Tải bản đầy đủ (.doc) (21 trang)

SKKN Một số kinh nghiệm nâng cao hiệu quả dạy kiểu bài “ Rút gọn biểu thức đại số” đối với học sinh lớp 8, 9 tại trường THCS Tô Hiệu

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (261.36 KB, 21 trang )

PHỊNG GD & ĐT KRƠNG ANA
TRƯỜNG THCS TƠ HIỆU

TÊN SÁNG KIẾN:

Một số kinh nghiệm nâng cao hiệu quả
dạy kiểu bài “ Rút gọn biểu thức đại số”
đối với học sinh lớp 8, 9 tại trường
THCS Tô Hiệu
Thuộc bộ môn hoặc lĩnh vực: Tốn

Họ và tên: Nguyễn Thị Phước Trà
Trình độ chuyên môn cao nhất: Đại học Sư phạm
Chuyên ngành đào tạo: Sư phạm Tốn

Krơng Ana, tháng 03 năm 2017


MỤC LỤC
Trang


I. PHẦN MỞ ĐẦU
1. Lý do chọn đề tài
Như chúng ta đã biết Tốn học là mơn khoa học có từ lâu đời nó nghiên cứu
về nhiều thể loại, đa dạng phong phú, nó có lí luận thực tiễn lớn lao và quan trọng.
Ở bậc THCS thì mơn Tốn là một trong những mơn học chiếm vị trí rất quan trọng
và then chốt như đồng chí Phạm Văn Đồng đã nói “ Tốn học là mơn thể thao của
trí tuệ nó giúp chúng ta rèn luyện tính thơng minh và sáng tạo”. Do đó, trang bị cho
học sinh nhiều kiến thức Tốn học khơng chỉ gồm các kiến khái niệm, định nghĩa,
quy tắc tổng quan … Mà còn phải trang bị cho học sinh những kỹ năng và phương


pháp giải bài tập vận dụng Toán học vào thực tế cuộc sống.
Trong Tốn học thì đại số là một mơn đặc biệt. Nếu đi sâu vào nghiên cứu về
môn đại số hẳn mỗi chúng ta sẽ chứng kiến “ Cái không gian 3 chiều” lí thú của nó.
Ở bậc THCS thì học sinh được tiếp cận phần đại số ở lớp 8, lớp 9, trong đó rút gọn
biểu thức đại số là một trong những nội dung quan trọn. Bắt đầu từ lớp 7, học sinh
được làm quen với loại Toán rút gọn biểu thức, loại này tiếp tục được dạy kỹ hơn ở
lớp 8, 9. Dạng toán rút gọn biểu thức đại số thường bắt gặp hầu hết ở các đề thi học
kỳ, học sinh giỏi, thi toán Tiếng Việt, Toán Tiếng Anh qua mạng Interrnet, thi tuyển
sinh vào các trường THPT, trường chuyên …Việc rút gọn biểu thức đại số không
đơn giản chỉ là biến đổi thông thường mà nó địi hỏi những hiểu biết logic và cách
giải sáng tạo của nó; nó có ý nghĩa trong việc rèn luyện khả năng phân tích và biểu
thị tốn học những mối liên hệ của các đại lượng trong thực tiễn. Trong phân mơn
đại - chương trình mơn tốn các lớp 7, 8,9 THCS số tiết học các bài toán rút gọn
biểu thức đại số đã chiếm vị trí quan trọng, làm nền tảng để phát triển khả năng toán
học.
Trong quá trình dạy và học giáo viên và học sinh đều gặp phải khó khăn khi
dạy và học kiểu bài này. Lâu nay chúng ta đang tìm kiếm một phương pháp dạy học
sinh giải các bài toán rút gọn làm sao đạt hiệu quả. Bởi vì khi học sinh học tốt kiểu
bài này sẽ giúp ích rất nhiều cho các dạng tốn tiếp theo như : Giải phương trình,
bất phương trình, tìm giá trị lớn nhất, nhỏ nhất của biểu thức, tìm giá trị của biểu x
để biểu thức nhận giá trị nguyên …Các tài liệu, các sách tham khảo, sách hướng
dẫn cho giáo viên cũng chữa có sách nào đề cập đến phương pháp dạy kiểu bài này.
Có chăng chỉ là gợi ý chung và sơ lược.
Vậy cách trình bày một bài toán rút gọn biểu thức như thế nào, phương pháp
giải bài toán đã cho ra sao. Để định hướng cho mỗi học sinh phát huy được khả
năng của mình khám phá những kiến thức, nâng cao chất lượng giáo dục. Vì vậy
mỗi giáo viên trực tiếp giảng dạy mơn Tốn cần có giải pháp tích cực để nâng cao
chất lượng giảng dạy phần rút gọn biểu thức đại số.
Mặc dù, vấn đề nêu trên đã được rất nhiều thế hệ giáo viên nghiên cứu giảng
dạy, bản thân tôi là một giáo viên toán cấp THCS, cũng đã từng trăn trở nhiều về

vấn đề trên. Từ thực tế đó, tôi xin đề xuất “Một số kinh nghiệm nâng cao hiệu
quả dạy kiểu bài “ Rút gọn biểu thức đại số” đối với học sinh lớp 8, 9 tại
trường THCS Tô Hiệu” mà Tôi đã từng áp dụng thành công đặc biệt là đối với học
sinh trung bình,y ếu ở trường THCS Tô Hiệu.

