Tải bản đầy đủ (.pdf) (26 trang)

Giao trinh bai tap ds8graphintro

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (274.46 KB, 26 trang )

Sets

Huynh Tuong Nguyen,
Tran Huong Lan

Chapter 3
Sets
Discrete Structures for Computing on 21 March 2011

Huynh Tuong Nguyen, Tran Huong Lan
Faculty of Computer Science and Engineering
University of Technology - VNUHCM
3.1


Contents

Sets

Huynh Tuong Nguyen,
Tran Huong Lan

3.2


Set Definition

Sets

Huynh Tuong Nguyen,
Tran Huong Lan



• Set is a fundamental discrete structure on which all discrete

structures are built
• Sets are used to group objects, which often have the same

properties
Example
• Set of all the students who are currently taking Discrete

Mathematics 1 course.
• Set of all the subjects that K2011 students have to take in

the first semester.
• Set of natural numbers N
Definition

A set is an unordered collection of objects.
The objects in a set are called the elements (phần tử ) of the set.
A set is said to contain (chứa) its elements.
3.3


Notations

Sets

Huynh Tuong Nguyen,
Tran Huong Lan


Definition
• a ∈ A: a is an element of the set A
• a∈
/ A: a is not an element of the set A
Definition (Set Description)
• The set V of all vowels in English alphabet, V = {a, e, i, o, u}
• Set of all real numbers greater than 1???

{x | x ∈ R, x > 1}
{x | x > 1}
{x : x > 1}

3.4


Equal Sets

Sets

Huynh Tuong Nguyen,
Tran Huong Lan

Definition

Two sets are equal iff they have the same elements.
• (A = B) ↔ ∀x(x ∈ A ↔ x ∈ B)
Example
• {1, 3, 5} = {3, 5, 1}
• {1, 3, 5} = {1, 3, 3, 3, 5, 5, 5, 5}


3.5


Venn Diagram

Sets

Huynh Tuong Nguyen,
Tran Huong Lan

• John Venn in 1881
• Universal set (tập vũ trụ) is

represented by a rectangle
• Circles and other

geometrical figures are used
to represent sets
• Points are used to represent

particular elements in set

3.6


Special Sets

Sets

Huynh Tuong Nguyen,

Tran Huong Lan

• Empty set (tập rỗng ) has no elements, denoted by ∅, or {}
• A set with one element is called a singleton set
• What is {∅}?
• Answer: singleton

3.7


Subset

Sets

Huynh Tuong Nguyen,
Tran Huong Lan

Definition

The set A is called a subset (tập con) of B iff every element of A
is also an element of B, denoted by A ⊆ B.
If A = B, we write A ⊂ B and say A is a proper subset (tập con
thực sự) of B.

• ∀x(x ∈ A → x ∈ B)
• For every set S,

(i) ∅ ⊆ S, (ii) S ⊆ S.

3.8



Cardinality

Sets

Huynh Tuong Nguyen,
Tran Huong Lan

Definition

If S has exactly n distinct elements where n is non-negative
integers, S is finite set (tập hữu hạn), and n is cardinality (bản
số ) of S, denoted by |S|.
Example
• A is the set of odd positive integers less than 10. |A| = 5.
• S is the letters in Vietnamese alphabet, |S| = 29.
• Null set |∅| = 0.
Definition

A set that is infinite if it is not finite.
Example
• Set of positive integers is infinite
3.9


Power Set

Sets


Huynh Tuong Nguyen,
Tran Huong Lan

Definition

Given a set S, the power set (tập lũy thừa) of S is the set of all
subsets of the set S, denoted by P (S).
Example

What is the power set of {0, 1, 2}?
P ({0, 1, 2}) = {∅, {0}, {1}, {2}, {0, 1}, {0, 2}, {1, 2}, {0, 1, 2}}
Example
• What is the power set of the empty set?
• What is the power set of the set {∅}

3.10


Power Set

Sets

Huynh Tuong Nguyen,
Tran Huong Lan

Theorem

If a set has n elements, then its power set has 2n elements.
Prove using induction!


3.11


Ordered n-tuples

Sets

Huynh Tuong Nguyen,
Tran Huong Lan

Definition

The ordered n-tuple (dãy sắp thứ tự) (a1 , a2 , . . . , an ) is the
ordered collection that has a1 as its first element, a2 as its second
element, . . ., and an as its nth element.
Definition

Two ordered n-tuples (a1 , a2 , . . . , an ) = (b1 , b2 , . . . , bn ) iff ai = bi ,
for i = 1, 2, . . . , n.
Example

2-tuples, or ordered pairs (cặp), (a, b) and (c, d) are equal iff
a = c and b = d

3.12


Cartesian Product

Sets


Huynh Tuong Nguyen,
Tran Huong Lan

• René Descartes (1596–1650)
Definition

Let A and B be sets. The Cartesian product (tích Đề-các) of A
and B, denoted by A × B, is the set of ordered pairs (a, b), where
a ∈ A and b ∈ B. Hence,
A × B = {(a, b) | a ∈ A ∧ b ∈ B}

