Tải bản đầy đủ (.pdf) (43 trang)

200 bài tập tích phân môn toán 12 ôn thi THPT

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (485.27 KB, 43 trang )

www.MATHVN.com

Bi tp Nguyờn hm - Tớch phõn cú li gii

.

TP1: TCH PHN HM S HU T
Dng 1: Tỏch phõn thc
2

Cõu 1.

x2

I =

2
1 x 7 x + 12

2



1

I = 1 +

2
16
9


dx = ( x + 16 ln x 4 9 ln x 3 ) 1 = 1 + 25ln 2 16 ln 3 .
x 4 x 3

2

Cõu 2.

I =

1

Ta cú:

dx
5

x + x3
1





5

I =

I =

1 1

x
+
+
x x3 x2 + 1

2
1
3
1
3
+ ln( x 2 + 1) = ln 2 + ln 5 +
2
2
2
8
2x
1
1

2

3x 2 + 1
3

2

x 2 x 5x + 6

4


Cõu 4.

=

x 3 ( x 2 + 1)

I = ln x
Cõu 3.

dx

dx

2 4 13 7 14
I = ln + ln + ln 2
3 3 15 6 5

xdx

1

0

( x + 1)3
x
x + 11
1
1
Ta cú:
=

= ( x + 1)2 ( x + 1)3 I = ( x + 1)2 ( x + 1)3 dx =
3
3
0
8
( x + 1)
( x + 1)

Dng 2: i bin s

Cõu 5.

I =
1

Cõu 6.

I =

( x 1)2
(2 x + 1)4

dx

( 7 x 1)99

101
0 ( 2 x + 1)

1


7x 1
I =

2x + 1
0

99

1 x 1
Ta cú: f ( x ) = .

3 2x + 1

I =

Cõu 8.

I =

0 (x

1

5x
2

2

+ 4)


x7

0 (1 +

x 2 )5

99

7x 1
1 1 7x 1
=
d


( 2 x + 1)2 9 0 2 x + 1 2 x + 1
dx

100

Cõu 7.

3
x 1
1 x 1
.
I =
+C
9 2x + 1
2x + 1


dx

1 1 7x 1
=


9 100 2 x + 1
1

2

1 100
1
=
2 1
0 900
1
8

dx

t t = x 2 + 4 I =

dx

t t = 1 + x 2 dt = 2 xdx I =
Bieõn soaùn: Thay Tran Sú Tuứng - Trang 1

1 2 (t 1)3

1 1
dt = .

2 1 t5
4 25


Bi tp Nguyờn hm - Tớch phõn cú li gii

www.mathvn.com

1

Cõu 9.

I = x 5 (1 x 3 )6 dx
0

t t = 1 x 3 dt = 3x 2dx dx =
4

Cõu 10. I =

3



1

2


2

2

1 x7

Cõu 12. I =

x (1 + x 7 )

1

3



11 6
1 t 7 t8
1
(1

)
=
t
t
dt
=

30

3 7 8 168
1
2

3

1

t



1

3

t t 2 + 1 dt = 4 ln 2

1





1 32
dt
I = 5 10
. t t = x I =
2
2

5 1 t (t + 1)2
1 x .( x + 1)

x.( x10 + 1)2

1

Cõu 13. I =

2

dx

Cõu 11. I =

3x 2

I =

t t = x 2 I =

dx
x ( x 4 + 1)

1

dt

x 4 .dx


5

1 128 1 t
I = 7
dx . t t = x I =
dt
7
7 1 t (1 + t )
1 x .(1 + x )

dx

(1 x 7 ).x 6

7

dx
6

x (1 + x 2 )

1

t : x =

1
I =
t

3

3



1

t6

dt =
t2 + 1

1

4 2
117 41 3
1
+
t t +1 2
dt =
135
12
1
t
+


3




3

2

x 2001

Cõu 14. I =

1 (1 +

2

x 2 )1002

2

x 2004

I =

.dx

3
2 1002
1 x (1 + x )

Cỏch 2: Ta cú: I =

.dx =


1

1
1002

1

x 3 2 + 1
x


1000

2

1 + x2

4
11+ x

Ta cú:
3
2

1+ x

2

1+ x4


1
x2

+ 1 dt =

2
x3

dx .

11
x 2000 .2 xdx
. t t = 1 + x 2 dt = 2 xdx

2
2000
2
2
2 0 (1 + x )
(1 + x )

1 2 (t 1)1000
1 2 1
I = 1000 2 dt = 1
21 t
2 1 t
t
Cõu 15. I =

.dx . t t =


1
1
d 1 =
t 2002.21001

dx
1+

=

1

x 2 . t t = x 1 dt = 1 + 1 dx

2
1
x
2
x


x +
2
x
3
2

3
2 1


1
t 2
1
I= 2
=

dt
=
.ln
=
ln


2


2 2
2 2 1t 2 t + 2
t + 2 1 2 2 2 + 1
1 t 2
dt

1

1

1

Bieõn soaùn: Thay Tran Sú Tuứng - Trang 2



www.MATHVN.com

.

2

1 x2

Cõu 16. I =

11+

x4

1 x

Bi tp Nguyờn hm - Tớch phõn cú li gii

dx
1

2

5
2

1



1
1
dt
= x
. t t = x + dt = 1 dx I =
.
2
2
1
x
2
1+ x
x
t
+
2


2
x +
x2
du
5
5
t t = 2 tan u dt = 2
; tan u = 2 u1 = arctan 2; tan u = u2 = arctan
2
2
2

cos u

Ta cú:

2

4

u2

2
I=
2
2

Cõu 17. I =

u1

1 x

Cõu 18. I =

0

x4 + 1

Ta cú:

x6 + 1


1

2

dx

dx

x6 + 1
x4 + 1

1

1
2
1
4
x
Ta cú: I =
dx . t t = x + I = ln
1
x
5
1
+x
x

2


3
1x+x

1


2
2
5
(u2 u1 ) =
arctan arctan 2
2
2
2


du =

=

( x 4 x 2 + 1) + x 2
x6 + 1

=

x4 x2 + 1
( x 2 + 1)( x 4 x 2 + 1)

+


x2
x6 + 1

=

1
x2 + 1

+

x2
x6 + 1

1 1 d (x3 )
1
I = 2 dx + 3 2 dx = + . =
3 0 (x ) + 1
4 3 4 3
0 x +1

Cõu 19.

