Tải bản đầy đủ (.pdf) (17 trang)

Toa do trong khong gian ly thuyet trac nghiem dap an va bai giai chi tiet

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (2.59 MB, 17 trang )

CHINH PHỤC KỲ THI THPTQG 2017

PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN

BÀI 1. TỌA ĐỘ TRONG KHÔNG GIAN
A - LÝ THUYẾT
1. Hệ trục tọa độ trong không gian
Trong không gian, xét ba trục tọa độ Ox, Oy, Oz vuông góc với nhau từng đôi một và chung một
  
điểm gốc O. Gọi i, j , k là các vectơ đơn vị, tương ứng trên các trục Ox, Oy, Oz . Hệ ba trục như vậy
gọi là hệ trục tọa độ vuông góc trong không gian.
2  2  2
   
Chú ý:
i  j  k  1 và i. j  i.k  k . j  0 .

2. Tọa độ của vectơ



  
a) Định nghĩa: u   x; y; z   u  xi  y j  zk


b) Tính chất: Cho a  (a1 ; a2 ; a3 ), b  (b1 ; b2 ; b3 ), k  
 
 a  b  (a1  b1 ; a2  b2 ; a3  b3 )

 ka  (ka1 ; ka2 ; ka3 )

a1  b1


 

 a  b  a2  b2
a  b
 3 3




 0  (0;0; 0), i  (1; 0; 0), j  (0;1; 0), k  (0; 0;1)

  


 a cùng phương b (b  0)
 a  kb (k   )
a1  kb1
a a
a

 a2  kb2
 1  2  3 , (b1 , b2 , b3  0)
b1 b2 b3
a  kb
 3
3
 

 a.b  a1.b1  a2 .b2  a3 .b3
 a  b  a1b1  a2b2  a3b3  0



 a 2  a12  a22  a32
 a  a12  a22  a22

 
a.b
a1b1  a2b2  a3b3
  
 cos(a , b )    
(với a , b  0 )
a .b
a12  a22  a32 . b12  b22  b32

3. Tọa độ của điểm





a) Định nghĩa: M ( x; y; z )  OM  x.i  y. j  z.k
(x : hoành độ, y : tung độ, z : cao độ)
Chú ý:  M   Oxy   z  0; M   Oyz   x  0; M   Oxz   y  0

 M  Ox  y  z  0; M  Oy  x  z  0; M  Oz  x  y  0 .
b) Tính chất: Cho A( x A ; y A ; z A ), B ( xB ; yB ; z B )

 AB  ( xB  x A ; y B  y A ; z B  z A )
 AB  ( xB  xA ) 2  ( yB  y A ) 2  ( z B  z A )2


 x  x y  yB z A  z B 
 Toạ độ trung điểm M của đoạn thẳng AB : M  A B ; A
;

 2
2
2 
 x  x  x y  yB  yC z A  z B  zC 
 Toạ độ trọng tâm G của tam giác ABC : G  A B C ; A
;

3
3
3


 Toạ độ trọng tâm G của tứ diện ABCD :
 x  x  x  xD y A  yB  yC  y D z A  z B  zC  zC 
G A B C
;
;


4
4
4

Chuyên đề 8.1 - Tọa độ trong không gian Oxyz
Cần file Word vui lòng liên hệ:


1|THBTN
Mã số tài liệu: BTN-CD8


CHINH PHỤC KỲ THI THPTQG 2017

PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN

4. Tích có hướng của hai vectơ



Oxyz cho hai vectơ a  (a1 ; a2 ; a3 ) , b  (b1 ; b2 ; b3 ) . Tích có hướng
 
 a, b  , được xác định bởi
 
 a a3 a3 a1 a1 a2 
 
 a , b    2
;
;
   a2b3  a3b2 ; a3b1  a1b3 ; a1b2  a2b1 
 b2 b3 b3 b1 b1 b2 
Chú ý: Tích có hướng của hai vectơ là một vectơ, tích vô hướng của hai vectơ là một số.
b) Tính chất:
 
  

 
 

 [a, b]  a; [a, b]  b
  a, b    b, a 
 
 
     

 
 
 i , j   k ;  j , k   i ; k , i   j
 [a, b]  a . b .sin  a , b  (Chương trình nâng cao)
 
 

 a, b cùng phương  [a, b]  0 (chứng minh 3 điểm thẳng hàng)

a) Định nghĩa: Trong không gian


của hai vectơ a và b, kí hiệu là

c) Ứng dụng của tích có hướng: (Chương trình nâng cao)
 

  
 Điều kiện đồng phẳng của ba vectơ: a, b và c đồng phẳng  [a, b].c  0
 
 Diện tích hình bình hành ABCD :
S ABCD   AB, AD 
1  
 Diện tích tam giác ABC :

S ABC   AB , AC 
2
  
 Thể tích khối hộp ABCDAB C D : VABCD. A ' B ' C ' D '  [ AB, AD ]. AA

 Thể tích tứ diện ABCD :

VABCD 

1   
[ AB , AC ]. AD
6

Chú ý:
- Tích vô hướng của hai vectơ thường sử dụng để chứng minh hai đường thẳng vuông góc, tính
góc giữa hai đường thẳng.
- Tích có hướng của hai vectơ thường sử dụng để tính diện tích tam giác; tính thể tích khối tứ
diện, thể tích hình hộp; chứng minh các vectơ đồng phẳng – không đồng phẳng, chứng minh
các vectơ cùng phương.
 

a  b a.b  0

  

a vaø
b
cuø
n
g

phöông

a
,b  0
  
  
a, b , c ñoàng phaúng   a , b  .c  0

5. Một vài thao tác sử dụng máy tính bỏ túi (Casio Fx570 Es Plus, Casio Fx570 Vn
Plus, Vinacal 570 Es Plus )
Trong không gian Oxyz cho bốn điểm A  x A ; y A ; z A  , B  xB ; yB ; z B  , C  xC ; yC ; zC  , D  xD ; yD ; z D 

w 8 1 1 (nhập vectơ AB ) 
q 5 2 2 2 (nhập vectơ AC )

q 5 2 3 1 (nhập vectơ AD )
 
C q53q54= (tính  AB, AC  )
  
C q53q54q57q55= (tính [ AB, AC ]. AD )
  
Cqc(Abs) q53q54q57q55= (tính [ AB, AC ]. AD )
C1a6qc(Abs) q53q54q57q55=
1   
(tính VABCD  [ AB , AC ]. AD
6
Chuyên đề 8.1 - Tọa độ trong không gian Oxyz
Cần file Word vui lòng liên hệ:

2|THBTN

Mã số tài liệu: BTN-CD8


CHINH PHỤC KỲ THI THPTQG 2017

PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN

B - BÀI TẬP TRẮC NGHIỆM
Câu 1.