1


2. Mục tiêu và nhiệm vụ của đề tài
a. Mục tiêu
Trong chương trình mơn tốn của THCS đặc biệt là phân mơn đại số thì rút
gọn biểu thức là một trong những nội dung quan trọng thế nhưng việc dạy của giáo
viên và việc học của học sinh đối với nội dung này đang gặp khá nhiều khó khăn,
kém hiệu quả đặc biệt là đối với học sinh vùng khó khăn như THCS Tơ Hiệu. Vì
vậy mục tiêu của đề tài là dựa trên cơ sở lý luận nội dung về rút gọn biểu thức và
yêu cầu của chuẩn kiến thức kỹ năng, kinh nghiệm nhiều năm của bản thân đã dạy
và học Tốn từ đó đưa ra phương pháp hiệu quả nhất nhằm nâng cao khả năng rút
gọn của học sinh ở trường THCS đặc biệt là trường THSC Tô Hiệu.
b. Nhiệm vụ
- Xác định cơ sở lý luận, cơ sở thực tiễn của việc dạy và học đối với nội dung
rút gọn biểu thức đại số ở bậc THCS.
- Phân tích thực trạng của việc giảng dạy kỹ năng rút gọn biểu thức đại số và
việc thực hiện kỹ năng rút gọn biểu thức đại số ở học sinh.
- Thơng qua phân tích nêu ra một số giải pháp, biện pháp, cách thức thực
hiện việc giảng dạy cho học sinh về nội dung rút gọn biểu thức đại số.
- Thực hiện áp dụng đề tài vào thực tế giảng dạy và đánh giá kết quả thu
được.
3. Đối tượng nghiên cứu
Các phương pháp rút gọn biểu thức đại số ở trường THCS để áp dụng hiệu
quả vào giảng dạy cho học sinh ở trường THCS Tô Hiệu.

4. Giới hạn và phạm vi nghiên cứu
Đề tài này tiến hành nghiên cứu áp dụng cho học sinh khối 8, 9 năm học
2015 - 2016 và học kỳ I năm học 2016 - 2017. Đồng thời áp dụng cho học sinh giỏi
Văn hóa, học sinh thi Casiơ, Tốn Violympic của trường THCS Tơ Hiệu.
5. Phương pháp nghiên cứu
- Nhóm phương pháp nghiên cứu lý luận
+ Nghiên cứu mục tiêu dạy học môn Toán, mục tiêu dạy học các bài về rút
gọn biểu thức đại số.
+ Chuẩn kiến thức kỹ năng mơn Tốn THCS, sách giáo khoa, tài liệu tạp
chí...
- Nhóm phương pháp nghiên cứu thực tiễn
+ Quan sát, đàm thoại, trao đổi, khảo sát.
+ Tổng kết kinh nghiệm ra đề kiểm tra của giáo viên có kinh nghiệm.
- Nhóm phương pháp hỗ trợ: Thống kê toán học, biểu bảng, sơ đồ.

2


II. PHẦN NÔI DUNG
1. Cơ sở lý luận
1.1 Khái niệm về biểu thức đại số
- Khái niệm biểu thức đại số ở lớp 7 : Trong Toán học, Vật lý … ta thường
gặp những biểu thức mà trong đã ngồi các dãy số, các ký hiệu phép toán cộng, trừ,
nhân, chia, nâng lên lũy thừa, cịn có các chữ ( đại diện cho các số). Người ta gọi
những biểu thức như vậy là biểu thức đại số.
156 xy − x 2
- Ví dụ : Các biểu thức : 4x ; 2(5-a) ; x + 2 xy − 3 ;
;
là những
t

y−x
2

biểu thức đại số.
1.2 Kiến thức có liên quan đến dạng tốn rút gọn biểu thức đại số trong
chương trình mơn toán THCS
* Ở lớp 7: Đơn thức -> Đơn thức động dạng ( cộng trừ các đơn thức đồng
dạng)
-> Đa thức ( cộng, trừ đa thức; đa thức 1 biến và cộng, trừ đa thức 1 biến).
* Ở lớp 8: Có hẳn 1 chương về phân thức đại số, bao gồm : Phân thức đại số
-> tính chất cơ bản của phân thức -> Rút gọn phân thức -> Quy đồng mẫu thức
nhiều phân thức -> Phép công, trừ các phân thức đại số -> Phép nhân, chia các phân
thức đại số -> biến đổi các biểu thức hữu tỉ ( tìm giá trị của phân thức).
* Ở lớp 9: Các dạng tốn rút gọn có trong chương đầu tiên của chương trình
học thậm chí có hẳn một bài “ Rút gọn biểu thức chứa căn bậc hai”.
2. Thực trạng
2.1 Thuận lợi
- Trường THCS Tô Hiệu được sự quan tâm của các cấp lãnh đạo, đồng thời
được sự chỉ đạo sát sao của Phịng giáo dục huyện Krơng Ana về việc dạy và học
đặc biệt là về chất lượng hai mặt. Hơn hết là luôn được sự quan tâm chỉ đạo kịp thời
của Ban giám hiệu nhà trường về nâng cao chất lượng giảng dạy để nâng cao chất
lượng học sinh cả về công tác mũi nhọn và chất lượng đại trà.
- Trong chương trình đại số của THCS thì rút gọn biểu thức đại số không đưa
ra một phương pháp giảng dạy cụ thể mà viết theo hướng mở. Từ đó giáo viên có
thể tự sáng tạo ra phương pháp giảng dạy cho mình để phù hợp với đối tượng học
sinh đáp ứng chuẩn kiến thức kỹ năng.
- Thời đại công nghệ thông tin phát triển nguồn tại liệu tham khảo cho việc
học tập và giảng dạy phong phú.
2.2 Khó khăn
- Trường THCS Tơ Hiệu nằm trên địa bàn tương đối khó khăn, tỉ lệ hộ nghèo

cao, học sinh dân tộc thiểu số chiếm số đơng 64%. Trình độ học sinh chưa đồng
đều, bản thân học sinh và gia đình học sinh chưa quan tâm đến việc học. Khả năng

