Tải bản đầy đủ (.doc) (9 trang)

Cac loai bai tap ky I lop 9

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (153.84 KB, 9 trang )

Phân loại bài tập chơng I- Đại số 9
I.Đặt vấn đề
âng cao chất lợng giáo dục trong trờng học là nhiệm vụ và mục và mục tiêu số một của
mỗi giáo viên .Đặc biệt là chất lợng giáo dục học sinh khối 9 ,đây là lớp cuối cấp quyết
định kết quả thi tuyển sinh, đánh dấu bớc chuyển tiếp quan trọng trên con đờng học tập
của học sinh .Việc nâng cao chất lợng cần đợc thc hiện ngay từng giờ lên lớp chú trọng đổi mới
phơng pháp dạy học tích cực kiểm tra theo dỏi sát sao việc học tập của học tập của học sinh .Từ đó
uốn nắn giải đáp vớng mắc cho các em và điều chỉnh phơng pháp giảng dạy sao cho phù hợp
nhất .Đồng thời giáo viên thờng xuyên ôn tập, hê thống kiến thức ,phân loại bài tập hình thành ph-
ơng pháp và kỹ năng giải toán cho học trò .
N
Trong chơng I đại số 9 học sinh đợc làm quen với tập số mới, tập số thực R cùng các bài tập với
biểu thức hữu tỷ .Việc vận dụng kiến thức cũ tiếp cận kiến thức mới giải quyết bài toán cần biến
đổi tổng hợp liên quan nhiều kiến thức , kỹ năng nhất định làm cho học sinh rất lúng túng .
Vì thế ngay từ những bài đầu tiên trong chơng trình giáo viên phải có định hớng chia nhỏ yêu cầu
bài tập và phân dạng bài tập.Mỗi dạng học sinh đợc học theo chuyên đề nhằm khắc sâu kiến thức
phơng pháp và kĩ năng làm bài , các bài tập mỗi dạng đa ra từ dễ đến khó , từ đơn giản đến phức
tạp phù hợp với trình độ nhận thức của học sinh giúp các em hiểu bài tạo hứng thú tích cực trong
học tập.
Là giáo viên dạy trực tiếp khối 9 tôi thấy việc học sinh làm các bài tập trong chơng I gặp rất nhiều
khó khăn đặc biệt là trong kì thi tốt nghiệp và kì thi chuyển cấp .
Vì vậy tôi muốn đa ra hệ thống bài tập của chơng I để giúp chúng ta có hệ thống bài tập khắc sâu
kiến thức cho học sinh đồng thời cho các em làm thành thạo các dạng bài tập chủ yếu của chơng
này.
II.Nội dung
Các phép biến đổi đồng nhất
Phần I: Phân tích đa thức thành phân tử .
I. Ph ơng pháp
+ Đặt phân tử chung + Nhóm nhiều hạng tử(2)
+ Dùng hằng đẳng thức + Tách + thêm bớt (3)
Phơng pháp 2, 3 để hỗ trợ cho 2 phơng pháp đầu


( Nhóm và tách mục đích để làm xuất hiện nhân tử chung và hằng đẳng thức)
Chú ý : Đặt điều kiện trớc khi phân tích đa thức .
II. Bài tập
Bài tập 1: Phân tích đa thức thành phân tử
a.
xxyxy 363
2
++
b.
222
2 bcaba
+
c.
3223
babbaa
+
d.
22
2 cbcbacab
++++
e.
( )
abxbaabx ++
222
h.
66
yx


f.

884
23
+
xxx
g.
xbabxa

3
f.
863
23
+ xxx
Bài tập 2 ; Phân tích đa thức sau thành nhân tử .
1
Phân loại bài tập chơng I- Đại số 9
a.
4

b
c.
9

a
e.
3
2

a

b.

1

a
d.
7

a
f.
14
2

x

g.
8
3

x
h.
22
3

a
k.
1
3
+
x
.
Bài tập 3: Phân tích đa thức sau thành nhân tử:

a.
42
22
+
xyyx
b.
17321
+++
c.
32
+
xx

d.
2
11 aa
+
e.
32
yxyyx
+
h.
32
+
xx

f.
1
+
aa

g.
2233
abbaba
+
i.
3322
+
aaaa
Bài tập 4: Phân tích các đa thức sau thành nhân tử.
a
1
+
xxxx
b.
632
+++
baab
c.
( )
xx 41
2
+
d.
1
+
baab
f.
2
12 axx


e.
babaa 22
+++
h.
yxyyxx
++
i.
2

xx

Bài 5: Phân tích các đa thức sau thành nhân tử:
a.
23
+
xx
b.
yyxx 23
2
+
c.
12
+
xx
d.
xxx

2
3
g.

