GIÁO ÁN SỐ: 0
Thời gian thực hiện: 2 tiết
Số giờ đã giảng:
Lớp:............................………….
Thực hiện ngày:............………..
GIÁO ÁN SỐ: 0
Thời gian thực hiện: 2 tiết
Số giờ đã giảng:
Lớp:............................………….
Thực hiện ngày:............………..
CHƯƠNG II. TÍCH VƠ HƯỚNG CỦA HAI VECTƠ VÀ ỨNG DỤNG
GIÁ TRỊ LƯỢNG GIÁC CỦA MỘT GĨC BẤT KÌ TỪ 0
0
ĐẾN 180
0
Mục tiêu bài học:
- Giúp học sinh biết được khái niệm và tính chất của các giá trị lượng giác của các góc từ 0
0
đến 180
0
, mối quan hệ giữa chúng.
- Giúp học sinh nhớ và vận dụng được bảng các giá trị lượng giác của các góc đặc biệt trong
việc giải tốn.
- Tính được góc giữa hai vectơ
- Rèn luyện cho học sinh tính cẩn thận và thái độ tốt trong học tập
I. ỔN ĐỊNH LỚP: Thời gian: 2 phút
Số học sinh vắng……………………………..Tên:…...................................................................................
……………………………………….……………………………………………………............……………
Số học sinh vắng……………………………..Tên:…...................................................................................
……………………………………….……………………………………………………............……………
II. KIỂM TRA BÀI CŨ: Thời gian: 0 phút
(Khơng kiểm tra)
III. GIẢNG BÀI MỚI: Thời gian: 85 phút
- Phương tiện: SGK, bảng, phấn trắng, tài liệu giảng dạy.
- Phương pháp: Gợi mở, vấn đáp giải quyết vấn đề.
Hoạt động của giáo viên Hoạt động của học sinh
Ví dụ: Tam giác ABC vng tại A có góc nhọn
α
=∠
ABC
Hãy nhắc lại định nghĩa các tỉ số
lượng giác của góc nhọn
α
đã học ở lớp 9
Trong nửa đường tròn đơn vò thì các tỉ số
lượng giác đó được tính như thế nào ?
Bài giải :
BC
AC
sin
=α
;
BC
AB
cos
=α
α
α
==α
cos
sin
AB
AC
tan
;
α
α
==α
sin
cos
AC
AB
cot
I. Định nghĩa:
Cho nửa đường tròn đơn vò như hình vẽ .
Lấy điểm M(
0 0
;x y
) saocho:
xOM
∧
=
α
(
0 0
0 180
α
≤ ≤
)
Khi đó các GTLG của
α
là:
sin
α
=
0
y
; cos
α
=
0
x
tan
α
=
0
0
y
x
(đk
0
0x ≠
) cot
α
=
0
0
x
y
(đk
0
0y ≠
)
Các số sin
α
, cos
α
, tan
α
, cot
α
được gọi
A
C
B
)α
O
y
x
M y
0
x
0
1
1
-1
O
y
x
My
0
-x
0
x
0
N
Ví dụ: cho
α
=
0
45
⇒
M(
2 2
;
2 2
) .Khi đó:
sin
α
=
2
2
; cos
α
=
2
2
tan
α
=1 ; cot
α
=1ù.
- Có nhận xét gì về dấu của
sin
α
, cos
α
, tan
α
, cot
α
?
Ví dụ: sin 120
0
= ?
tan 135
0
= ?
Ví d ụ: Tìm các giá trị lượng giác của các góc
120
0
và 150
0
Khi nào góc giữa hai vectơ bằng 0
0
? 180
0
?
là các giá trị lượng giác của góc
α
.
* Chú ý:
- sin
α
luôn dương
- cos
α
, tan
α
, cot
α
dương khi
α
là góc
nhọn ; âm khi
α
là góc tù
- tan
α
xác định khi
0
90
≠
α
; cot
α
xác định khi
0
0
≠
α
à và
0
180
≠
α
II. Tính chất
sin(
0
180
α
−
)=sin
α
cos (
0
180
α
−
)= - cos
α
tan(
0
180
α
−
)= - tan
α
cot(
0
180
α
−
)=- cot
α
Bài giải
sin 120
0
= sin(180
0
-60
0
) = sin 60
0
tan 135
0
= tan (180
0
-45
0
) = -tan 45
0
III. Giá trị lượng giác của các góc đặc biệt:
(sgk t37)
( )
( )
2
2
45cos45180cos135cos
2
3
60sin60180sin120sin
0000
0000
−=−=−−=
==−=
IV. Góc giữa hai vectơ
4.1. Định nghĩa (sgk t38)
Cho 2 vectơ
a
r
và
b
r
(khác
0
r
).Từ điểm O bất
kì vẽ
OA a=
uuur r
,
OB b=
uuur r
.
Góc
AOB
∧
với số đo từ 0
0
đến 180
0
gọi là
góc giữa hai vectơ a
r
và b
r
ký hiệu (
a
r
,
b
r
) hay (
,b a
r r
)
4.2. Chú ý
- Nếu ( a
r
, b
r
)=90
0
thì ta nói a
r
và b
r
vuông góc
nhau . ký hiệu: a b⊥
r r
hay b a⊥
r r
- Nếu ( a
r
, b
r
)=0
0
thì a b⇑
r r
- Nếu ( a
r
, b
r
)=180
0
thì a b↑↓
r r
4.3. Ví dụ:
O
y
x
My
0
-x
0
x
0
N
O
A
B
a
a
b
b
Cho tam giác ABC vuông tại A và có góc
0
50B
=∠
. Khi đó
( , )BA BC
uuur uuur
= ?
( , )AB BC
uuur uuur
=?
(
,AC BC
uuur uuur
)=?
( , )CA CB
uuur uuuur
=?
( ) ( )
( ) ( )
( ) ( )
00
00
00
90,,140,
40,,40,
130,,50,
==
==
==
BAACCBAC
BCACCBCA
BCABBCBA
V. Sử dụng máy tính bỏ túi để tính giá trị
lượng giác của một góc
(sgk t40).
5.1. Tính giá trị của một góc lượng giác
5.2. Xác định độ lớn của góc khi biết giá trị
lượng giác của góc đó
IV. TỔNG KẾT BÀI: Thời gian: 2 phút
Nội dung Phương pháp thực hiện Thời gian
1. Định nghĩa
2. Tính chất
3. Giá trị lượng giác của các góc đặc biệt:
4. Góc giữa hai vectơ
5. Sử dụng máy tính bỏ túi để tính giá trị
lượng giác của một góc
Hệ thống hoá
V. CÂU HỎI BÀI TẬP: Thời gian: 1 phút
Nội dung Hình thức thực hiện Thời gian
- Bài tập 1, 2, 3, 4 ,5 ,6 (sgkT40) Về nhà
VI. TỰ RÚT KINH NGHIỆM (Chuẩn bị tổ chức thực hiện).
…………………………………………………………………………………………………………
…………………………………………………………………………………………………………
…………………………………………………………………………………………………………
…………………………………………………………………………………………………………
…………………………………………………………………………………………………………
…………………………………………………………………………………………………………
TRƯỞNG BAN/TRƯỞNG TỔ MÔN
(Ký duyệt)
Ngày…….tháng…….năm 2008
Chữ ký giáo viên
Nguyễn Xuân Tú
A
B
C
50
0
(