Câu 2.

Gọi  là góc giữa hai vectơ

a.b
A.   .
B.
a.b






a và b , với a và b khác 0 , khi đó cos  bằng


 
a.b
 a.b

a b
C.   .
D.   .
  .
a.b
a.b
a.b



Gọi  là góc giữa hai vectơ a  1; 2;0  và b   2;0; 1 , khi đó cos  bằng
A. 0.

B.

2
.
5

C.

2
.
5

2
D.  .
5

Câu 3.





Cho vectơ a  1;3; 4  , tìm vectơ b cùng phương với vectơ a



A. b   2; 6; 8 .
B. b   2; 6;8  .
C. b   2;6;8  .

Câu 4.



Tích vô hướng của hai vectơ a   2; 2;5  , b   0;1; 2  trong không gian bằng
A. 10.

Câu 5.

Câu 7.

D. 14.

8.
C. 10.
D. 12.
 


Trong không gian Oxyz , gọi i, j, k là các vectơ đơn vị, khi đó với M  x; y; z  thì OM bằng
  
  
  
  
A.  xi  y j  zk .
B. xi  y j  zk .
C. x j  yi  zk .
D. xi  y j  zk .


 
Tích có hướng của hai vectơ a  (a1 ; a2 ; a3 ) , b  (b1 ; b2 ; b3 ) là một vectơ, kí hiệu  a , b  , được

6.

B.

xác định bằng tọa độ
A.  a2 b3  a3b2 ; a3b1  a1b3 ; a1b2  a2b1  .

B.

 a2b3  a3b2 ; a3b1  a1b3 ; a1b2  a2b1  .

D.

C.
Câu 8.


C. 12.

Trong không gian cho hai điểm A  1; 2;3 , B  0;1;1 , độ dài đoạn AB bằng
A.

Câu 6.

B. 13.


D. b   2; 6; 8  .

 a2b3  a3b2 ; a3b1  a1b3 ; a1b2  a2b1  .
 a2b2  a3b3 ; a3b3  a1b1 ; a1b1  a2b2  .




Cho các vectơ u   u1; u2 ; u3  và v   v1; v2 ; v3  , u.v  0 khi và chỉ khi
A. u1v1  u2 v2  u3v3  1 . B. u1  v1  u2  v2  u3  v3  0 .

Câu 9.

C. u1v1  u2 v2  u3v3  0 .


Cho vectơ a  1; 1;2  , độ dài vectơ a là
A.

6.


B. 2.

D. u1v2  u2 v3  u3v1  1 .

C.  6 .

D. 4.

Câu 10. Trong không gian Oxyz , cho điểm M nằm trên trục Ox sao cho M không trùng với gốc tọa
độ, khi đó tọa độ điểm M có dạng
A. M  a; 0; 0  , a  0 . B. M  0; b;0  , b  0 . C. M  0;0; c  , c  0 . D. M  a;1;1 , a  0 .
Câu 11. Trong không gian Oxyz , cho điểm M nằm trên mặt phẳng  Oxy  sao cho M không trùng với
gốc tọa độ và không nằm trên hai trục Ox, Oy , khi đó tọa độ điểm M là ( a, b, c  0 )
A.

 0; b; a  .

B.

 a; b; 0  .

C.

 0; 0; c  .

D.

 a;1;1






Câu 12. Trong không gian Oxyz , cho a   0;3; 4  và b  2 a , khi đó tọa độ vectơ b có thể là
A.

 0;3; 4  .

B.

 4; 0;3 .

C.

 2; 0;1 .

Chuyên đề 8.1 - Tọa độ trong không gian Oxyz
Cần file Word vui lòng liên hệ:

D.

 8;0; 6  .

3|THBTN
Mã số tài liệu: BTN-CD8


CHINH PHỤC KỲ THI THPTQG 2017


PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN


 
Câu 13. Trong không gian Oxyz cho hai vectơ u và v , khi đó u , v  bằng
 
 
 
 

 

 
A. u . v .sin u, v .
B. u . v .cos u , v .
C. u.v.cos u, v .
D. u.v.sin u, v .

 

 

 

 




Câu 14. Trong không gian Oxyz cho ba vectơ a  1; 1;2  , b   3;0; 1 , c   2;5;1 , vectơ

   
m  a  b  c có tọa độ là
A.  6; 0; 6  .
B.  6;6; 0  .
C.  6; 6; 0  .
D.  0; 6; 6  .
Câu 15. Trong không gian Oxyz cho ba điểm A 1;0; 3 , B  2; 4; 1 , C  2; 2; 0  . Độ dài các cạnh

AB, AC , BC của tam giác ABC lần lượt là
A.

21, 13, 37 .

B.

11, 14, 37 .

21, 14, 37 .

C.

D.

21, 13, 35 .

Câu 16. Trong không gian Oxyz cho ba điểm A 1;0; 3 , B  2; 4; 1 , C  2; 2; 0  . Tọa độ trọng tâm G
của tam giác ABC là
5 2 4
A.  ; ;   .
3 3 3


5 2 4
B.  ; ;  .
3 3 3

C.

5

D.  ;1; 2  .
2


 5; 2; 4  .

Câu 17. Trong không gian Oxyz cho ba điểm A 1;2;0  , B  1;1;3 , C  0; 2;5  . Để 4 điểm A, B, C , D
đồng phẳng thì tọa độ điểm D là
A. D  2;5; 0  .
B. D 1; 2;3 .