1

3
3

I=

x2




x4 1

0

I=

3
3



0

x

2

( x 1)( x + 1)
1
0

xdx
4

2

x + x +1


1+ 5
2



Ta cú:

1
0t

dx =

x2 + 1

2

x +1
4

2

x x +1



0

1
1

1

+
2
dx = ln(2 3) +
2
4
12
x 1 x +1
1 1 dt
11
=
2 0 t 2 + t + 1 2 0

dt
2
1 3

t + +
2 2

dx
1+

=

1
2

3

3

t t = x 2 I =

.

x 4 x2 + 1

1

I =

2

2

Cõu 20. I =

Cõu 21. I =

dx

x2 +

1
x2
1
x2

1


. t t = x


1
1
dt = 1 + dx
x
x2



dt
2

+1

. t t = tan u dt =

du
2

cos u

4

I = du =
0



4

Bieõn soaùn: Thay Tran Sú Tuứng - Trang 3

2

=


6 3


Bi tp Nguyờn hm - Tớch phõn cú li gii

www.mathvn.com

TP2: TCH PHN HM S Vễ T
Dng 1: i bin s dng 1

x

Cõu 22. I =

dx

2

3x + 9 x 1
x
I =

dx = x (3x 9 x 2 1)dx = 3x 2dx x 9 x 2 1dx
2
3x + 9 x 1
2

3

+ I1 = 3x dx = x + C1

3

1
1
+ I 2 = x 9 x 1dx = 9 x 2 1 d (9 x 2 1) = (9 x 2 1) 2 + C2
18
27
2

3

I=

1
(9 x 2 1) 2 + x 3 + C
27
x2 + x

Cõu 23. I =






x + x
1+ x x

x2

dx =

x2

+ I1 =



1+ x x

2

dx

1+ x x

1+ x x

x
1+ x x

Vy: I =


4
9

(

4

dx =

1+ x x

2x + 1

Cõu 24. I =

01+

2x + 1

6
2 2x

)

3

+ 1 + 4x + 1

01+


x

)

3



4
1 + x x + C1
3

3

t2
1 + t dt =2 + ln 2 .
1
3 1
2 12

t t = 4 x + 1 . I = ln
1

t: t = 1 x 2 I = ( t 2 t 4 ) dt =

0

1+ x


1+ x x

t t = 2 x + 1 . I =

dx

1

Cõu 27. I =

(

+C

Cõu 26. I = x 3 1 x 2 dx
1

dx .

2 d (1 + x x )
4
=
1 + x x + C2

3
3
1+ x x

dx


Cõu 25. I =

1+ x x

dx . t t= 1 + x x t 2 1 = x x x 3 = (t 2 1)2 x 2dx =

4 2
4 3 4
4
3 (t 1)dt = 9 t 3 t + C = 9

+ I2 =

x

dx +

0

2
.
15

dx
1 3

1

t +t
2

11
t t = x dx = 2t.dt . I = 2
dt = 2 t 2 t + 2
4 ln 2 .
dt =
t +1
3
1+ t

0
0
3

Cõu 28. I =

x 3

dx
3
x
+
1
+
x
+
3
0
Bieõn soaùn: Thay Tran Sú Tuứng - Trang 4

4 2

t(t 1)dt
3


www.MATHVN.com

.

Bi tp Nguyờn hm - Tớch phõn cú li gii
2

t t = x + 1 2tdu = dx I =

2t 3 8t

1t

0

x.

Cõu 29. I =

3

2

+ 3t + 2

2


2

1
3
dt = 3 + 6 ln
t +1
2
1

dt = (2t 6)dt + 6
1

x + 1dx

1

1

1

t7 t4
9
t t = x + 1 t = x + 1 dx = 3t dt I = 3(t 1)dt = 3 =
28
7 4 0
0
3

3


5

x2 + 1

1

x 3x + 1

Cõu 30. I =

2

3

dx
2

t2 1

+1
4 3
2tdt
2tdt
t t = 3x + 1 dx =
I = 2
.
3
3
t 1

2
.t
3
4
4
21 3
t 1
100
9
= t t + ln
=
+ ln .
93
5
t + 1 2 27
2
3

Cõu 31. I =

2x2 + x 1
x +1

0

=

4
24 2
dt

(
t

1)
dt
+
2


2
92
2 t 1

dx

x + 1 = t x = t 2 1 dx = 2tdt

t
2

2(t 2 1)2 + (t 2 1) 1
I =
2tdt
t
1
1

2

2


4t 5

54
= 2 (2t 4 3t 2 )dt =
2t 3 =
5
1 5
1

x 2dx

Cõu 32. I = 2

0 ( x + 1)

x +1

t t = x + 1 t 2 = x + 1 2tdt = dx
I =

2



(t 2 1)2
t3

1
4


Cõu 33. I =

0

.2tdt =2

2



1

x +1
2
1 + 2x )

(1 +

2

2
t3
1
1
16 11 2
t
dt

=

2
2t =


t 1
3
t
3

dx

t 2 2t
t t = 1 + 1 + 2 x dt =
dx = (t 1)dt v x =
2
1 + 2x
dx

Ta cú: I =

1 4 (t 2 2t + 2)(t 1)
1 4 t 3 3t 2 + 4t 2
1 4
4 2
dt
=
dt
=
t 3 + dt





22
22
2 2
t t2
t2
t2

=

Cõu 34. I =

8



3

1 t2
2
1
3t + 4 ln t + = 2 ln 2
2 2
t
4
x 1
2


x +1

dx

Bieõn soaùn: Thay Tran Sú Tuứng - Trang 5


Bi tp Nguyờn hm - Tớch phõn cú li gii

www.mathvn.com

(

8

)


x
1


I=

dx = x 2 + 1 ln x + x 2 + 1

2

x2 + 1
3 x +1


8
3

= 1 + ln

(

3 + 2 ) ln ( 8 + 3)

1

Cõu 35. I = ( x 1)3 2 x x 2 dx
0

1

3

I = ( x 1)
0

2

Cõu 36. I =

2 x x dx = ( x 2 2 x + 1) 2 x x 2 ( x 1)dx . t t = 2 x x 2 I =
0

2 x3 3x 2 + x

x2 x + 1

0

1

2

2
.
15

dx

3
( x 2 x )(2 x 1)
4
dx . t t = x 2 x + 1 I = 2 (t 2 1)dt = .
3
0
x2 x + 1
1

2

I =

2

Cõu 37. I =


0

x 3dx
3

4 + x2

3

t t = 4 + x 2 x 2 = t 3 4 2 xdx = 3t 2dt I =


3 2 4
38
(t 4t )dt = + 4 3 2

23
25

4

Cõu 38. I =

1

dx




x + 1 + x2

1 1 +

1

1
1 + x 1 + x2
1 11
1 + x2
Ta cú: I =
dx =
dx = + 1 dx
dx
2
2
2x
2 1 x
2x
1 (1 + x ) (1 + x )
1
1

+ I1 =
+ I2 =

1

1 + x 1 + x2


1 11
1
1
+ 1 dx = ln x + x |1 = 1

2 1 x
2
1



1

1 + x2
dx . t t = 1 + x 2 t 2 = 1 + x 2 2tdt = 2 xdx I2=
2x

Vy: I = 1 .