3


đạt ngơn ngữ của học sinh thiểu số cịn hạn chế gây ra rất nhiều khó khăn cho việc
đọc, nghe, hiểu của các em.
- Cũng vì nội dung phần rút gọn biểu thức đại số trong chương trình đại số ở
THCS còn viết theo hướng mở mỗi giáo viên phải tự biên soạn một phương pháp
giảng dạy cho học sinh nên một số phương pháp có thể chưa phù hợp đối với đối
tượng học sinh ảnh hưởng đến kỹ năng rút gọn biểu thức đại số của học sinh.
- Công nghệ thông tin phát triển tạo ra nhiều thú vui cho học sinh tham gia
chơi như game, Facebook, Zalo … lôi kéo các em dẫn đến các em sao nhãng, lơ là
dẫn đến bỏ học …
2.3 Các nguyên nhân của thực trạng
- Đối với giáo viên và học sinh trong thực tiễn ở địa phương là học sinh vùng
khó khăn, trình độ nhận thức chậm, chưa nỗ lực trong học tập. Nên khi gặp bài tập
có dạng tổng qt địi hỏi các em phải có cái nhìn tổng qt để áp dụng những kiến
thức công thức đã học vào giải thì các em thường lúng túng chưa tìm được hướng
giải thích hợp, khơng biết sử dụng phương pháp nào trước, phương pháp nào sau,
phương pháp nào phù hợp nhất, hướng nào tốt nhất.
- Giáo viên chưa thật sự đổi mới phương pháp giảng dạy phụ hớp với yêu
cầu đổi mới giảng dạy hiện nay hoặc đổi mới chưa triệt để.
- Rút gọn biểu thức là một trong những vấn đề cơ bản của phân mơn đại số.
Học sinh phải tìm hiểu kỹ các dạng biểu thức khi đưa ra nó ở dạng nào như : tính
giá trị của biểu thức hay chứng minh biểu thức, rút gọn biểu thức … Học sinh lúng
túng khi rút gọn bởi vì các em chưa sử dụng phương pháp phân tích đa thức thành
nhân tử, sử dụng các phép tốn và tính chất của các phép toán một cách thành thạo
hay nhầm lẫn

3. Nội dung và hình thức của giải pháp
3.1 Mục tiêu của giải pháp
- Hệ thống kiến thức cơ bản hỗ trợ cho việc rút gọn như : Hằng đẳng thức
đáng nhớ, các phương pháp phân tích đa thức thành nhân tử, các công thức về căn
bậc hai….về biểu thức cho học sinh, bổ sung một số kiến thức nâng cao về biểu
thức.
- Đưa ra phương pháp rèn luyện hiệu quả cho học sinh như: tư duy nhận biết,
giải thích, chứng minh, lập luận. Rèn luyện kĩ năng trả lời câu hỏi, khả năng trình
bày bài giải cho học sinh.
- Giúp học sinh thấy được việc rút gọn biểu thức là một bước trung gian
khơng thể thiếu trong khi làm tốn, là tiền đề cho việc chứng minh đẳng thức và bất
đẳng thức, giải phương trình, bất phương trình sau này.
3.2 Nội dung và cách thực hiện giải pháp
3.2.1 Các biện pháp tiến hành để giải quyết vấn đề
- Trong quá trình giảng ôn tập “ Rút gọn biểu thức” tôi đưa ra một số giải
pháp sau thực hiện như sau :
- Những lưu ý trong giảng dạy lý thuyết

4


- Xây dựng phương pháp giải các dạng tốn có vận dụng rút gọn biểu thức.
- Sữa chữa các sai lầm thường gặp của học sinh trong giải toán nhất là dấu.
- Củng cố và hoàn thiện dần các kỹ năng rút gọn biểu thức …
- Tìm tịi cách giải hay, khai thác bài toán dành cho học sinh khá giỏi. Đề tài
hưỡng dẫn học sinh THCS giải loại toán rút gọn biểu thức đại số. Tôi đề cập ba vấn
đề qua ba dạng toán như sau :
+ Dạng 1 : Rèn luyện nhuần nhuyễn những bài toán cơ bản ở SGK, SBT để
tìm hướng giải quyết đối với học sinh trung bình, yếu.
+ Dạng 2 : Rèn luyện cho học sinh những dạng tốn tổng hợp để phát huy

tính tích cực, sáng tạo của học sinh.
+ Dạng 3 : Trên cơ sở đã cần tận dụng thời gian để rèn luyện kỹ năng giải
các bài tập nâng cao ở THCS đối với học sinh khá giỏi. Đặc biệt là bài tập phù hợp
với các kì thi học sinh giỏi, Casio, Toán tiếng Anh, Toán tiếng Việt qua mạng…
3.2.2 Lý thuyết áp dụng
a. Khái niệm biểu thức đại số
Quy tắc tính giá trị của một biểu thức đại số, đơn thức, đa thức.
b. Các kiến thức để biến đổi biểu thức đại số
* 7 hằng đẳng thức đáng nhớ:

1. (A + B)2 = A2 + 2AB + B2
2. (A - B)2 = A2 - 2AB + B2
3. A2 – B2 = (A + B)(A – B)
4. (A + B)3 = A3 + 3A2B + 3AB2 + B3
5. (A - B)3 = A3 - 3A2B + 3AB2 - B3
6. A3 + B3 = (A + B)( A2 - AB + B2 )
7. A3 - B3 = (A - B)( A2 + AB + B2 )
* Cộng, trừ ,nhân, chia đa thức; quy tắc đổi dấu.
* Các phương pháp phân tích đa thức thành nhân tử:
- Phân tích đa thức thành nhân tử bằng phương pháp đặt nhân tử chung.
- Phân tích đa thức thành nhân tử bằng phương pháp nhóm hạng tử.
- Phân tích đa thức thành nhân tử bằng phương pháp dùng hằng đẳng thức.
- Phân tích đa thức thành nhân tử bằng phương pháp tách hoặc thêm bớt
hạng tử.
- Phân tích đa thức thành nhân tử bằng phương pháp phối hợp nhiều phương
pháp.
* Rút gọn phân thức.
* Quy đồng mẫu thức nhiều phân thức.
* Cộng trừ các phân thức đại số.


5


* Nhân chia các phân thức đại số
- Biến đổi các phân thức hữu tỉ.
* Hiểu được thế nào là căn bậc hai
- Các phép tính rút gọn biểu thức có chưa căn bậc hai:
1) Định nghĩa, tính chất căn bậc hai
a) Với số dương a, số a được gọi là căn bậc hai số học của a.
 x ≥ 0

b) Với a ≥ 0 ta có x = a ⇔ 

 x 2 =

( a)

2

= a

c) Với hai số a và b khơng âm, ta có: a < b ⇔ a < b
d)

A neu A ≥ 0
A2 = A = 
−A neu A < 0

2) Các công thức biến đổi căn thức
1. A 2 = A

2.

AB = A . B (A ≥ 0, B ≥ 0)

3.

A
=
B

4.

A2B = A

A
(A ≥ 0, B > 0)
B
B (B ≥ 0)

5. A B = A 2 B (A ≥ 0, B ≥ 0)
A B = − A 2 B (A < 0, B ≥ 0)

6.

A 1
=
AB (AB ≥ 0, B ≠ 0)
B B

7.


C A mB
C
=
A − B2
A±B

8.

A
A B
=
(B > 0)
B
B

9.

C
C
=
A± B

(

(

)

(A ≥ 0, A ≠ B2)


Am B
A−B

) (A, B ≥ 0, A ≠ B)

- Căn bậc ba.
3.2.3 Các bước thực hiện
a) Hình thành phương pháp giải
Để rút gọn biểu thức A ta thực hiện như sau :
- Nhận xét mẫu; phân tích mẫu thành nhân tử ( nếu có).

6


- Tìm điều kiện của biểu để biểu thức có nghĩa ( mà ta gọi tắt là tìm điều
kiện xác định cho những biểu thức chứa chữ).
- Quy động mẫu số chung ( nếu có).
- Thực hiện các phép tính cộng, trừ, nhân, chia, lũy thừa, khai căn.
- Cộng trừ các số đồng dạng.
- Với điều kiện xác định đã tìm được trả lời kết quả rút gọn biểu thức.
b) Rèn luyện kỹ năng rút gọn biểu thúc đại số
Dạng 1 : Rèn luyện nhuần nhuyễn những bài toán cơ bản ở SGK, SBT để
tìm hướng giải quyết đối với học sinh trung bình ,yếu.
Các bài tập minh họa được đưa ra từ dễ đến khó phụ hợp với sinh trung
bình, yếu
Bài 1. Tính giá trị các biểu thức

2
2

2
a) x ( 2 x − 3) − x ( 5 x + 1) + x

4 x + 20 + x + 5 −

c)

b) 18 − 2 50 + 3 8

1
9 x + 45
3

d)

x + 2 x +1 − x

* Hướng suy nghĩ:
- Đây là bài rút gọn biểu thức đại số đơn giản của cả lớp 8 và lớp 9. Đầu bài
cho biểu thức đại số là một đa thức. Do đã học sinh chỉ áp dụng những kỹ năng
nhân đa thức,hằng đẳng thức rồi thực hiện phép tính, trong quá trình thực hiện để ý
đến dấu và luỹ thừa
Giải tóm tắt.

a) x ( 2 x − 3) − x ( 5 x + 1) + x = 2 x3 − 3x − 5 x3 − x 2 + x 2 = −3x3 − 3 x
b) a/ 18 − 2 50 + 3 8 = 3 2 − 10 2 + 12 2 = 2
2

2


2

c) 4 x + 20 + x + 5 − 1 9 x + 45 = 4 ( x + 5 ) + x + 5 − 1 9 ( x + 5 )
3

3

2 x+5
= 2 x+5+ x+5− x+5=

d)

x + 2 x +1 − x =

(

)

2

x +1 − x =

x +1− x = 1

Bài 2 : Rút gọn các phân thức

a)

( x − y (2 x − 3)
y 2 − xy


;

c) a − 2 ab + b

b) 6 − 2 2 ;
3− 2

b− a

d) a a − 1

a + a +1

* Hướng suy nghĩ:
- Để giải bài toán này học sinh cần phải nắm được các bước rút gọn phân
thức;
- Sử dụng các hằng đẳng thức đáng nhớ cho phù hợp;
- Vận dụng quy tắc đổi dấu.