C. D 1; 1;6  .





D. D  0;0; 2  .




Câu 18. Trong không gian Oxyz , cho ba vecto a  (1; 2; 3), b  (2; 0;1), c  ( 1; 0;1) . Tìm tọa độ của











vectơ n  a  b  2c  3i


A. n   6;2;6  .
B. n   6;2; 6  .


C. n   0;2;6  .


D. n   6;2;6  .

Câu 19. Trong không gian Oxyz , cho tam giác ABC có A(1;0; 2), B(2;1;3), C (3; 2; 4) . Tìm tọa độ
trọng tâm G của tam giác ABC
2

 1 
A. G  ;1;3  .

B. G  2;3;9  .
C. G  6; 0; 24  .
D. G  2; ;3  .
3

 3 
Câu 20. Cho 3 điểm M  2;0;0  , N  0; 3;0  , P  0;0;4  . Nếu MNPQ là hình bình hành thì tọa độ của
điểm Q là
A. Q  2; 3; 4 

B. Q  2;3; 4 

C. Q  3; 4; 2 

D. Q  2; 3; 4 

Câu 21. Trong không gian tọa độ Oxyz cho ba điểm M 1;1;1 , N  2;3; 4  , P  7; 7;5  . Để tứ giác MNPQ
là hình bình hành thì tọa độ điểm Q là
A. Q  6;5; 2  .

B. Q  6;5; 2  .

C. Q  6; 5; 2  .

D. Q  6; 5; 2  .

Câu 22. Cho 3 điểm A 1;2;0  , B 1;0; 1 , C  0; 1;2  . Tam giác ABC là
A. tam giác có ba góc nhọn.
C. tam giác vuông đỉnh A .


B. tam giác cân đỉnh A .
D. tam giác đều.

Câu 23. Trong không gian tọa độ Oxyz cho ba điểm A  1; 2;2  , B  0;1;3 , C  3;4;0  . Để tứ giác

ABCD là hình bình hành thì tọa độ điểm D là
A. D  4;5; 1 .

B. D  4;5; 1 .

C. D  4; 5; 1 .

Chuyên đề 8.1 - Tọa độ trong không gian Oxyz
Cần file Word vui lòng liên hệ:

D. D  4; 5;1 .
4|THBTN
Mã số tài liệu: BTN-CD8


CHINH PHỤC KỲ THI THPTQG 2017
PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN




 
Câu 24. Cho hai vectơ a và b tạo với nhau góc 600 và a  2; b  4 . Khi đó a  b bằng

8 3  20.


A.

B. 2 7.

C. 2 5.

D. 2 .

Câu 25. Cho điểm M 1; 2; 3 , khoảng cách từ điểm M đến mặt phẳng  Oxy  bằng
B. 3 .

A. 2.

C. 1.

D. 3.

Câu 26. Cho điểm M  2;5;0  , hình chiếu vuông góc của điểm M trên trục Oy là điểm
A. M   2;5;0  .

B. M   0; 5;0  .

C. M   0;5;0  .

D. M   2;0;0  .

Câu 27. Cho điểm M 1; 2; 3 , hình chiếu vuông góc của điểm M trên mặt phẳng  Oxy  là điểm
A. M  1;2;0  .


B. M  1;0; 3 .

C. M   0; 2; 3 .

D. M  1;2;3 .

Câu 28. Cho điểm M  2;5;1 , khoảng cách từ điểm M đến trục Ox bằng
29 .

A.

5.

B.

C. 2.

26 .

D.

Câu 29. Cho hình chóp tam giác S . ABC với I là trọng tâm của đáy ABC . Đẳng thức nào sau đây là
đẳngthứcđúng

   
   
   
A. IA  IB  IC.
B. IA  IB  CI  0. C. IA  BI  IC  0. D. IA  IB  IC  0.







Câu 30. Trong không gian Oxyz , cho 3 vectơ a   1;1; 0  ; b  1;1; 0  ; c  1;1;1 . Trong các mệnh
đề sau, mệnh đề nào sai:

 
A. b  c.
B. a  2.


C. c  3.

 
D. a  b.

Câu 31. Cho điểm M  3;2; 1 , điểm đối xứng của M qua mặt phẳng  Oxy  là điểm
A. M   3; 2;1 .

B. M   3; 2; 1 .

C. M   3; 2;1 .

D. M   3;2;0  .

Câu 32. Cho điểm M  3;2; 1 , điểm M   a; b; c  đối xứng của M qua trục Oy , khi đó a  b  c bằng
A. 6.
B. 4.

C. 0.
D. 2.


 
Câu 33. Cho u  1;1;1 và v   0;1; m  . Để góc giữa hai vectơ u , v có số đo bằng 450 thì m bằng
A.  3 .

B. 2  3 .

C. 1  3 .

3.

D.

Câu 34. Cho A 1; 2;0  , B  3;3;2  , C  1; 2;2  , D  3;3;1 . Thể tích của tứ diện ABCD bằng
A. 5.

B. 4.

C. 3.

D. 6.

Câu 35. Trong không gian Oxyz cho tứ diện ABCD . Độ dài đường cao vẽ từ D của tứ diện ABCD
cho bởi công thức nào sau đây:
  
  


 AB, AC  . AD
1  AB, AC  . AD
1 

A. h 
B. h 
.
.
 
 
3
3  AB. AC 
AB.AC


  
  
 AB, AC  . AD
 AB, AC  . AD




C. h 
.
D. h 
 
.
 
 AB. AC 

AB. AC


Câu 36. Trong không gian tọa độ Oxyz , cho bốn điểm A 1; 2;0  , B  3;3;2  , C  1; 2;2  , D  3;3;1 . Độ
dài đường cao của tứ diện ABCD hạ từ đỉnh D xuống mặt phẳng  ABC  là
A.

9
7 2

.

B.

9
.
7

C.

9
.
2

Chuyên đề 8.1 - Tọa độ trong không gian Oxyz
Cần file Word vui lòng liên hệ:

D.

9

.
14

5|THBTN
Mã số tài liệu: BTN-CD8


CHINH PHỤC KỲ THI THPTQG 2017

PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN

Câu 37. Trong không gian Oxyz , cho tứ diện ABCD có A(1;0; 2), B(2;1;3), C (3; 2; 4), D (6;9; 5) . Tìm
tọa độ trọng tâm G của tứ diện ABCD
18
14 



A. G  9; ; 30  .
B. G  8;12; 4  .
C. G  3;3;  .
D. G  2;3;1 .
4
4



Câu 38. Trong không gian Oxyz , cho hai điểm A(1; 2;1), B(2; 1; 2) . Điểm M trên trục Ox và cách đều
hai điểm A, B có tọa độ là


1 1 3
A. M  ; ;  .
2 2 2

1

B. M  ; 0; 0  .
2


3

C. M  ; 0; 0  .
2


 1 3
D. M  0; ;  .
 2 2

Câu 39. Trong không gian Oxyz , cho hai điểm A(1; 2;1), B(3; 1;2) . Điểm M trên trục Oz và cách đều
hai điểm A, B có tọa độ là
A. M  0; 0; 4  .