156
++
xx
h.
267

xx
f.
34
++
xx
i.
baba 62
+
Bài 6:Phân tích các đa thức sau thành nhân tử:
a.
65
+
xx
b.
baba 62

c.
123

aa
d
144

aa

g.
42
2
+
xx
h.
1
2
+
xxx
f.
baba 352
+
i.
234
44 xxx
+
l.
123
2

xx
Bài 7:Phân tích các đa thức sau thành nhân tử:
a.
xbabxa
+
3
b.
144
23

+
xxx
c.
( )
abbaa
+
5

k.
13
24
+
xx
n.
54
2
+
xx
l.
123
2

xx


d.
bybxayax
+
ã
h.

12
2

yy
g.
xyyx
+
22
2
PhầnII: So sánh
I.Ph ơng pháp:
+So sánh giá trị
+áp dụng tính chất lũy thừa bậc hai, cănbậc hai
+xét hiệu A-B
+So sánh nghịch đảo
+áp dụng bất đẳng thức cơ bản (Côsi, Bunhia , giá trị tuyệt đối)
+Dùng phép biến đổi tơng đơng
II Bài tập áp dụng .
Bài tập 1: So sánh
a.5và 2
6
b.2
5

19
c.3
2

8
d.

bybxayax
+
e.
bxbaaxa
+
2
f.
8
1
3
+
x

g.
xyyx
+
22
2
h.
12
2

yy
m.
12
22

yxxy
n.
52


23
k.
35

92
l.
45
và3,5
5
f.
3
3
1

48
5
1
đ.3
3
và 2
7
q.5
7
và 7
5
Bài tập 2:So sánh.
2
Phân loại bài tập chơng I- Đại số 9
a.4

7
và 3
13
b.3
12
và 2
16
c.
82
4
1

7
1
6
d.3
12
và 2
16
e.
2
17
2
1

19
3
1
h.
2233



2
Bài tập 3:So sánh các số sau :
57
++

49

112
++

53
+
+
2
17
2
1

19
3
1
+
521


620

+

82
4
1

7
1
6
+
206
+

51
+
Bài tập 4:So sánh các số sau :
a.
27


1
b.
2930


2829

c.
58
+

67

+
d.
1627
++

48
e.
7525
+

5035
+
g.
35


2
1
Bài tập 5:Sắp xếp theo thứ tự tăng dần ;
;25

52
;
32
;
23
Bài tập 6 : So sánh
a.
1
=

mx

32
+=
my
b.
mmx =
2

1
=
y
c.
ax 2
=

1
+=
ay
d.
mx
=
2003

20042003
+=
my
Bài tập 7: Tồn tại hay không một tam giác có các cạnh là:
45;15;17
+

Phần III : Thực hiện phép tính rút gọn phân thức đại số.
Dạng 1:Thực hiện phép tính trên R
áp dụng qui tắc thực hiện phép tính trong căn bậc 2.
Bài tập 1: Thực hiện phép tính sau:
a.
( )
32:1921084812

b.
( )
7282632751122
+
c.
( )( )
31192753483272
+
d.
545150247

e.
32080350202
+
g.
72985032
+
Bài 2: Thực hiện phép tính sau:
a.
272
3
2

2
2
9
3
1
575
++
b.
3
1
15752
3
1
548
++
c.
( )
150
2
3
27212
+
d.


















+
75
8
1
3
1
35.018
e.
( )
5123215
2
++
Bài 3:Thực hiện phép tính:
a.
)23)(26(
+
b.
( )
43213
2

++
c.
( )( )
321321
+++
d.
( ) ( )
23323
2
+
e.
( )( )
23212321
+++
g.
( ) ( )
22
32131
+
Bài 4: Thực hiện phép tính sau:
3
Phân loại bài tập chơng I- Đại số 9
a.
347
1
347
1

+
+

b.
( )
2
12
1
1
25
1
25
1
+








+
+


c.