7


Giải tóm tắt:
a)

( x − y (2 x − 3) ( x − y )(2 x − 3) ( x − y )(2 x − 3) 2 x − 3 3 − 2 x
=
=
=

=
y ( y − x)
− y( x − y)
−y
y
y 2 − xy

(

)

b) 6 − 2 2 = 2 3 − 2 = 2
3− 2
3− 2

c) a − 2 ab + b = ( a − b )
b− a

((

a− b

) =(
2

d) a a − 1 =
a + a +1

2


=

b− a

b− a

)

2

Với a ≥ 0, b ≥ 0, a ≠ b

a− b

)
(

a3 − 1 =
a + a +1

)(

)

a −1 a + a + 1 =
a + a +1

Bài 3 : Rút gọn biểu thức

3.1 Cho biểu thức:

1

1

x −3

Q = x + x +3 + x x +3
(
)
a) Với giá trị nào của x thì biểu thức Q xác định
b) Rút gọn biểu thức Q
3.2 Cho biểu thức:

P=

2
1
+
+
a −1
a +3

(

a −5

)(

a −1


a +3

)

c) Với giá trị nào của x thì biểu thức Q xác định
d) Rút gọn biểu thức Q

8

a −1

Với a ≥ 0,




1
1  x
+
÷:
x −2 x−4
 x +2

3.3 Rút gọn biểu thức:

M= 

* Hướng suy nghĩ:
- Học sinh nhận thấy biểu thức Q, P là phép cộng 3 phân thức, muốn rút
gọn cần phải quy đồng mẫu thức các phân thức;

- Học sinh chú ý điều kiện xác định của phân thức và biết cách tìm điều
kiện xác định;
- Xem về thứ tự thực hiện các phép toán trong biểu thức;
- Phải quy đồng mẫu và làm phép toán trong ngoặc trước, ngồi ngoặc sau.

Giải tóm tắt:
3.1
a) ĐKXĐ : x ≠ 0, x ≠ −3
1

x −3

1

b) Q = x + x + 3 + x ( x + 3) =

x +3+ x + x −3
3x
3
=
=
x ( x + 3)
x ( x + 3)
x+3

3.2
a) ĐKXĐ : a ≥ 0, a ≠ 1
b) Q

2

1
+
+
a −1
a +3

=

(

a −5

)(

a −1

a +3

)

=

2

(

)

a + 3 + a −1+ a − 5


(

)(

a −1

a +3

)

=

2 a +6+ a +a−6

(

=

(

)(

a −1

a +3

)

3 a +a


)(

a −1

a

=
a + 3)
a −1

ĐKXĐ : x ≥ 0, x ≠ 4

3.3

M = 

1
1  x =
+
÷:
x −2 x−4
 x +2

=

(

x −2+ x +2
x −2


)(

x +2

)

×

x−4
2 x x−4 = 2 x
=
×
x
x−4
x
x

2
x

Dạng 2 : Rèn luyện cho học sinh những dạng tốn tổng hợp để phát huy tính
tích cực, sáng tạo của học sinh.

9


Bài 2.1:
Rút gọn biểu thức:
3 x
x −1

+
(ĐKXĐ : x ≥ 0, x ≠ 1 )
x x −1 x + x + 1

A=

Hướng suy nghĩ:
- Học sinh nhớ được quy tắc cộng 2 phân thức không cùng mẫu.
- Nắm được ba bước quy đồng.
- Vận dụng hằng đẳng thức thứ 7 phân tích tử mẫu thành nhân tử.
Giải tóm tắt
3 x
x −1
+
x x −1 x + x + 1

A=
=

3 x

(

)(

)

+

x −1 x + x + 1


x −1
x + x +1

( x − 1)
=
( x − 1) ( x + x + 1)
3 x+

=
=

(
(

2

3 x + x − 2 x +1

)(

)

x −1 x + x + 1
x + x +1

)(

)


x −1 x + x + 1

1
x −1

=

Bài 2.2:
Rút gọn biểu thức:
B=

x −2 x−5 x +6
:
(ĐKXĐ : x ≥ 0, x ≠ 4, x ≠ 9 )
x +1 x − 2 x − 3

Hướng suy nghĩ:
- Muốn rút gọn được phải phân tích đa thức thành nhân tử. Học sinh phải dùng
phương pháp tách hạng tử để phân tích tử và mẫu thành nhân tử để rút gọn.
Giải tóm tắt
B =

x −2 x−5 x +6
:
x +1 x − 2 x − 3

=

x −2 x−2 x −3 x +6
:

x +1 x − 3 x + x − 3

=

x −2 x x − 2 −3 x −2
:
x +1
x x −3 + x −3

=

x −2
:
x +1

=

(

(
(

(
(

)(
x + 1) (

x −2


) (
(
) (
x − 2 ) ( x − 3)
x − 3) ( x + 1)
x + 1) ( x − 3)
x − 2 ) ( x − 3)

)

)

= 1

Học sinh hay mắc phải: Không nhận ra cách tách hạng tử để phân tích thành nhân
tử.