Example

Cartesian product of A = {1, 2} and B = {a, b, c}. Then
A × B = {(1, a), (1, b), (1, c), (2, a), (2, b), (2, c)}
Show that A × B = B × A

3.13


Sets

Cartesian Product

Huynh Tuong Nguyen,
Tran Huong Lan

Definition


A1 ×A2 ×· · ·×An = {(a1 , a2 , . . . , an ) | ai ∈ Ai for i = 1, 2, . . . , n}

Example

A = {0, 1}, B = {1, 2}, C = {0, 1, 2}. What is A × B × C?
A×B×C

= {(0, 1, 0), (0, 1, 1), (0, 1, 2), (0, 2, 0), (0, 2, 1),
(0, 2, 2), (1, 1, 0), (1, 1, 1), (1, 1, 2), (1, 2, 0),
(1, 2, 1), (1, 2, 2)}

3.14


Sets

Union

Huynh Tuong Nguyen,
Tran Huong Lan

Definition

The union (hợp) of A and B
A ∪ B = {x | x ∈ A ∨ x ∈ B}
A∪B

A

B


• Example:
• {1,2,3} ∪ {2,4} = {1,2,3,4}
• {1,2,3} ∪ ∅ = {1,2,3}

3.15


Sets

Intersection

Huynh Tuong Nguyen,
Tran Huong Lan

Definition

The intersection (giao) of A and B
A ∩ B = {x | x ∈ A ∧ x ∈ B}
A∩B

A

B

Example:
• {1,2,3} ∩ {2,4} = {2}
• {1,2,3} ∩ N = {1,2,3}

3.16



Union/Intersection

Sets

Huynh Tuong Nguyen,
Tran Huong Lan

n

Ai = A1 ∪ A2 ∪ ... ∪ An = {x | x ∈ A1 ∨ x ∈ A2 ∨ ... ∨ x ∈ An }
i=1
n

Ai = A1 ∩ A2 ∩ ... ∩ An = {x | x ∈ A1 ∧ x ∈ A2 ∧ ... ∧ x ∈ An }
i=1

3.17


Sets

Difference

Huynh Tuong Nguyen,
Tran Huong Lan

Definition


The difference (hiệu) of A and B
A − B = {x | x ∈ A ∧ x ∈
/ B}
A−B

A

B

Example:
• {1,2,3} - {2,4} = {1,3}
• {1,2,3} - N = ∅

3.18


Sets

Complement

Huynh Tuong Nguyen,
Tran Huong Lan

Definition

The complement (phần bù) of A
A = {x | x ∈A}
/

Example:

• A = {1,2,3} then A = ???
• Note that A - B = A ∩ B

3.19


Sets

Set Identities

Huynh Tuong Nguyen,
Tran Huong Lan

A∪∅
A∩U

=
=

A
A

Identity laws
Luật đồng nhất

A∪U
A∩∅

=
=


U


Domination laws
Luật nuốt

A∪A
A∩A

=
=

A
A

Idempotent laws
Luật lũy đẳng

¯
(A)

=

A

Complementation law
Luật bù

3.20



Sets

Set Identities

Huynh Tuong Nguyen,
Tran Huong Lan

A∪B
A∩B

=
=

B∪A
B∩A

A ∪ (B ∪ C)
A ∩ (B ∩ C)

=
=

(A ∪ B) ∪ C
(A ∩ B) ∩ C

Associative laws
Luật kết hợp


A ∪ (B ∩ C)
A ∩ (B ∪ C)

=
=

(A ∪ B) ∩ (A ∪ C)
(A ∩ B) ∪ (A ∩ C)

Distributive laws
Luật phân phối

A∪B
A∩B

=
=

A∩B
A∪B

Commutative laws
Luật giao hoán

De Morgan’s laws
Luật De Morgan

3.21



Method of Proofs of Set Equations

Sets

Huynh Tuong Nguyen,
Tran Huong Lan

To prove A = B, we could use
• Venn diagrams
• Prove that A ⊆ B and B ⊆ A
• Use membership table
• Use set builder notation and logical equivalences

3.22


Example (1)

Sets

Huynh Tuong Nguyen,
Tran Huong Lan

Example

Verify the distributive rule P ∪ (Q ∩ R) = (P ∪ Q) ∩ (P ∪ R)

3.23



Example (2)

Sets

Huynh Tuong Nguyen,
Tran Huong Lan

Example

Prove: A ∩ B = A ∪ B
(1) Show that A ∩ B ⊆ A ∪ B
Suppose that x ∈ A ∩ B
By the definition of complement, x ∈
/ A∩B
So, x ∈
/ A or x ∈
/B
¯
Hence, x ∈ A¯ or x ∈ B
We conclude, x ∈ A ∪ B
Or, A ∩ B ⊆ A ∪ B
(2) Show that A ∪ B ⊆ A ∩ B

3.24


Sets

Example (3)


Huynh Tuong Nguyen,
Tran Huong Lan

Prove: A ∩ B = A ∪ B
A

B

A∩B

A∩B

¯
A¯ ∪ B

1
1
0
0

1
0
1
0

1
0
0
0


0
1
1
1

0
1
1
1

3.25


×