2



t 2dt

2
2 2(t 1)

=0


Cỏch 2: t t = x + x 2 + 1 .
Cõu 39. I =

1



1
3
2

Cõu 40. I =

1

1
3 3
x

(x )
x4

4 x2

1



3


dx

4 x2
dx
x

Ta cú: I =
I=

1

1
3 1
1
Ta cú: I = 2 1 . 3 dx . t t = 2 1 I = 6 .
x
x
1 x
3

2

0

1

t(tdt )
4 t2

x


2

0

xdx . t t =

t2

0

4 x 2 t 2 = 4 x 2 tdt = xdx

4


t2
=
dt = (1 +
)dt = t + ln

2
2
t+2


t
4
t
4


3
3

0


2 3

= 3 + ln


2
+
3
3



Bieõn soaùn: Thay Tran Sú Tuứng - Trang 6


www.MATHVN.com

.

Cõu 41. I =

2 5




5

x
( x 2 + 1) x 2 + 5

2

Cõu 42. I =

Bi tp Nguyờn hm - Tớch phõn cú li gii

27

x 2



3

x+ x

1

3

1

x2 + x + 1


0

dx

t t = x + x + x + 1 I =

1+ 3

1+
2dt
= ln(2t + 1)
1
2t + 1



1

3

x2
1 + x )2 (2 + 1 + x )2

0 (1 +

4

4


3

= ln

3+ 2 3
3

dx
42



36

4

t 2 + 1 + x = t I = 2t 16 + 2 dt = 12 + 42 ln
t
3
t
3
3

x2

Cõu 45. I =

0 2( x + 1) + 2 x + 1 + x x + 1
2


2t (t 2 1)2 dt

t t = x + 1 I =

t(t + 1)2

1

Cõu 46. I =

3

2 2



x x 3 + 2011x
x4

1

Ta cú: I =

3

2 2



1


M=

3

2 2



2 2

2011



x3

1

I=

2

x
x3

1

N=


1

1

x2
x3

dx +

2 2



dx =



1

2
2
2
= 2 (t 1)2 dt = (t 1)3 =
1
3
3
1

3


2011

x3

1

1

2 2

2

dx

1

dx . t t =

dx

1
x2

dx = M + N

1 M =

3
2




7
2



t 3dt =

0

2 2

2011
2011x dx =

2 x2 1
3

3

=

213 7
128

14077
16

3


14077 21 7

.
16
128
1

dx

Cõu 47. I =

0 (1 +

3

x 3 ). 1 + x 3
3

3

3

=

1 15
ln .
4 7

3


2
2 5
2t
1
dt = 5 1 +

dt = 5 3 1 + ln

3 12
t t2 + 1 t2 + 1

t(t 2 + 1)
1

2

Cõu 44. I =

2

t3 2

1

Cõu 43. I =

3t

dt


dx

2

t t = 6 x I = 5
1

t t = x 2 + 5 I =

dx

t t = 1 + x I =

2



t2

2
1 4 3
t .(t 1) 3

3

dt =

2


dt



1

2

t .(t

3

2
1) 3

Bieõn soaùn: Thay Tran Sú Tuứng - Trang 7


Bi tp Nguyờn hm - Tớch phõn cú li gii

3

=

2



1


3

dt

=

2

3

1

Cõu 48. I =

2 2



3

1
t3

du =

3dt
t4


1

3
2 1 3
= t
t4
1

dt




1
t 2 . t 3 1 3
t

t u = 1

2

2
3


1
t 4 1 3
t
1
2

I=


2

u 3

0

www.mathvn.com

3

du =



2
3

dt

1
2 2
u 3 du

1
3 0

1
1 u3


1
2


=
3 1

3 0

1
1 2
= u3

=

0

1
3

2

x4
dx

1 2
x x x +1




t t = x 2 + 1
3

I =

2

(t 2 1)2
t2 2

3 4

dt =



t 2t 2 + 1
t2 2

2

3

3

2

2t

dt = t 2 dt +


1
2

2

dt =

19
2 4+ 2
+
ln

3
4 4 2

Dng 2: i bin s dng 2
1



2
x
ln
1
+
x
( ) dx
1+ x


0

Cõu 49. I =

1 x

1

1 x

Tớnh H =

1+ x

0

dx . t



x = cos t; t 0; H = 2
2
2

1

u = ln(1 + x )

Tớnh K = 2 x ln(1 + x )dx . t


dv = 2 xdx

0

Cõu 50. I =

2

(x

5

K=

1
2

+ x 2 ) 4 x 2 dx

2

I=

2

(x

5

2


+ x ) 4 x dx =

2

x

5

2

4 x dx +

2

x

2

4 x 2 dx = A + B.

2

x

5

4 x 2 dx . t t = x . Tớnh c: A = 0.

x


2

4 x 2 dx . t x = 2sin t . Tớnh c: B = 2 .

2
2

+ Tớnh B =

2

2
2

+ Tớnh A =

2

2

Vy: I = 2 .

Bieõn soaùn: Thay Tran Sú Tuứng - Trang 8


www.MATHVN.com

.


(3

2

Cõu 51. I =

Bi tp Nguyờn hm - Tớch phõn cú li gii

)

4 x 2 dx
2x4

1
2

Ta cú: I =

2

3

4
1 2x

2

+ Tớnh I1 =

3


1 2x
2

+ Tớnh I 2 =

1



I2 =

4

2x4

1

4 x2
2x4

dx .

3 2 4
7
x dx = .

21
16


dx =

dx . t x = 2sin t dx = 2 cos tdt .