B. M  0; 0; 4  .

3

C. M  0; 0;  .
2



3 1 3
D. M  ; ;  .
2 2 2

 là
Câu 40. Trong không gian Oxyz cho ba điểm A(1; 2;3), B(0;3;1), C (4;2;2) . Cosin của góc BAC

9
9
.
D. 
.
2 35
35



Câu 41. Tọa độ của vecto n vuông góc với hai vecto a  (2; 1; 2), b  (3; 2;1) là




A. n   3;4;1 .
B. n   3; 4; 1 .
C. n   3;4; 1 .
D. n   3; 4; 1 .
A.


9
.
2 35

B.

9
.
35

C. 





   


2 
Câu 42. Cho a  2; b  5, góc giữa hai vectơ a và b bằng
, u  k a  b; v  a  2b. Để u vuông
3

góc với v thì k bằng
6
45
6
45
A.  .

B.
.
C.
.
D.  .
45
6
45
6



Câu 43. Cho u   2; 1;1 , v   m;3; 1 , w  1; 2;1 . Với giá trị nào của m thì ba vectơ trên đồng phẳng
3
8
8
B.  .
C. .
D.  .
8
3
3


 
Câu 44. Cho hai vectơ a  1;log 3 5; m  , b   3;log 5 3;4  . Với giá trị nào của m thì a  b

A.

3

.
8

A. m  1; m  1 .

B. m  1 .

C. m  1 .

D. m  2; m  2 .

Câu 45. Trong không gian Oxyz cho ba điểm A(2;5;3), B (3;7;4), C ( x; y;6) . Giá trị của x, y để ba điểm

A, B, C thẳng hàng là
A. x  5; y  11 .

B. x  5; y  11 .

C. x  11; y  5 .

D. x  11; y  5 .

Câu 46. Trong không gian Oxyz cho ba điểm A(1;0;0), B(0;0;1), C (2;1;1) . Tam giác ABC là
A. tam giác vuông tại A .
B. tam giác cân tại A .
C. tam giác vuông cân tại A .
D. Tam giác đều.
Câu 47. Trong không gian Oxyz cho tam giác ABC có A(1;0;0), B(0;0;1), C (2;1;1) . Tam giác ABC có
diện tích bằng
A.


6.

B.

6
.
3

C.

6
.
2

Chuyên đề 8.1 - Tọa độ trong không gian Oxyz
Cần file Word vui lòng liên hệ:

D.

1
.
2

6|THBTN
Mã số tài liệu: BTN-CD8


CHINH PHỤC KỲ THI THPTQG 2017


PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN

Câu 48. Ba đỉnh của một hình bình hành có tọa độ là 1;1;1 ,  2;3; 4  ,  7; 7;5  . Diện tích của hình bình
hành đó bằng
83
A. 2 83 .
B. 83 .
C. 83 .
D.
.
2



  
Câu 49. Cho 3 vecto a  1;2;1 ; b   1;1; 2  và c   x;3x; x  2  . Tìm x để 3 vectơ a, b, c đồng phẳng
A. 2.
B. 1.
C. 2.
D. 1.




Câu 50. Trong không gian Oxyz cho ba vectơ a   3; 2;4  , b   5;1;6  , c   3; 0; 2  . Tìm vectơ x

  
sao cho vectơ x đồng thời vuông góc với a, b, c
A. 1; 0; 0  .


B.

 0; 0;1 .

C.

 0;1; 0  .

D.

 0; 0;0  .

Câu 51. Trong không gian Oxyz , cho 2 điểm B(1; 2; 3) , C (7; 4; 2) . Nếu E là điểm thỏa mãn đẳng


thức CE  2 EB thì tọa độ điểm E là
8
1
 8 8
 8 8


A.  3; ;   .
B.  3; ;  .
C.  3;3;   .
D.  1; 2;  .
3
3
 3 3
 3 3



Câu 52. Trong không gian với hệ trục tọa độ Oxyz , cho ba điểm A(1; 2; 1) , B(2; 1;3) , C (2;3;3) .
Điể m M  a; b; c  là đı̉nh thứ tư củ a hı̀nh bı̀nh hà nh ABCM , khi đó P  a 2  b 2  c 2 có giá trị bằng
A. 43. .

B. 44. .

C. 42. .

D. 45.

Câu 53. Trong không gian với hệ trục tọa độ Oxyz cho ba điểm A(1; 2; 1) , B(2; 1;3) , C (2;3;3) . Tìm
tọa độ điể m D là chân đườ ng phân giá c trong gó cA củ a tam giá c ABC
A. D (0;1;3) .
B. D (0;3;1) .
C. D (0; 3;1) .
D. D (0;3; 1) .
Câu 54. Trong không gian với hệ toạ độ Oxyz , cho các điểm A( 1;3;5) , B( 4;3;2) , C(0; 2;1) . Tìm tọa
độ điể m I tâm đường tròn ngoại tiếp tam giác ABC
8 5 8
5 8 8
 5 8 8
8 8 5
A. I  ; ;  .
B. I  ; ;  .
C. I   ; ;  .
D. I  ; ;  .
 3 3 3
 3 3 3

 3 3 3
3 3 3



Câu 55. Trong không gian Oxyz , cho 3 vectơ a   1;1;0  , b  1;1;0  , c  1;1;1 . Cho hình hộp
     
OABC.O AB C  thỏa mãn điều kiện OA  a , OB  b , OC '  c . Thể tích của hình hộp nói trên bằng:
1
2
A.
B. 4
C.
D. 2
3
3
Câu 56. Trong không gian với hệ trục Oxyz

cho tọa độ 4 điểm

A  2; 1;1 , B 1;0;0  ,

C  3;1;0  , D  0;2;1 . Cho các mệnh đề sau:

(1) Độ dài AB  2 .
(2) Tam giác BCD vuông tại B .
(3) Thể tích của tứ diện ABCD bằng 6 .
Các mệnh đề đúng là:
A. (2).