10


Bài 2.3: Rút gọn biểu thức
C = ( - ) : ( + x - 2) (ĐKXĐ : x ≠ 0, x ≠ −1 )
Hướng suy nghĩ:
- Xem về thứ tự thực hiện các phép toán trong biểu thức;
- Phải quy đồng mẫu và làm phép toán trong ngoặc trước, rồi thực hiện theo thứ tự
các phép tính
Giải tóm tắt:
C = ( - ) : ( + x - 2)
=[ -]:
= .

= =
- Học sinh chiếm phần đa biết rút biểu thức dạng này.
- Một số ít học sinh thường nhân đơn thức với đa thức cịn sai dấu, khơng
nhớ hằng đẳng thức.
Dạng 3 : Trên cơ sở đã cần tận dụng thời gian để rèn luyện kỹ năng giải
các bài tập nâng cao ở THCS đối với học sinh khá giỏi. Đặc biệt là bài tập phù
hợp với các kì thi học sinh giỏi, casio, tốn tiếng anh, tốn tiếng việt qua mạng…
Bài 2.1 Rút gọn biểu thức
 x2 −1
1 

− 2
M =  4
2
 x − x + 1 x + 1

 4 1− x4
 x +
1+ x2






Hướng suy nghĩ:
- Học sinh nắm chắc các bước rút gọn của biểu thức;
- Thực hiện phép tính trong ngoặc trước, trong q trình thực hiện biết phân tích tử
thành nhân tử bằng phương pháp dùng hằng đẳng thức.
Cách giải:

( x 2 − 1)( x 2 + 1) − x 4 + x 2 − 1 4
( x +1-x2)
M=
4
2
2
( x − x + 1)( x + 1)

=

x 4 −1 − x 4 + x 2 −1 x 2 − 2
= 2
x 2 +1
x +1

Bài 2.2 Cho biểu thức: P =

4

( 1− a )

2

 1− a a

: 
+ a÷
÷
 1− a



1) Rút gọn P .
2) Tìm các số nguyên a để P là số nguyên.
Hướng suy nghĩ:
- Học sinh nắm chắc các bước rút gọn của biểu thức;
- Thực hiện phép tính trong ngoặc trước, chú ý cách rút gọn nhanh nhất phụ hợp với
đề bài.
Giải tóm tắt:
Điều kiện: a ≥ 0, a ≠ 1

11


1) P =
=

4

(1− a )

4

( 1− a )

2

:

Hay: P =


2

1− a a

4
: 
+ a÷
=
÷
 1− a
 1− a

(

(1 − a)(1 + a )
4
=
1− a
1− a

(

)

2

)

2


(

: 1+ a

1− a a + a − a 
: 
÷
÷=
1

a



)

2

=

4

( 1− a ) (1+ a )
2

2

=

4


( 1− a )

2

4
.
(1 − a) 2

4
. Vì a ∈ Z nên 1 − a ∈ Z ⇒ (1 − a) 2 ∈ Z và (1 − a)2 > 0
(1 − a) 2
a = 2
(1 − a) 2 = 1
1 − a = ±1
a = 0


2
2

4
M
(1

a)

(1

a)

=
2

1

a
=
±
2(ktm)

P

Z
. Để
, thì


 a = −1
(1 − a) 2 = 4
1 − a = ±2



a = 3

2) Theo 1) ta có: P =

a = 0

So sánh với điều kiện ta có, để P ngun thì a = 2 .

a = 3
 a−3 a +2
a −3
8 a   2 a − a +1 

+
÷
÷: 1 − 3 a + 1 ÷
÷
 3a − 7 2 + 2 3a − 8 a − 3 9a − 1  


Bài 2.3. Cho biểu thức P = 

3

Tìm giá trị nguyên lớn nhất của a để P > 1 − 3 5
Hướng suy nghĩ:
- Học sinh cần kết hợp nhiều kiến thức như : rút gọn biểu thức, bất đẳng thức, giá trị
tuyệt đối và giá trị nguyên
- Thực hiện tìm điều kiện xác định rồi rút gọn trong từng ngoắc trước, giải bất đẳng
thức, rồi tìm a .
Giải tóm tắt:
1
Điều kiện: a ≥ 3, a ≠ , a ≠ 4, a ≠ 9
9

) ( a − 1) −
a −3
8 a ÷ a+ a

+
:
a − 2 ) ( 3 a − 1) ( a + 1) ( a − 3 ) 9a − 1 ÷ 3 a + 1

 ( a − 1)

1
8 a

÷: a + a

+
P=
 ( 3 a − 1) ( 3 a + 1) ( 3 a − 1) ( 3 a + 1) ÷ 3 a + 1



P= 
3


(
(

a −2



3a − 2 a − 1 − 3 a + 1 + 8 a ÷ 3 a + 1


.
P=

÷ a+ a
3 a −1 3 a +1



(

)(

)

12


P=

(

3a + 3 a

3 a +1
3
=
3 a −1 3 a +1 a + a
3 a −1

)(


3

)

.