2

2

4 x2

dx





6

6

2

1 cos tdt 1
12
3
2 1
=
cot
t
dt

=

cot 2 t.d (cot t ) =
2



4
8 sin t
8
8
8
sin t
6

Vy: I =

1(
7 2 3) .
16

1

x 2dx

0

4 x6

Cõu 52. I =


t t = x 3 dt = 3 x 2 dx I =

1 1 dt
.
3 0 4 t 2



16

t t = 2sin u, u 0; dt = 2 cos udu I = dt = .
2
30
18
2



Cõu 53. I =

2 x
dx
x+2

1

x 2dx

0


Cõu 54. I =

0

Ta cú: I =

0

I =

2



2
3
1
2

Cõu 55.



0

t
2

0


3 + 2x x2
1



2

t x = 2 cos t dx = 2sin tdt I = 4 sin2 dt = 2 .

x 2dx
22 ( x 1)2

. t x 1 = 2 cos t .
2
3

2

(1 + 2 cos t ) 2sin t
4 (2 cos t )2

dt =

( 3 + 4 cos t + 2 cos2t ) dt =




2


+

3 3
4
2

2



1 2 x 1 x 2 dx

6

t x = sin t I = (cos t sin t )cos tdt =
0

Bieõn soaùn: Thay Tran Sú Tuứng - Trang 9


12

+

3 1

8 8



Bi tp Nguyờn hm - Tớch phõn cú li gii

www.mathvn.com

Dng 3: Tớch phõn tng phn
Cõu 56. I =

3



x 2 1dx

2


x
dx
u = x 2 1 du =
t

2
x

1
dv = dx
v = x

I = x x2 1
=5 2


3



2

I=

3
2



3



x.

2

x 2 1dx

x
x2 1
3

dx = 5 2


dx



x2 1

2

3

2
x 1 +

2




dx
2
x 1
1

= 5 2 I ln x + x 2 1

5 2
1
ln ( 2 + 1) + ln 2
2
4


Chỳ ý: Khụng c dựng phộp i bin x =

3

2

1
vỡ 2;3 [ 1;1]
cos t

TP3: TCH PHN HM S LNG GIC
Dng 1: Bin i lng giỏc
Cõu 57. I =

8cos2 x sin 2 x 3
dx
sin x cos x

(sin x cos x )2 + 4 cos 2 x
I =
dx = ( sin x cos x 4(sin x + cos x ) dx
sin x cos x
= 3cos x 5sin x + C .
cot x tan x 2 tan 2 x
dx
Cõu 58. I =
sin 4 x
2 cot 2 x 2 tan 2 x
2 cot 4 x

cos 4 x
1
Ta cú: I =
dx =
dx = 2
dx =
+C
sin 4 x
sin 4 x
2sin 4 x
sin 2 4 x


cos2 x +
8

Cõu 59. I =
dx
sin 2 x + cos 2 x + 2


1 + cos 2 x +
1

4 dx
Ta cú: I =

2 2 1 + sin 2 x +




4


cos 2 x +



1
dx


4

dx +
=

2
2 2 1 + sin 2 x +












sin x + + cos x +

4

8
8




Bieõn soaùn: Thay Tran Sú Tuứng - Trang 10


www.MATHVN.com

.

Bi tp Nguyờn hm - Tớch phõn cú li gii





cos 2 x +


1
dx

4 dx + 1


=

2 2
3
2 2 1 + sin 2 x +
sin x +





4
8




1

3
=
ln 1 + sin 2 x + cot x +
+ C
4
8


4 2


Cõu 60. I =



dx

2+

3 sin x cos x



3

I=

1
2

1
dx
1
dx
= I=
=
.

4

4

3
2 x
1 cos x +
2sin +
3
3
3

2 6


Cõu 61. I =

6

1

2 sin x

3

0

dx



1
Ta cú: I =
2



=

cos

6





6



0

1
sin x sin




3

dx =

6






dx =

1
2

6





dx

0 sin x sin
3
3
x x
cos +
2 6 2 6

dx




x

x


0 sin x sin
0 2 cos
2 + 6 .sin 2 6
3




x
x


cos

sin


2+ 6
2 6
16
16


dx = ln sin x
=
dx +



2 6
20
x
20
x

sin
cos +
2 6
2 6




6
0

x
ln cos +
2 6


6
0



Cõu 62. I =


2

(sin

4

x + cos4 x )(sin 6 x + cos6 x )dx .

0

Ta cú: (sin 4 x + cos4 x )(sin6 x + cos6 x ) =

33 7
3
33
+ cos 4 x + cos8 x I =
.
64 16
64
128



Cõu 63. I =

2

cos2 x(sin

4


x + cos4 x )dx

0





2



0



1



1 2



0

1




I = cos2 x 1 sin2 2 x dx = 1 sin2 2 x d (sin 2 x ) = 0
2
2
2




Cõu 64. I =

2

3

(cos

x 1) cos2 x.dx

0

Bieõn soaùn: Thay Tran Sú Tuứng - Trang 11

= .....


Bi tp Nguyờn hm - Tớch phõn cú li gii





5
cos xdx =

2
(1 sin x )

2

A =

0



2

d (sin x ) =

0

8
15



2

2
cos x.dx =


B=

2

www.mathvn.com

0

12

(1 + cos 2 x ).dx =

20
4

8

.
15 4

Vy I =


2

cos

Cõu 65. I =


2

x cos 2 xdx

0





2

I = cos2 x cos2 xdx =
0



2

1
12
(1
+
cos
2
x
)
cos2
xdx
=

(1 + 2 cos2 x + cos 4 x )dx
2 0
4 0


2
1
1

= ( x + sin 2 x + sin 4 x ) =
4
4
8
0


2
0

Cõu 66. I =



4sin3 x
dx
1 + cos x

4 sin3 x 4sin3 x (1 cos x )
=
= 4sin x 4sin x cos x = 4sin x 2sin 2 x

1 + cos x
sin2 x


I = 2 (4sin x 2sin 2 x )dx = 2
0

Cõu 67. I =

2



1 + sin xdx

0

I=

2

2
2

x
x
x
x
x
sin + cos dx = sin + cos dx = 2 sin + dx


2
2
2
2
2 4
0
0

2



0

3

2
2
x
x
= 2 sin + dx sin + dx = 4 2
2 4
2 4
0
3


2





Cõu 68. I =

4



0

dx
6

cos x

4

Ta cú: I = (1 + 2 tan2 x + tan 4 x )d (tan x ) =
0

Dng 2: i bin s dng 1

Bieõn soaùn: Thay Tran Sú Tuứng - Trang 12

28
.
15



www.MATHVN.com

Bi tp Nguyờn hm - Tớch phõn cú li gii

.