B. (3).

C. (1); (3).
D. (2), (1)



Câu 57. Trong không gian Oxyz , cho ba vectơ a   1,1, 0  ; b  (1,1, 0); c  1,1,1 . Trong các mệnh đề
sau, mệnh đề nào đúng:
 
   
6
A. cos b, c 
.
B. a  b  c  0.
3

 

  

C. a, b, c đồng phẳng. D. a.b  1.

Chuyên đề 8.1 - Tọa độ trong không gian Oxyz
Cần file Word vui lòng liên hệ:

7|THBTN
Mã số tài liệu: BTN-CD8



CHINH PHỤC KỲ THI THPTQG 2017

PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN

Câu 58. Trong không gian với hệ tọa độ Oxyz , cho tứ diêṇ ABCD , biết A(1;0;1) , B(1;1; 2) ,
C (1;1;0) , D (2; 1; 2) . Đô ̣ dà i đườ ng cao AH củ a tứ diê ̣n ABCD bằng:
A.

2
.
13

B.

1
.
13

C.

13
.
2

D.

3 13
.
13


Câu 59. Cho hình chóp tam giác S . ABC với I là trọng tâm của đáy ABC . Đẳng thức nào sau đây là
đẳng thức đúng
 1   
 1   
A. SI  SA  SB  SC .
B. SI  SA  SB  SC .
2
3
   
    
C. SI  SA  SB  SC.
D. SI  SA  SB  SC  0.









Câu 60. Trong không gian Oxyz , cho tứ diện ABCD có A(1;0;0), B(0;1;0), C (0;0;1), D(2;1; 1) . Thể
tích của tứ diện ABCD bằng
3
1
A.
.
B. 3 .
C. 1 .
D.

.
2
2
  600 , CSA
  900 . Gọi G là trọng
Câu 61. Cho hình chóp S . ABC có SA  SB  a, SC  3a, 
ASB  CSB
tâm tam giác ABC . Khi đó khoảng cách SG bằng
a 15
a 5
a 7
A.
.
B.
.
C.
.
D. a 3 .
3
3
3

Câu 62. Trong không gian tọa độ Oxyz cho ba điểm A  2;5;1 , B  2; 6; 2  , C 1; 2; 1 và điểm
 
M  m; m; m  , để MB  2 AC đạt giá trị nhỏ nhất thì m bằng
A. 2.

B. 3 .

C. 1.


D. 4.

Câu 63. Trong không gian tọa độ Oxyz cho ba điểm A  2;5;1 , B  2; 6; 2  , C 1; 2; 1 và điểm
M  m; m; m  , để MA2  MB 2  MC 2 đạt giá trị lớn nhất thì m bằng
A. 3.
B. 4.
C. 2.

D. 1.

Câu 64. Cho hình chóp S . ABCD biết A  2; 2; 6  , B  3;1;8 , C  1; 0; 7  , D 1; 2;3 . Gọi H là trung
điểm của CD, SH   ABCD  . Để khối chóp S . ABCD có thể tích bằng

27
(đvtt) thì có hai
2

điểm S1 , S2 thỏa mãn yêu cầu bài toán. Tìm tọa độ trung điểm I của S1S2
A. I  0; 1; 3 .

B. I 1; 0;3

C. I  0;1;3 .

D. I  1; 0; 3 .

Câu 65. Trong không gian Oxyz , cho hai điểm A(2; 1;7), B(4;5; 2) . Đường thẳng AB cắt mặt phẳng
(Oyz ) tại điểm M . Điểm M chia đoạn thẳng AB theo tỉ số nào
1

1
2
A.
.
B. 2 .
C. .
D.
.
2
3
3
Câu 66. Trong không gian Oxyz , cho tứ diện ABCD có A(2;1; 1), B(3;0;1), C(2; 1;3) và D thuộc
trục Oy . Biết VABCD  5 và có hai điểm D1  0; y1 ; 0  , D2  0; y2 ; 0  thỏa mãn yêu cầu bài toán.
Khi đó y1  y2 bằng
A. 0.

B. 1 .

C. 2 .

D. 3 .

Câu 67. Trong không gian Oxyz , cho tam giác ABC có A(1; 2;4), B(3;0; 2), C(1;3;7) . Gọi D là chân

đường phân giác trong của góc A . Tính độ dài OD .
A.

207
.
3


B.

203
3

C.

201
.
3

Chuyên đề 8.1 - Tọa độ trong không gian Oxyz
Cần file Word vui lòng liên hệ:

D.

205
.
3

8|THBTN
Mã số tài liệu: BTN-CD8


CHINH PHỤC KỲ THI THPTQG 2017

PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN

Câu 68. Trong không gian với hệ toạ độ Oxyz , cho tam giá c ABC , biế t A(1;1;1) , B(5;1; 2) , C (7;9;1) .

Tı́nh đô ̣ dà i phân giá c trong AD củ a góc A
A.

2 74
.
3

B.

3 74
.
2

C. 2 74.

D. 3 74.

Câu 69. Trong không gian với hệ toạ độ Oxyz , cho 4 điểm A(2;4; 1) , B(1; 4; 1) , C (2; 4;3) D (2; 2; 1) .
Biết M  x; y; z  , để MA2  MB 2  MC 2  MD 2 đạt giá trị nhỏ nhất thì x  y  z bằng
A. 7.

B. 8.

C. 9.

D. 6.

Câu 70. Trong không gian với hệ trục tọa độ Oxyz , cho ba điểm A(2;3;1) , B(1; 2;0) , C (1;1; 2) . H là
trực tâm tam giác ABC , khi đó, độ dài đoạn OH bằng
A.


870
.
12

B.

870
.
14

C.

870
.
16

D.

870
.
15

Câu 71. Trong không gian với hệ tọa độ Oxyz , cho tam giác ABC có A(3;1;0) , B nằm trên mặt phẳng
(Oxy ) và có hoành độ dương, C nằm trên trục Oz và H (2;1;1) là trực tâm của tam giác ABC .
Toạ độ các điểm B , C thỏa mãn yêu cầu bài toán là:
 3  177 17  177  
3  177 
A. B 
;

; 0  , C  0; 0;
.