3

3

⇔ a< 5
Để P > 1 − 3 5 thì
>
3 a −1 1 − 3 5
3

Vậy để giá trị nguyên lớn nhất của a để P > 1 − 3 5 là a = 3 ( Vì 4 khơng TMĐK
MỢT SỚ BÀI TẬP VỀ RÚT GỌN BIỂU THỨC
6
2
Bài 1:Chứng minh rằng 2 + 3 =
.
+
2
2
Bài 2: Rút gọn các biểu thức sau :
a)

11 − 2 10


b)

9 − 2 14

c)

3 + 11 + 6 2 − 5 + 2 6
2 + 6 + 2 5 − 7 + 2 10

Bài 3: Tính : ( 2 + 3 + 5)( 2 + 3 − 5)( 2 − 3 + 5)( − 2 + 3 + 5)
Bài 4: Rút gọn biểu thức :

A=

x − 4(x − 1) + x + 4(x − 1) 
1 
.1 −
÷.
2
 x −1
x − 4(x − 1)

Bài 5: Chứng minh các đẳng thức sau :
a b+b a
1
a)
:
= a − b (a, b > 0 ; a ≠ b)
ab

a− b
 14 − 7
15 − 5 
1
b) 
+
= −2
÷:
1

2
1

3
7

5


 a + a  a − a 
c) 1 +
÷1 −
÷= 1 − a
a
+
1
a

1





13


4. Mối quan hệ giữa các giải pháp – biện pháp
- Để học sinh làm quen với rút gọn biểu thức thì đầu tiên giáo viên cần cho
học sinh nắm kĩ bản chất của vấn đề, các em phải hệ thống được các nguyên tắc
biến đổi đại số đã học, để làm nổi bậc trọng tâm của bài dạy, cần có phương pháp
linh hoạt để gây hứng thú học tập của học sinh đồng thời kiểm tra được nắm công
thức và vận dụng các công thức này theo hai chiều qua các bài tập nhỏ, các trị chơi
mang tính đồng đội.
- Trong quá trình giảng dạy giáo viên cần quan tâm rèn kỹ năng, thuật toán
cho học sinh đặc biệt là học sinh yếu, kém. Giáo viên chưa chỉ ra những tình huống
mà các em dễ nhầm lẫn rồi sửa chữa qua đó góp phần củng cố kỹ năng cho học
sinh.
- Qua các dạng bài tập giáo viên cho học sinh làm phải nổi bậc các quy tắc
biến đổi đại số được sử dụng trong bài tập.
- Giáo viên nên định hướng, xây dựng cho học sinh một phương pháp học
tập nhệ nhàng, hiệu quả mà lại nâng cao kỹ năng làm bài cho học sinh. Giáo viên
nên ứng dụng công nghệ thông tin, phương tiện dạy học hiện đại … trong công tác
giảng dạy.
- Một số học sinh không nắm được các quy tắc biến đổi đại số nên trước hết
cần ôn và hệ thống các kiến thức cần sử dụng khi rút gọn biểu thức đại số. Ngoài ra,
một số học sinh chưa vận dụng linh hoạt các quy tắc biến đổi đại số mà chỉ vận
dụng máy móc nên giáo viên cần đưa ra các gợi ý mang tính tìm tịi gợi mở.
- Một số học sinh khả năng làm việc tập thể chưa cao nên giáo viên đưa ra
cac hình thức học tập : Hoạt động nhóm, thảo luận nhóm, trị chơi giữa các tổ, các
nhóm.

- Tâm lý học sinh rất thích được khen và được ghi điểm nên sau mỗi câu trả
lời đúng hoặc mỗi bài tập giáo viên nên động viên các em bằng các lời khen và ghi
điểm cho các em.
5. Kết quả thu được qua khảo nghiệm, giá trị khoa học của vấn đề nghiên cứu.
Trước khi tổ chức chuyên đề : Đa số học sinh chưa rút gọn được các biểu
thức đơn giản, kỹ năng làm bài còn yếu thường nhầm lẫn về dấu khi nhân đa thức
với đa thức, khi thực hiện bỏ ngoặc, khi chuyển vế … cá biệt vẫn còn học sinh còn
nhầm lẫn khi thu gọn đơn thức đồng dạng.
Sau khi thực hiện chuyên đề : Hầu hết học sinh đã rút gọn được các biểu thức
đơn giản, học sinh đã có kỹ năng làm bài tương đối tốt, khơng cịn nhầm lẫn về dấu,
tính tốn…đã nắng được phương pháp giải các dạng bài tập và nhớ được những sai
lầm thường mắc phải khi giải các bài tập.

14


Kết quả khảo nghiệm, giái trị khoa học của vấn đề nghiên cứu.
Sau khi áp dụng giải pháp (Học kì I năm học 2015 -2016) kết quả điểm kiểm
tra học kì I mơn Tốn của học sinh lớp 8A1, 8A3 trường THCS Tô Hiệu như sau:
TT Khối
lớp
1
8 A1,3

Số
HS
67

Giỏi
SL

12

%
17,9

Khá
SL
25

%
37,3

TB
SL %
28
41,7

Yếu
SL
2

%
3,0

Kết quả điểm kiểm tra mơn Tốn của học sinh lớp 9A1, 9A5 học kì I năm
học 2016 – 2017, trường THCS Tơ Hiệu.
TT Khối lớp
1

