 x+

(XD_00)
27.
1
4 2
0
dx
x 4x 3+ +

(§H Má_95)
28.
/ 3
2 2
/ 6
tg x cot g x 2dx
π
π
+ −

(§H Má_00)
NguyÔn Hïng Cêng Gi¸o viªn THPT Phï Lu
29.
/ 3
/ 6

dx
sin xsin(x / 6)
π
π
+ π

(§H Má_00)
30.
6 6
/ 4
x
/ 4
sin x cos x
dx
6 1
π
−π
+
+

(§H Má_01)
31.
2
2
1
ln(x 1)
dx
x
+


(§H Hµng H¶i_00)
32.
/ 2
3
sin xdx
sin x cos x
π
+

(§H GT VT_95)
33.
3
5 2
0
x . 1 x dx+

(§H GT VT_96A)
34.
1/ 9
3x
2 5
0
x 1
5 dx
4x 1
sin (2x 1)
 
+ +
 ÷


+
 

(§H GT VT_97)
35.
7 / 3
3
0
x 1
dx
3x 1
+
+


x
2
4
2
(10 sin x)dx

− π

(§H GT VT_98)
36.
1 3
1 0
x
I dx x.arctgxdx
5 4x


= +

∫ ∫
(§H GT VT_99)
37.
/ 2
2
/ 2
x cos x
dx
4 sin x
π
−π
+


(§H GT VT_00)
38.
/ 2
3
0
5cosx 4sin x
dx
(cosx sin x)
π

+

(§H GT VT_01)

39.
/ 2
4
4 4
0
cos x
dx
cos x sin x
π
+

(§H GTVT HCM_99)
40.
/ 3
2
6
/ 4
sin x
dx
cos x
π
π

(§H GTVT HCM_00)
41.
2
2
2
2
x 1

dx
x x 1


+
+

(HV BCVT_97)
42.
/ 2
3
2
0
sin x cos x
dx
1 cos x
π
+

(HV BCVT_98)
NguyÔn Hïng Cêng Gi¸o viªn THPT Phï Lu
43.
1
4
x
1
x
dx
1 2


+

(HV BCVT_99)
44.
2
0
xsin x cos xdx
π

(HV NH_98)
45.
/ 2
2 2
0
I cos x cos 2xdx
π
=


/ 2
2 2
0
J sin x cos 2xdx
π
=

(HV NH HCM_98)
46.
/ 3
2

0
x sin x
dx
cos x
π
+


1
3
2
0
x
dx
x x 1+ +

(HV NH HCM_00)

1 4
2
2
0 0
sin 4x
x ln(x 1)dx dx
1 cos x
+
+
∫ ∫
47.
2

0
1 sin xdx
π
+

(§H NTh¬ng_94)
48.
1 1
2
2 2
0 0
dx x 3x 2
dx
x 3
(x 3x 2)

+ +
+
+ +
∫ ∫
(§H NTh¬ng_99)
49.
( )
/ 4
3
0
cos2x
dx
sin x cosx 2
π

+ +

(§H NTh¬ng_00A)
50.
1
3 2
2
0
x 2x 10x 1
dx
x 2x 9
+ + +
+ +

(§H NTh¬ng_00)
1
2
2
0
x 3x 10
dx
x 2x 9
+ +
+ +

51.
/ 4
6 6
0
sin 4x

dx
sin x cos x
π
+

(§H NTh¬ng_01A)
52.
2
5
2
2
I ln(x 1 x ) dx

 
= + +
 
 

(§H KT_95)
53.
1
5 3 6
0
x (1 x ) dx−

(§H KT_97)
NguyÔn Hïng Cêng Gi¸o viªn THPT Phï Lu
54.
/ 4
4 2

0
dx
I dx
cos x x 1
1
5
0
x
J=
π
=
+
∫ ∫
(§H TM_95)
55.
1
0
x 1 xdx−

(§H TM_96)
56.
7 ln 2
9 x
x
3
2
0 0
x 1 e
I dx dx
1 e

1 x
J=

=
+
+
∫ ∫
(§H TM_97)
57.
ln2
x
0
dx
e 5+

(§H TM_98A)
58.
4
2
1
dx
x (1 x)+

(§H TM_99)
59.
/ 2
3
0
4sin x
dx

(sin x cos x)
π
+

(§H TM_00)
60.
11
0
sin xdx
π

(HV QHQT_96)
61.
/ 4
2 4
0
sin x cos xdx
π

(§H NN_96)
62.
e
2
1/ 2
ln x
dx
(1 x)+

(§H NN_97)
63.

/ 4
2
0
cos x cos 4xdx
π

(§H NN_98)
64.
7 / 3
3
0
x 1
dx
3x 1
+
+

(§H NN_99)
65.
1
2 2
0
(1 x x ) dx− −

(§H NN_01D)
66.
/ 2
x 2
0
e cos xdx

π

(§H Thuû Lîi_96)
67.
0
1 cos2xdx
π
+

(§H Thuû Lîi_97)
68.
3 2
2
4 2 5
1 1
x 1 dx
I dx
x x 1 x(x 1)
J=
+
=
+ + +
∫ ∫
(§H Thuû Lîi_99)
Nguyễn Hùng Cờng Giáo viên THPT Phù Lu
69.
( )
/ 4
0
ln 1 tgx dx


+

(ĐH Thuỷ Lợi_01A)
70.
/ 2
2 2
0
3sin x 4cos x
dx
3sin x 4cos x

+
+

(ĐH Thuỷ Lợi_00)
3
3 2
0
x 2x xdx +

71.
/ 4
0
sin x.cosx
dx
sin2x cos2x

+


(ĐH Văn Hóa_01D)
72.
/ 2
2 2 2 2
0
sin x cos x
dx a,b 0
a cos x b sin x
;


+

(HV TCKT_95)
73.
2 / 2
2
2
0
x
dx
1 x

(HV TCKT_97)
74.
/ 4
2
0
x(2cos x 1)dx




(HV TCKT_98)
75.
/ 3
2
/ 4
cos x sin x 1
dx dx
3 sin 2x
x 1
1
4
0
x



+ +
+
+

(HV TCKT_99)
/ 2
4 3
0 0
sin x 7cos x 6
dx x cos xsin xdx
4sin x 3cos x 5



+ +
+ +

76.
1
4 2
0
x
dx
x x 1+ +

(HV TCKT_00)
77.
/ 2
2
0
(x 1)sin xdx

+

(ĐH Mở_97)
78.
/ 2
3
0
4sin x
dx
1 cos x


+

(ĐH Y HN_95)
79.
1 1
2
2x x
1/ 2 0
dx
1 x dx
e e



+

(ĐH Y HN_98)
80.
4 / 3
dx
x
sin
2



(ĐH Y HN_99)
81.
/ 3 2
2

4
2
/ 4 1
x
tg xdx dx
x 7x 12



+

(ĐH Y HN_00)

Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×