sin 2 xdx
3 + 4sin x cos2 x
2sin x cos x
1
Ta cú: I =
+C
dx . t t = sin x I = ln sin x + 1 +
2
sin x + 1
2sin x + 4 sin x + 2
dx
Cõu 70. I =
sin3 x.cos5 x
dx
dx
I = 3
= 8 3
3
2
sin x. cos x. cos x
sin 2 x. cos 2 x


3

1
3
1
t t = tan x . I = t 3 + 3t + + t 3 dt = tan 4 x + tan2 x + 3ln tan x
+C
t
4
2


2 tan2 x
2t
.
Chỳ ý: sin 2 x =
1 + t2
dx
Cõu 71. I =
sin x.cos3 x
dx
dx
dx
2t
I =
. t t = tan x dt =
=
2
; sin 2 x =
sin x.cos x.cos2 x
sin 2 x.cos2 x
cos2 x

1 + t2
Cõu 69. I =

I = 2

dt
2t

=

t2 + 1
1
t2
tan2 x
dt = (t + )dt = + ln t + C =
+ ln tan x + C
t
t
2
2

1 + t2
Cõu 72. I =

2011

sin 2011 x sin 2009 x
sin 5 x

cot xdx


1

2011 1

sin 2 x cot xdx =

sin 4 x

Ta cú: I =

t t = cot x I =

2
2011
t
(1 + t 2 )tdt

4024

2011

cot 2 x

sin 4 x
4024

cot xdx
8046


2011 2011 2011 2011
=
t
+
t
+C
4024
8046

8046

2011
2011
=
cot 2011 x +
cot 2011 x + C
4024
8046


Cõu 73. I =

2

sin 2 x.cos x
dx
1
cos
x
+

0





2
sin x.cos2 x
(t 1)2
dx . t t = 1 + cos x I = 2
dt = 2 ln 2 1
1
+
cos
x
t
0
1
2

Ta cú: I = 2


Cõu 74. I =

3

sin

2


x tan xdx

0



3

Ta cú: I = sin2 x.
0



sin x
dx =
cos x

(1 cos2 x )sin x
dx . t t = cos x

x
cos
0
3

Bieõn soaùn: Thay Tran Sú Tuứng - Trang 13


Bi tp Nguyờn hm - Tớch phõn cú li gii


www.mathvn.com

1
2

1 u2
3
du = ln 2
u
8
1

I =


sin

Cõu 75. I =

2

x (2 1 + cos2 x )dx



2










Ta cú: I = 2sin2 xdx sin2 x 1 + cos2 xdx = H + K
2

2









2

2

+ H = 2sin2 xdx = (1 cos 2 x )dx =


2

=



2













2

2

2

+ K = sin2 x 2 cos2 x = 2 sin2 x cos xdx = 2 sin2 xd (sin x ) =



I =

2
3




2



Cõu 76. I =

3

dx

sin2 x.cos4 x



4


3

I = 4.


dx
sin 2 2 x.cos2 x

. t t = tan x dt =

dx

cos2 x

.

4

I=

3



(1 + t 2 )2 dt
t2

1

3

=



1

3

1
1
t3

8 34
2
+
2
+
t
dt
=

+
2
t
+

=
2

3 1
3
t
t




Cõu 77. I =

2

sin 2 x


( 2 + sin x ) dx
2

0



Ta cú: I =



2

sin 2 x

(2 + sin x )2
0

3

I = 2

2

t2
t2

2


dx = 2

sin x cos x

2
0 (2 + sin x )

dx . t t = 2 + sin x .
3

3

1 2

2
3 2
dt = 2 dt = 2 ln t + = 2 ln
2
t t
t 2
2 3

2



Cõu 78. I =

6


sin x

cos 2 x dx
0



I=

6



0



sin x
dx =
cos 2 x

6

sin x

2 cos2 x 1 dx . t t = cos x dt = sin xdx

0

Bieõn soaùn: Thay Tran Sú Tuứng - Trang 14


2
3


www.MATHVN.com

.

Bi tp Nguyờn hm - Tớch phõn cú li gii

i cn: x = 0 t = 1; x =

Ta c I =

3
2



1
2

2t 1

1



t=


6

dt =

1
2 2

ln

3
2
2t 2
2t + 2

1
3
2

=

1
2 2

ln

32 2
52 6




Cõu 79. I =

2

2

t t = sin2 x I =

sin x
3
e .sin x.cos x. dx
0

11 t
1
e (1 t )dt = e 1 .

20
2


2

Cõu 80. I = sin x sin2 x +



1
dx

2

t t = cos x . I =

3
( + 2)
16

6


Cõu 81. I =

4

sin 4 x



dx

sin6 x + cos6 x

0



4

I=


sin 4 x



3
1 sin 2 2 x
4

0

3
dx . t t = 1 sin 2 2 x I =
4

1
4

4
2 1
3 t dt = 3 t

1

1
1
4

=


2
.
3



Cõu 82. I =

2

sin x



( sin x +

0

3 cos x

)

3

dx



Ta cú: sin x + 3 cos x = 2 cos x




;
6




3
1

sin x = sin x + =
sin x + cos x
6 6
2
6 2
6







sin x dx
2
6
3
3
1 2

dx

I=
=
+


16 0


6
16 0

cos3 x
cos2 x
6
6




Cõu 83. I =

sin x 1 cos2 x

4






cos2 x



dx

3



4

I=





=

0












sin x
2

cos x

1 cos2 x .dx =

sin x
2

cos x





3
2

4



4

dx +


0

sin 2 x
2

cos x

dx =



sin x
2

cos x

sin x dx =

3

0








sin x

2

cos x

sin x dx +

3

7
3 1.
12

3

Bieõn soaùn: Thay Tran Sú Tuứng - Trang 15

4



sin x

2
0 cos

x

sin x dx



Bi tp Nguyờn hm - Tớch phõn cú li gii

www.mathvn.com



6

Cõu 84. I =

sin x +

1
3 cos x

0

dx



sin x +
1
1
1
1
3 dx .