4
2
 
4

 3  177 17  177  
3  177 
B. B 
;
; 0  , C  0; 0;
.

4
2
 
4

 3  177 17  177  
3  177 
C. B 
;
; 0  , C  0; 0;
.

4
2
 

4

 3  177 17  177  
3  177 
D. B 
;
; 0  , C  0; 0;
.

4
2
 
4

Câu 72. Trong không gian với hệ tọa độ Oxyz , cho hình vuông ABCD , B(3;0;8) , D (5; 4;0) . Biế t
 
đỉnh A thuộc mặt phẳng ( Oxy ) và có to ̣a đô ̣ là nhữ ng số nguyên, khi đó CA  CB bằng:
A. 5 10.

B. 6 10.

C. 10 6.

D. 10 5.

Câu 73. Trong không gian với hệ tọa độ Oxyz , cho tam giá c ABC , biết A(5;3; 1) , B(2;3; 4) ,
C (3;1; 2) . Bá n kı́nh đườ ng trò n nô ̣i tiế p tam giác ABC bằng:

Câu 74.


A. 9  2 6.

B. 9  3 6.

C. 9  3 6.

D. 9  2 6.

Trong không gian với hệ trục tọa độ Oxyz , cho ba điểm M  3; 0; 0  , N  m, n, 0  , P  0;0; p  . Biết
  600 , thể tích tứ diện OMNP bằng 3. Giá trị của biểu thức A  m  2n 2  p 2 bằng
MN  13, MON

A. 29.
C. 28.

B. 27.
D. 30.

Câu 75. Trong không gian với hệ trục tọa độ Oxyz , cho ba điểm A(2;3;1) , B(1; 2;0) , C (1;1; 2) . Gọi
I  a; b; c  là tâm đường tròn ngoại tiếp tam giác ABC . Tính P  15a  30b  75c .

A. 48.
C. 52.

B. 50.
D. 46.

Chuyên đề 8.1 - Tọa độ trong không gian Oxyz
Cần file Word vui lòng liên hệ:


9|THBTN
Mã số tài liệu: BTN-CD8


CHINH PHỤC KỲ THI THPTQG 2017

PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN

C - ĐÁP ÁN VÀ HƯỚNG DẪN GIẢI BÀI TẬP TRẮC NGHIỆM
I – ĐÁP ÁN
1
A

2
B

3
A

4
C

5
A

6
D

7
A


8
C

9
A

10 11 12 13 14 15 16 17 18 19 20
A B D A C C A A D A B

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
B A A B D C A D D A C C B C D A D C A A
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
B D D C A A C A A D A B A C D A A B B D
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
A A B C A B D A A D A B B A B
II –HƯỚNG DẪN GIẢI
Câu 1.

Chọn A.

Câu 2.

Chọn B.

Câu 3.

Chọn A.

Câu 4.


Chọn C.

Câu 5.

Chọn A.

Câu 6.

Chọn D.

Câu 7.

Chọn A.

Câu 8.

Chọn C.

Câu 9.

Chọn A.

Câu 10. Chọn A.
Câu 11. Chọn B.
Câu 12. Chọn D.
Câu 13. Chọn A.
Câu 14. Chọn C.
Câu 15. Chọn C.
Câu 16. Chọn A.

Câu 17. Chọn A.

  
Cách 1:Tính  AB, AC  . AD  0
Cách 2: Lập phương trình (ABC) và thế toạ độ D vào phương trình tìm được.

Câu 18. Chọn D.
Câu 19. Chọn A.
Câu 20. Chọn B.
 x2
 

Gọi Q ( x; y; z ) , MNPQ là hình bình hành thì MN  QP   y  3
z  4  0


Chuyên đề 8.1 - Tọa độ trong không gian Oxyz
Cần file Word vui lòng liên hệ:

10 | T H B T N
Mã số tài liệu: BTN-CD8


CHINH PHỤC KỲ THI THPTQG 2017

PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN

Câu 21. Chọn B.
Điểm Q  x; y; z 



MN  1;2;3 , QP   7  x;7  y;5  z 
 
Vì MNPQ là hình bình hành nên MN  QP  Q  6;5; 2 
Câu 22. Chọn A.


 
AB  (0; 2; 1); AC  ( 1; 3; 2) . Ta thấy AB. AC  0  ABC không vuông.
 
AB  AC  ABC không cân.
Câu 23. Chọn A.
Điểm D  x; y; z 


AB  1; 1;1 , DC   3  x;4  y;  z 
 
Vì ABCD là hình bình hành nên AB  DC  D  4;5; 1
Câu 24. Chọn B.
 2 2 2
 
 
 
Ta có a  b  a  b  2 a b .cos a, b  4  16  8  28  a  b  2 7.

 

Câu 25. Chọn D.
Với M  a; b; c   d  M ,  Oxy    c
Câu 26. Chọn C.

Với M  a; b; c   hình chiếu vuông góc của M lên trục Oy là M 1  0; b; 0 
Câu 27. Chọn A.
Với M  a; b; c   hình chiếu vuông góc của M lên mặt phẳng  Oxy  là M 1  a; b; 0 
Câu 28. Chọn D.
Với M  a; b; c   d  M , Ox   b 2  c 2
Câu 29. Chọn D.
Câu 30. Chọn A.

Vı̀ b.c  2  0.
Câu 31. Chọn C.
Với M  a; b; c   điểm đối xứng của M qua mặt phẳng  Oxy  là M  a; b;  c 
Câu 32. Chọn C.
Với M  a; b; c   điểm đối xứng của M qua trục Oy là M    a; b; c 
 M   3; 2;1  a  b  c  0.

Câu 33. Chọn B.

cos  

1.0  1.1  1.m
3. m 2  1



m  1
1
 2  m  1  3 m2  1  
2
2
2

3  m  1  2  m  1
 m  2 3

Chuyên đề 8.1 - Tọa độ trong không gian Oxyz
Cần file Word vui lòng liên hệ:

11 | T H B T N
Mã số tài liệu: BTN-CD8


CHINH PHỤC KỲ THI THPTQG 2017

PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN

Câu 34. Chọn C.