Tốn

9A1,5

Số
HS
70

Giỏi
SL
10

%
14,2

Khá
SL
20

%
28,5

TB
SL
35

%
50

Yếu
SL
5


%
7,14

Qua số liệu ta thấy đối với học sinh hai lớp 8A1, 8A2 kết quả học kì I năm
học 2015 – 2016 tỉ lệ học sinh khá giỏi khá cao 55.2% , tỉ lệ học sinh yếu chỉ còn
3% còn đối với học sinh hai lớp 9A1, 9A5 kết quả học kì I năm học 2016 – 2017 tỉ
lệ học sinh khá giỏi khá cao 42.7% , tỉ lệ học sinh yếu chỉ còn 7.14%. Tuy nhiên
vẫn còn một số học sinh thực sự yếu kém, kỹ năng làm bài chưa chắc chắn, việc vận
dụng các quy tắc biến đổi đại số chưa linh hoạt. Vấn đề này tơi sẽ tiếp tục có kế
hoạch kèm cặp thêm trong quá trình dạy tiếp theo để nâng cao kỹ năng giải toán cho
các em, Áp dụng một số kinh nghiệm khi giảng dạy “ Rút gọn biểu thức” đã góp
phần nâng cao chất lượng mơn tốn 8 và 9.
Bên cạnh đó tơi áp dụng sáng kiến vào q trình ôn học sinh giỏi thu được
kết quả như sau:
-

Năm học 2015 – 2016:


Thi Tốn Tiếng Việt qua mạng Internet :
+ Cấp trường: 6 em
+ Cấp huyện : 4 em
+ Cấp tỉnh : 1 em ( Nguyễn Thị Thu Huyền ) đạt giải khuyến khích.

-

Năm 2016 – 2017
• Thi Tốn trên mấy tính cầm tay :
+ Cấp trường : 5 em

+ Cấp huyện : 1 em
• Thi Tốn Tiếng Việt qua mạng Internet :
+ Cấp trường : 9 em
+ Cấp huyện : 3em
+ Được dự thi cấp tỉnh : 3 em
• Thi Toán Tiếng Anh qua mạng Internet

15


+ Cấp trường : 4 em
+ Cấp huyện : 1 em
+ Được dự thi cấp tỉnh : 1 em

III. PHẦN KẾT LUẬN, KIẾN NGHỊ
1. Kết luận
- Từ thực tế giảng dạy tôi nhận thấy để học sinh thành thạo “ Rút gọn biểu
thức”, vận dụng linh hoạt trong giải toán giáo viên làm nỗi bật được việc vận dụng
theo hai chiều :
+ Biến đổi từ tích thành tổng ( để phá ngoặc ) trong các bài toán rút gọn,
chứng minh đẳng thức, tìm x làm cơ sở cho các phép tính biến đổi phương trình sau
này.
+ Biển đổi từ tổng thành tích là một phương pháp để tính nhẩm, tính nhanh,
là một phương pháp quan trọng để phân tích đa thức thành nhân tử sau này; làm cơ
sở cho các bài toán rút gọn phân thức, quy động mẫu các phân thức và giải phương
trình tích ở các chương sau.
+ Việc dạy học “ Rút gọn biểu thức” trong trường THCS nếu làm tốt các
bước trên sẽ giúp học sinh định hướng được kiến thức cần sử dụng, nâng cao được
kỹ năng làm bài cẩn thận, chính xác.
+ Các bài tập giá trị nhỏ nhất, giá trị lớn nhất của biểu thức, hay tìm giá trị

nguyên của biểu thức… thì chỉ đặt ra với đối tượng học sinh khá giỏi nên chỉ gợi ý
các em về làm và giáo viên kiểm tra vở bài tập.
2. Kiến nghị
Đa số học sinh tại trường THCS Tô Hiệu nằm trên địa bàn xã Ea Bơng huyện
Krơng Ana tỉnh Đắklắk có hồn cảnh đặc biệt khó khăn nhưng các em rất ngoan và
hiếu học. Kính mong quý cấp lãnh đạo quan tâm hơn nữa đến địa bàn xã Ea Bông
huyện Krông Ana tỉnh Đắklắk để phát triển kinh tế, văn hóa cho địa phương, đây là
tiền đề để địa phương có nhiều người có năng lực và phẩm chất đạo đức phục vụ
cho địa phương và đất nước.
Trên đây là một số sang kiến của tơi trong q trình giảng dạy “ Rút gọn biểu
thức” Tôi mạnh dạn nêu ra rất mong được sự góp ý của các đồng nghiệp để cơng
việc dạy và học ngày càng đạt hiệu quả hơn.

Ea Bông, ngày 20 tháng 03 năm 2017
Người viết sáng kiến

16


Nguyễn Thị Phước Trà

TÀI LIỆU THAM KHẢO
1.
2.
3.
4.

Sách giáo khoa, sách giáo viên mới của khối THCS của Bộ GD –ĐT.
Chuẩn kiến thức kỹ năng mơn Tốn THCS.
Bồi dưỡng tốn 9 của PGS.TSKH Đỗ Đức Thái và ThS Đỗ Thị Hồng Thúy

Nâng cao và phát triển Toán 8, 9 của Vũ Hữu Bình.

17


18


NHẬN XÉT CỦA HỘI ĐỒNG SÁNG KIẾN
………………………………………………………………………………………
………………………………………………………………………………………
………………………………………………………………………………………
………………………………………………………………………………………
………………………………………………………………………………………
………………………………………………………………………………………
………………………………………………………………………………………
………………………………………………………………………………………
…………………………………………………………………………………….
CHỦ TỊCH HỘI ĐỒNG SÁNG KIẾN
( Ký tên, đóng dấu)

19



×