I=
dx =

dx =
20

20



0 sin x + 3 cos x
1 cos2 x +
sin x +
3
3




6





6

6

1
2






1
1
1
t t = cos x + dt = sin x + dx I =
dt = ln 3
2
3
3
2 0 1 t
4




2

Cõu 85. I =

1 3 sin 2 x + 2 cos2 xdx



0






I=

2



sin x 3 cos x dx = I =

0



3

sin x 3 cos x dx +



2

sin x

3 cos x dx = 3 3



0

3




Cõu 86. I =

2

sin xdx

(sin x + cos x )3
0



t x =


2

t dx = dt I =



2

cos tdt

=

cos xdx


(sin t + cos t )3 (sin x + cos x )3
0



2

0



2



12
dx
1
4
1
2I =
=
= cot( x + ) = 1 I =
2

20 2
2
4 0
2

0 (sin x + cos x )
sin ( x + )
4
dx



Cõu 87. I =

2

7sin x 5cos x

(sin x + cos x )3 dx

0



Xột: I1 =
t x =


2



2




0

sin xdx

( sin x + cos x )

3

;

I2 =

2

cos xdx

0

( sin x + cos x )



3

.

t . Ta chng minh c I1 = I2



2

Tớnh I1 + I2 =



0

I1 = I 2 =



dx

( sin x + cos x )

2

=

2

dx

0

2 cos2 ( x )
4






=


1
tan( x ) 2 = 1
2
4 0

1
I = 7I1 5I 2 = 1 .
2



Cõu 88. I =

2

3sin x 2 cos x

(sin x + cos x )3 dx
0

Bieõn soaùn: Thay Tran Sú Tuứng - Trang 16


www.MATHVN.com


.

Bi tp Nguyờn hm - Tớch phõn cú li gii




t x =

2

t dx = dt I =



2

3cos t 2sin t

(cos t + sin t )3
0



2I = I + I =

2

Cõu 89. I =


2

3cos x 2sin x

(cos x + sin x )3 dx

0



3sin x 2 cos x

(sin x + cos x )3

dx +

2

0



dt =



3cos x 2sin x

(cos x + sin x )3


dx =

0

2

1

(sin x + cos x )2 dx = 1

I=

0

x sin x

1 + cos2 x dx

0



t x = t dx = dt I =

0



2I =


0 1 + cos



2

t

2

1 + cos t



dt =

sin t

2
0 1 + cos t

dt I


2
= + I =
2
4 4
8

0 1 + cos t
d (cos t )

dt =

cos4 x sin x

2

Cõu 90. I =



sin t

( t )sin t

cos3 x + sin3 x dx
0

t x =


2

0

t dx = dt I =





4

sin t cos t
cos3 t + sin3 t

dt =

2

sin 4 x cos x

cos3 x + sin3 x dx

0

2



2

2I =



4




4

cos x sin x + sin x cos x
sin3 x + cos3 x

0

dx =

2



0

3

3

sin x cos x (sin x + cos x )
sin3 x + cos3 x



dx =

12
1
sin 2 xdx =


20
2

1
4

I= .


2



0



1

cos2 (sin x ) tan

Cõu 91. I =

t x =


2

2



(cos x ) dx


t dx = dt





2

2


1
tan 2 (sin t ) dt =
tan 2 (sin x ) dx
2
2


cos (cos t )
cos (cos x )
0
0




1

I=





2

2


1
1
Do ú: 2I =
+
tan 2 (cos x ) tan 2 (sin x ) dx = 2 dt =
2
2

cos (sin x ) cos (cos x )
0
0

I=


2


.



Cõu 92. I =

4

cos x sin x

0

3 sin 2 x



dx

Bieõn soaùn: Thay Tran Sú Tuứng - Trang 17

1
.
2


Bi tp Nguyờn hm - Tớch phõn cú li gii

t u = sin x + cos x I =

2




1

www.mathvn.com


du
4u

2

. t u = 2sin t I =



4

2 cos tdt



2

4 4sin t



6


4

= dt =



12

6



Cõu 93. I =

3

sin x



2

cos x 3 + sin x

0

4 cos2 x . Ta cú: cos2 x = 4 t 2 v dt =

t t = 3 + sin2 x =


I=





3

3



0

=

dx

sin x

.dx =

cos x 3 + sin2 x
15
2

1 t+2
ln
4 t2


3

2
3

2

sin x
2
3

+ Tớnh I1 =

3

2
3

+ Tớnh I 2 =

3



Vy: I =

1
15 + 4
ln

ln
4
15

4


2
3

x

3

cos2 x 3 + sin2 x

sin3 x + sin2 x

3

I =

0

sin x.cos x

x + ( x + sin x )sin x

Cõu 94. I =
2

3

=



3

15
2



dx =

3

dt
4t

2

=

1
4

sin x cos x
3 + sin2 x


dx .

15
2



3

1
1


dt
t+2 t2

3+2
1 (
=
ln 15 + 4 ) ln ( 3 + 2 ) .
2
3 2

(

)

dx

dx

.
1 + sin x

dx +

3

u = x


du = dx
dx
I1 =
dx . t
2
dv
=
v = cot x
3
sin x

sin 2 x

x

2

dx
= 3
1 + sin x

3

2

dx
dx
= 3
=4 2 3


x
2
1 + cos x
3 2 cos
2

4 2

+42 3.


2

Cõu 95.

I=

0




I=





Cõu 96. I =

6



0
6



0

dx
2

2sin x cos x

0

I=

cos2 x + 4sin2 x


2
udu
22
2
dx . t u = 3sin 2 x + 1 I = 3
= du =
u
31
3
1
3sin2 x + 1

2



sin 2 x



tan x

4 dx
cos2 x




tan x

2
6

4 dx = tan x + 1 dx . t t = tan x dt = 1 dx = (tan 2 x + 1)dx

2
cos 2 x
cos2 x
0 (tan x + 1)

Bieõn soaùn: Thay Tran Sú Tuứng - Trang 18

.


www.MATHVN.com

.