Tính AB   2;5; 2  , AC   2; 4; 2  , AD   2;5;1
1   
V   AB , AC  .AD  3
6
Sử dụng Casio


w 8 1 1 (nhập vectơ AB )


q 5 2 2 2 (nhập vectơ AC )


q 5 2 3 1 (nhập vectơ AD )
C1a6qc(abs) q53q54q57q55= (tính V )
Câu 35. Chọn D.
Vı̀ VABCD

1 1  
1
 h.  AB. AC  
3 2
6

  
 AB, AC  . AD
  

 AB, AC  . AD nên h    
.


 AB. AC 



Câu 36. Chọn A.



Tính AB  2;5; 2  , AC  2;4;2  , AD  2;5;1
1   
V   AB , AC  .AD  3

6
1
1  
V  B.h , với B  S ABC   AB, AC   7 2 , h  d  D,  ABC  
3
2

h

3V
3.3
9


B 7 2 7 2

Câu 37. Chọn D.
Câu 38. Chọn C.
M  Ox  M  a; 0;0 
2

2

M cách đều hai điểm A, B nên MA2  MB 2  1  a   22  12   2  a   22  12

 2a  3  a 

3
2


Câu 39. Chọn A.
Câu 40. Chọn A.
Câu 41. Chọn B.
Câu 42. Chọn D.

 
u.v  ka  b







 

 a  2b   4k  50   2k  1 a b cos 23  6k  45

Câu 43. Chọn D.
 
  
Ta có: u , v    2; m  2; m  6  , u, v  .w  3m  8
  
  
8
u , v, w đồng phẳng  u , v  .w  0  m  
3
Câu 44. Chọn C.
Chuyên đề 8.1 - Tọa độ trong không gian Oxyz
Cần file Word vui lòng liên hệ:


12 | T H B T N
Mã số tài liệu: BTN-CD8


CHINH PHỤC KỲ THI THPTQG 2017

PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN

Câu 45. Chọn A.


AB  1; 2;1 , AC   x  2; y  5;3
 
x2 y5 3
A, B, C thẳng hàng  AB, AC cùng phương 

  x  5; y  11
1
2
1
Câu 46. Chọn A.



BA  1;0; 1 , CA   1; 1; 1 , CB   2; 1;0 
 
BA.CA  0  tam giác vuông tại A , AB  AC .
Câu 47. Chọn C.



1  
6
AB   1;0;1 , AC  1;1;1 . S ABC   AB. AC  
2
2
Câu 48. Chọn A.
Gọi 3 đỉnh theo thứ tự là A, B, C


 
AB  1; 2;3 , AC   6;6;4  . S hbh   AB, AC  
Câu 49. Chọn A.
  
a, b, c đồng phẳng thì

 10 

2

2

 142   6   2 83


  
 a, b  .c  0  x  2.
 

Câu 50. Chọn D.



  
Dễ thấ y chı̉ có x  (0; 0; 0) thỏ a mã n x.a  x.b  x.c  0.

Câu 51. Chọn A.

x  3

 
8
E ( x; y; z ) , từ CE  2 EB   y  .
3

8

 z   3
Câu 52. Chọn b.
M ( x; y; z) , ABCM là hı̀nh bı̀nh hà nh thı̀
 x  1  2  2
  
AM  BC   y  2  3  1  M (3;6; 1)  P  44. .
z 1  3  3

Câu 53. Chọn A.
Ta có AB  26, AC  26  tam giá c ABC cân ở A nên D là trung điể m BC  D (0;1;3).
Câu 54. Chọn c.
Ta có: AB  BC  CA  3 2  ABC đều. Do đó tâm I của đường tròn ngoại tiếp ABC là
 5 8 8
trọng tâm của nó. Kết luận: I   ; ;  .

 3 3 3
Câu 55. Chọn d.
 
 
 
OA  a ,  A(1;1;0), OB  b  B (1;1;0),OC '  c  C '(1;1;1)
 


AB  OC  C (2;0;0)  CC '  ( 1;1;1)  OO '  VOABC .O ' A ' B ' C ' 
Chuyên đề 8.1 - Tọa độ trong không gian Oxyz
Cần file Word vui lòng liên hệ:

  
OA, OB  OO '


13 | T H B T N
Mã số tài liệu: BTN-CD8


CHINH PHỤC KỲ THI THPTQG 2017

PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN

Câu 56. Chọn A.
Câu 57. Chọn A.

 
b.c

cos(b, c)   
b.c
Câu 58. Chọn B.

  
 AB, AC  . AD
1


Sử du ̣ng công thứ c h 

.
 
13
AB.AC

Câu 59. Chọn B.
  
SI  SA  AI 
   
      
SI  SB  BI   3SI  SA  SB  SB  AI  BI  CI
   
SI  SC  CI 
     1   
Vì I là trọng tâm tam giác ABC  AI  BI  CI  0  SI  SA  SB  SC .
3








Câu 60. Chọn D.
Thể tích tứ diện: VABCD 



1     
AB, AC  . AD
6

Câu 61. Chọn A.
Áp dụng công thức tổng quát: Cho hình chóp S . ABC có SA  a, SB  b, SC  c và có

   , CSA
   . Gọi G là trọng tâm tam giác ABC, khi đó
ASB   , BSC
1 2
a  b 2  c 2  2ab cos   2ac cos   2bc 
3
Chứng minh:
 1   
Ta có: SG  SA  SB  SC
3
   2  2  2  2
     
SA  SB  SC  SA  SB  SC  2SA.SB  2SA.SC  2 SB.SC
SG 




Khi đó SG 






1 2
a  b 2  c 2  2ab cos   2ac cos   2bc 
3

Áp dụng công thức trên ta tính được SG 

a 15
3

Câu 62. Chọn A.


AC  1; 3; 2  , MB  2  m;  6  m;2  m 
 
2
2
MB  2 AC  m2  m 2   m  6   3m 2  12m  36  3  m  2   24
 
Để MB  2 AC nhỏ nhất thì m  2
Câu 63. Chọn B.




MA   2  m;5  m;1  m  , MB   2  m; 6  m; 2  m  , MC  1  m;2  m; 1  m 
2

MA2  MB 2  MC 2  3m 2  24m  20  28  3  m  4   28
Để MA2  MB 2  MC 2 đạt giá trị lớn nhất thì m  4
Chuyên đề 8.1 - Tọa độ trong không gian Oxyz
Cần file Word vui lòng liên hệ:

14 | T H B T N
Mã số tài liệu: BTN-CD8


CHINH PHỤC KỲ THI THPTQG 2017

PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN

Câu 64. Chọn C.