Bi tp Nguyờn hm - Tớch phõn cú li gii

1

1

3

I =

1 3 1 3

.
=
=
2
t +1 0
2
(t + 1)
dt



0



Cõu 97. I =

3

cot x
dx
sin x.sin x +

4
6






3

I = 2


cot x
sin 2 x (1 + cot x )

dx . t 1 + cot x = t

1
sin 2 x

dx = dt

6

3 +1

I= 2



3 +1

t 1
dt = 2 ( t ln t )
t

2


= 2
ln 3
3


3 +1
3 +1
3

3



Cõu 98. I =

3

dx

sin2 x.cos4 x



4



3


Ta cú: I = 4.


dx
2

2

sin 2 x.cos x

. t t = tan x dx =

dt
1 + t2

4

3 (1 + t 2 )2 dt
3 1
1
t3
2
(
2
)
(
2
)
I
=

=
+
+
t
dt
=

+
t
+



2
2
t
3
t
1
1 t
1

3
=

8 34
3




Cõu 99. I =

4

sin x

5sin x.cos2 x + 2 cos x dx
0



4

tan x

1

5tan x + 2(1 + tan2 x ). cos2 x dx . t t = tan x ,

Ta cú: I =

0

1

t

I =

0 2t


2

+ 5t + 2








cos4 x (tan 2 x 2 tan x + 5)

4

t t = tan x dx =
Tớnh I1 =

1 1 2
1
1
2


dt = ln 3 ln 2

3 0 t + 2 2t + 1
2
3


sin 2 xdx

4

Cõu 100. I =

dt =

1



1 t

dt
2

2t + 5

1+ t

t 2 dt

1

dt
2

. t


I=

1 t

t 1
2

2

2t + 5

= tan u I1 =

1
2

= 2 + ln
0






du =

2
3


1

3

1 t

dt
2

2t + 5

2 3
. Vy I = 2 + ln
.
8
3 8



4

Bieõn soaùn: Thay Tran Sú Tuứng - Trang 19


Bi tp Nguyờn hm - Tớch phõn cú li gii


sin 2 x
dx .
sin 3 x


2

Cõu 101. I =

www.mathvn.com





6



I=



2

2

sin x

3sin x 4sin3 x

dx =




2

sin x

4 cos2 x 1 dx



6

6

t t = cos x dt = sin xdx I =

0



3
2



Cõu 102. I = 2

sin x cos x
1 + sin 2 x

4


dt
2

4t 1

=

1
4

3
2



0

dt
t2

1
4

=

1
ln(2 3)
4


dx


Ta cú: 1 + sin 2 x = sin x + cos x = sin x + cos x (vỡ x ; )
4 2


sin x cos x
dx . t t = sin x + cos x dt = (cos x sin x )dx
sin x + cos x

I = 2
4

21

I =

1

t
2

2

dt = ln t 1 =

1
ln 2
2


6

Cõu 103. I = 2 1 cos3 x .sin x.cos5 xdx
1

t t = 6 1 cos3 x t 6 = 1 cos3 x 6t 5dt = 3cos2 x sin xdx dx =

2t 5dt
cos2 x sin x

1

1

t 7 t13
12
I = 2 t 6 (1 t 6 )dt = 2
=
7 13 0 91
0


Cõu 104. I =

4

tan xdx

0


cos x 1 + cos2 x





Ta cú: I =
3

4

tan xdx

0

cos2 x tan2 x + 2



tdt
I=
=
t
2

. t t = 2 + tan 2 x t 2 = 2 + tan 2 x tdt =

3


dt =

3 2

2



Cõu 105. I =

2

cos2 x

(cos x sin x + 3)3

0

tan x
dx
cos 2 x

4

dx

t 3
1
dt = .
3

32
2 t

t t = cos x sin x + 3 I =

Bieõn soaùn: Thay Tran Sú Tuứng - Trang 20


www.MATHVN.com

.



Cõu 106. I =



4
0

Bi tp Nguyờn hm - Tớch phõn cú li gii

sin 4 x
2

dx

4


cos x. tan x + 1


Ta cú: I =

4

sin 4 x



4

4

sin x + cos x

0

dx . t t = sin 4 x + cos4 x I = 2

2
2



dt = 2 2 .

1




Cõu 107. I =

4

sin 4 x

1 + cos2 x dx
0



Ta cú: I =

4



2

2sin 2 x (2 cos x 1)
2

1 + cos x

0




Cõu 108. I =

6



0

1
2

2(2t 1)
1
dt = 2 6 ln .
t +1
3
1

dx . t t = cos2 x I =



tan( x )
4 dx
cos 2 x


1
3


tan x + 1
dt
1 3
=
.
dx . t t = tan x I =
2
2
(tan
x
+
1)
(
t
+
1)
2
0
0
2

6

Ta cú: I =


Cõu 109. I =

tan 3 x
0 cos 2 x dx

6




tan 3 x

6
6
tan 3 x
Ta cú: I =
dx =
dx .
2
2
2
2
0 cos x sin x
0 cos x(1 tan x)
3
3 t3
1 1 2
t t = tan x I =
dt = ln .
2
6 2 3
0 1 t





Cõu 110. I =

2

cos x



7 + cos 2 x

0

I=

dx

1
2

2



0

cos x dx
22 sin2 x

=



3

Cõu 111.

4



4

dx
sin3 x.cos5 x


Ta cú:



3

1





4


4

3

sin x
3

cos x

t t = tan x I =

dx =
.cos8 x
3 3
t 4 dt



3

4



4

1

.


1

2
tan x cos x
3

dx .

= 4 ( 8 3 1)

1

Bieõn soaùn: Thay Tran Sú Tuứng - Trang 21


6 2


Bi tp Nguyờn hm - Tớch phõn cú li gii
Cõu 112. I =



x(
0

www.mathvn.com

cos3 x + cos x + sin x
)dx

1 + cos 2 x




cos x (1 + cos2 x ) + sin x
x.sin x
dx = x.cos x.dx +
dx = J + K

2
2


1
+
cos
x
1
+
cos
x
0
0



Ta cú: I = x
0




u = x
du = dx
+ Tớnh J = x.cos x.dx . t
J = 2

=
dv
cos
xdx
v = sin x


0


x.sin x

+ Tớnh K =

0 1 + cos



2

2

1 + cos ( t )


0



2K =

1 + cos2 x

t t = cos x K =


Vy I =





4

2

1 + cos t


dx =
dt

2 1




=

4


2

4

( x ).sin x

0

sin x.dx
2



dt =

x

1 + cos2 x

K=

dx


sin x.dx

2 0 1 + cos2 x

t t = tan u dt = (1 + tan2 u)du

1 + t2 ,

1 + tan 2 u



2

1

(1 + tan u)du



2

( t ).sin t

0 1 + cos

2

4








dt =

0

( x + x ).sin x

0

t x = t dx = dt

dx .

( t ).sin( t )

K=

K=

x







4

du =


2



. u 4 =


4

2
4

2



Cõu 113. I =

2

cos x


sin x


3 + cos 2 x

dx

6


2

Ta cú: I =


sin x cos x
sin x 3 + cos x
2

2

dx . t t = 3 + cos2 x

6

I=

15
2




3

dt
4t

2

=

1
( ln( 15 + 4) ln( 3 + 2))
2

Dng 3: i bin s dng 2


2

Cõu 114. I = sin x sin2 x +



1
.dx
2

6

Bieõn soaùn: Thay Tran Sú Tuứng - Trang 22



www.MATHVN.com

.

Bi tp Nguyờn hm - Tớch phõn cú li gii




3 1
3
34
sin t , 0 t I = cos2 tdt = + .
2

2
2 4 2
20

t cos x =


Cõu 115. I =

3sin x + 4 cos x
dx
2
x + 4 cos 2 x


2

3sin
0











2
3sin x + 4 cos x
3sin x
4 cos x
3sin x
4 cos x
dx
dx
dx
=
dx
+
dx
=
+

2
2
2
2
2




3
+
cos
3
+
cos
3
+
cos
3
+
cos
4

sin
x
x
x
x
x
0

0
0
0
0
2

2

I =

2

2


1

2

3sin x
3dt
+ Tớnh I1 =
dx . t t = cos x dt = sin xdx I1 =
2
3 + cos x
3 + t2
0
0



3 3(1 + tan 2 u )du 3
=
3(1 + tan 2 u )
6
0
6

t t = 3 tan u dt = 3(1 + tan 2 u )du I1 =

2

+ Tớnh I 2 =
0

Vy: I =

1

4 cos x
4dt1
dx . t t1 = sin x dt1 = cos xdx I 2 =
dt1 = ln 3
2
4 sin x
4 t12
0

3
6


+ ln 3



Cõu 116. I =

4





6

tan x
2

cos x 1 + cos x

dx



Ta cú: I =



4






6

tan x
cos2 x

t u = tan x du =

dx =

1
2

cos x
1

4





+1

6

tan x
2


cos x tan x + 2
1

dx I =

2

cos x

2



1

u
u2 + 2

dx

dx . t t = u2 + 2 dt =

u
u2 + 2

3

I =


3



3

dt = t

7
3

7
3



Cõu 117. I =

2





7

= 3

3


=

3 7
3

.



sin x +
4

dx
2sin x cos x 3

4



Ta cú: I =

1

2


2


4


sin x + cos x

( sin x cos x )

t t = 2 tan u I =

1
2

2

arctan



0

+2

dx . t t = sin x cos x I =

1

2(1 + tan 2 u)

1
1
du = arctan
2

2
2 tan u + 2
2

Bieõn soaùn: Thay Tran Sú Tuứng - Trang 23

1

dt

2 t2 + 2
0

1
2

1

du .


Bi tp Nguyờn hm - Tớch phõn cú li gii

www.mathvn.com

Dng 4: Tớch phõn tng phn


3


Cõu 118. I =




3

x sin x
cos2 x

dx .

S dng cụng thc tớch phõn tng phn ta cú:


I=

3







1
x
xd
=
cos x cos x





3


3


3



3









dx
4
=
J , vi J =
cos x
3


3


3

tớnh J ta t t = sin x. Khi ú J =




Vy I =


3

3
2

dx
=
cos x


3







dx
cos x

3

1 t 1
1 t 2 = 2 ln t + 1
3
dt

2

4
2 3
ln
.
3
2+ 3


Cõu 119. I =

2

1 + sin x

0




1 + cos x .e

x

dx

x
x
1 + sin x 1 + 2sin 2 cos 2
1
x
Ta cú:
=
=
+ tan
x
x
1 + cos x
2
2 cos2
2 cos2
2
2


2


x


e dx

2



x
I=
+ e tan dx = e 2
x 0
2
0 2 cos2
2
x

Bieõn soaùn: Thay Tran Sú Tuứng - Trang 24

3
2


3
2

= ln

2 3
2+ 3



www.MATHVN.com

.



Cõu 120. I =



4

Bi tp Nguyờn hm - Tớch phõn cú li gii

x cos 2 x

(1 + sin 2 x )

0

2

dx

u = x
du = dx


cos2 x

t

1
dv =
dx
=

v
2


1 + sin 2 x
(1 + sin 2 x )








4

4

1

1
1
1

1
dx = +
4+
16 2
2 1 + sin 2 x 0 2 0 1 + sin 2 x

I = x. .

1



.

1

2 cos2 x

4


0

dx




1 1


1 2
2
= + .
tan x 4 = + .
0 + 1) =

(
16 2 2
4
16 2 2
4 16

0



TP4: TCH PHN HM S M - LOGARIT
Dng 1: i bin s
Cõu 121. I =

e2 x
1 + ex

dx

t t = e x e x = t 2 e x dx = 2tdt .
t3
2
2
I = 2

dt = t 3 t 2 + 2t 2 ln t + 1 + C = e x e x e x + 2 e x 2 ln e x + 1 + C
1+ t
3
3
Cõu 122. I =

I =

( x 2 + x )e x
x + e x

( x 2 + x )e x
x

x+e
dx

Cõu 123. I =

dx

dx =

xe x .( x + 1)e x
xe + 1
x

dx . t t = x.e x + 1 I = xe x + 1 ln xe x + 1 + C .

e2 x + 9


t t = e2 x + 9 I =

dt
t2 9

=

1 t 3
1
ln
+ C = ln
6 t+3
6

e2 x + 9 3
e

2x

+9 +3

+C

ln(1 + x 2 ) x + 2011x
dx
2
x 2 +1

ln (ex + e)


x ln( x 2 + 1) + 2011
Ta cú: I =
dx . t t = ln( x 2 + 1) + 1
2
2
( x + 1) ln( x + 1) + 1
1 t + 2010
1
1
1
I=
dt = t + 1005ln t + C = ln( x 2 + 1) + + 1005ln(ln( x 2 + 1) + 1) + C
2
t
2
2
2

Cõu 124. I =

e

Cõu 125. J =

1

xe x + 1
x (e x + ln x )


dx

e

d (e x + ln x )

1

e x + ln x

J=

= ln e x + ln x

Bieõn soaùn: Thay Tran Sú Tuứng - Trang 25

e
1

= ln

ee + 1
e


×