1  
3 3
Ta có AB   1; 1; 2  , AC  1; 2;1  S ABC   AB, AC  
2
2





DC   2; 2; 4  , AB   1; 1;2   DC  2. AB  ABCD là hình thang và

9 3
1
. Vì VS . ABCD  SH .S ABCD  SH  3 3
2
3
Lại có H là trung điểm của CD  H  0;1;5 


 
Gọi S  a; b; c   SH    a;1  b;5  c   SH  k  AB, AC   k  3;3;3   3k ;3k ;3k 
S ABCD  3S ABC 

Suy ra 3 3  9k 2  9k 2  9k 2  k  1

+) Với k  1  SH   3;3;3  S  3; 2;2 

+) Với k  1  SH   3; 3; 3  S  3;4;8 
Suy ra I  0;1;3
Câu 65. Chọn A.
Đường thẳng AB cắt mặt phẳng (Oyz ) tại điểm M  M (0; y; z )


 MA  (2; 1  y; 7  z ), MB  (4;5  y; 2  z )
2  k .4




1
Từ MA  k MB ta có hệ 1  y  k  5  y   k 
2

7  z  k   2  z 

Câu 66. Chọn B.
D  Oy  D(0; y;0)



Ta có: AB  1; 1;2  , AD   2; y  1;1 , AC   0; 2; 4 
 
  
  AB. AC    0; 4; 2    AB. AC  . AD  4 y  2
1
VABCD  5  4 y  2  5  y  7; y  8  D1  0; 7; 0  , D2  0;8;0   y1  y2  1
6
Câu 67. Chọn D.
Gọi D  x; y; z  .

DB AB 2 14


2
DC AC
14

5


3  x  2 1  x 
x  3




Vì D nằm giữa B, C (phân giác trong) nên DB  2 DC   y  2  3  y    y  2

z  4
2  z  2  7  z 



205
5

Suy ra D  ; 2; 4   OD 
3
3

Câu 68. Chọn A.
D ( x; y; z ) là chân đườ ng phân giá c trong gó cA củ a tam giá c ABC .
Ta có


DB AB 1 
17 11
2 74

  DC  2 DB  D( ; ; 1)  AD 

.
DC AC 2
3 3
3

Chuyên đề 8.1 - Tọa độ trong không gian Oxyz
Cần file Word vui lòng liên hệ:

15 | T H B T N
Mã số tài liệu: BTN-CD8


CHINH PHỤC KỲ THI THPTQG 2017

PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN

Câu 69. Chọn A.

 7 14 
Gọi G là trọng tâm của ABCD ta có: G  ; ;0  .
3 3 
Ta có: MA2  MB 2  MC 2  MD 2  4MG 2  GA2  GB 2  GC 2  GD 2
 7 14 
 GA2  GB 2  GC 2  GD 2 . Dấu bằng xảy ra khi M  G  ; ;0   x  y  z  7 .
3 3 
Câu 70. Chọn D.
H ( x; y; z ) là trực tâm của ABC  BH  AC , CH  AB, H  ( ABC )
 
 BH . AC  0
  

2
29
1
870

 2 29 1 
 CH . AB  0
  x  ; y  ; z    H  ; ;    OH 
.
15
15
3
15
15
3
15








  AB, AC  . AH  0
Câu 71. Chọn A.
Giả sử B( x; y;0)  (Oxy ), C (0;0; z )  Oz .
 
 
 AH  BC

 AH .BC  0
 
 
H là trực tâm của tam giác ABC  CH  AB
 CH . AB  0
  
   
AB
,
AC
,
AH
ñoà
n
g
phaú
n
g
 AB, AH  . AC  0

x  z  0
3  177
17  177
3  177

 2x  y  7  0
 x
;y
;z 
4

2
4
3x  3 y  yz  z  0


 3  177 17  177  
3  177 
 B
;
; 0  , C  0; 0;
.

4
2
 
4

Câu 72. Chọn B.
Ta có trung điểm BD là I (1; 2; 4) , BD  12 và điểm A thuộc mặt phẳng (Oxy ) nên A(a; b;0) .
 AB 2  AD 2
2
2
2
2
2

(a  3)  b  8  (a  5)  (b  4)
2
ABCD là hình vuông  
1

  (a  1) 2  (b  2) 2  42  36
2

 AI   BD 
2



17

a

b

4

2
a

a  1

5
hoặc 


2
2
b  2
(a  1)  (6  2a )  20
b  14


5

 17 14 
; 0  (loa ̣i).
 A(1; 2; 0) hoặc A  ;
 5 5

Với A(1; 2;0)  C (3; 6;8) .
Câu 73. Chọn B.
Ta có AC 2  BC 2  9  9  AB 2
 tam giá c ABC vuông ta ̣i C .
1
CA.CB
S ABC
3.3 2
2
Suy ra: r 


 93 6
1
p
3
2

3

3
 AB  BC  CA

2
Chuyên đề 8.1 - Tọa độ trong không gian Oxyz
Cần file Word vui lòng liên hệ:

16 | T H B T N
Mã số tài liệu: BTN-CD8


CHINH PHỤC KỲ THI THPTQG 2017

PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN

Câu 74. Chọn A.


 
OM   3;0;0  , ON   m; n;0   OM .ON  3m
 
   
OM .ON
1
m
1
0
OM .ON  OM . ON cos 60     

OM . ON 2
m2  n2 2
MN 


 m  3

2

 n 2  13 suy ra m  2; n  2 3

  
1
OM , ON  .OP  6 3 p  V  6 3 p  3  p   3


6
Vậy A  2  2.12  3  29.

Câu 75. Chọn B.
I ( x; y; z ) là tâm đường tròn ngoại tiếp tam giá c ABC  AI  BI  CI , I  ( ABC )
 AI 2  BI 2

14
61
1

 14 61 1 
  x  ; y  ; z    I  ; ;    P  50.
 CI 2  BI 2
15
30
3

 15 30 3 

   


AB
,
AC
AI

0




Chuyên đề 8.1 - Tọa độ trong không gian Oxyz
Cần file Word vui lòng liên hệ:

17 | T H B T N
Mã số tài liệu: BTN-CD8



×