+











2
2
13
:
2
13
1
d.
5
1
52
1
525
25
+
+


+

e.
( )( )









+
+
+
23
2
23
3
:2323
f.
( )
23
12
22
3
323
+

+
+
+
+
Bài tập 5: Thực hiện các phép tính sau đây:
a.
2
1
62
3
62
3
12
32
62
123









+
+
+

+

+
+
b.
6
36
12
26
4
16
15


+

+
+
c.
53
1
.
33
15
23
3
13
2
+










+

+

d.
( )
2
13
26
4
25
3









+
+


e.
10099
1
....
32
1
21
1
+
++
+
+
+

Bài 6: Cho biểu thức:
1
1
1
1
1
1
:
1
1
1
1
+
+







+








+
+

=
xxxxx
D
a.Rút gọn D. b.Tính giá trị của D khi
0
2
=
xx
c.Tìm giá trị của x khi
2
3
=
D
Bài 7:Cho








+


+






+



+
=
2
2
11
1
:
1
1

1
1
2
x
x
x
xx
x
x
x
E
a.Rút gọn E. b.Tính E khi
09
2
=
x
c.Tìm giá trị của x để E=-3. d.Tìm x để E<0
e.Tính x khi
03
=
xE
Bài 8:Thực hiện phép tính:
a.
510
4
:
12
12
12
12








+



+
=
x
x
x
x
x
A
b.






+







+


+
=
2
1
:
1
21
2
x
xx
x
xx
B
c.







+
++




=
222
3
1
1
12
1
1
1
1
xxxx
xx
x
C
Bài 9: Cho
4
100
10
25
10
25
2
2
22
+








+

+

+
=
x
x
xx
x
xx
x
M
a.Tìm x để M có nghĩa. b.Rút gọn M
c.Tính M khi x=2004
Bài 10: Cho
3
2
322
12
:
1
112
1
xx
xx

xxx
x
xx
N
+
+










+
=
a.Tìm TXĐ của N. b.Rút gọn N.
c.Tính giá trị của N khi x =2; x=-1. d.Tìm x để N= -1.
e.Chứng minh rằng :N < 0 với mọi x thuộc TXĐ. f.Tìm x để N > -1.
Bài 11: Cho










+

+









=
112
1
2
a
aa
a
aa
a
a
A
a.Rút gọn A. b.Tìm a để A= 4 ; A> -6. c.Tính A khi
03
2
=
a
Bài 12: Cho biểu thức:


















+
+



+
=
a
aa
a
a
a
a

A
1
4
1
1
1
1
a.Rút gọn A. bTính A khi
62
6
+
=
a
c.Tìm a để
AA
>
.
4
Phân loại bài tập chơng I- Đại số 9
Bài 13: Cho biểu thức:
2
1
:
1
1
11
2











+
++
+

+
=
x
xxx
x
xx
x
B
a.Rút gọn biểu thức B. b.Chứng minh rằng: B > 0 với mọi x> 0 và x

1
Bài 14: Cho biểu thức:
2
12
12
2
1
2
2

+








++
+



=
xx
xx
x
x
x
C
Bài 15: Cho biểu thức:










+












=
1
2
1
1
:
1
1
a
aaaa
a
K
a.Rút gọn biểu thức K. b.Tính giá trị của K khi
223
+=
a

c.Tìm giá trị của a sao cho K < 0
Bài 16: Cho biểu thức:
1
2
1
2
+
+

+
+
=
a
aa
aa
aa
D
a.Rút gọn D. b.Tìm a để D = 2. c.Cho a > 1 hãy so sánh D và
D
d.Tìm D min.
Bài 17: Cho biểu thức:
aaaa
a
H

+
+

+
+

=
2
1
6
5
3
2
a.Rút gọn H. b.Tìm a để D < 2.
c.Tính H khi
03
2
=+
aa
d.Tìm a để H = 5.
Bài 18: Cho biểu thức:









+

++
+
+


+
=
1
1
1
1
1
2
:1
x
x
xx
x
xx
x
N
a.Rút gọn N. b.So sánh N với 3.
Bài 19: Cho biểu thức:

x
xx
xxxx
M





+
=

11
1
1
1
3
a.Rút gọn M. b.Tìm x để M >0. c.Tính M khi
729
53

=
x
Bài 20 : Cho biểu thức:








+










+
+
=
1
1
3
:1
1
3
2
a
a
a
V
a.Rút gọn V. b.Tìm a để
VV
=
. c.Tính M khi
32
3
+
=
a
Bài 21:Cho biểu thức:
22
1
22
1



+
=
aa
X
a.Tìm TXĐ. b.Rút gọn X.
c.Tính x khi
( )( )
036
=
aa
d.Tìm a để x > 0.
Bài 22. Cho:









+
+









++


+
=
a
a
a
aa
a
a
a
A
1
1
1
1
12
3
3
a.Rút gọn A. b.Xét dấu
aA

1.
Bài 23: Cho biểu thức
x
x
xx
B

27
:
2
3
2
4
+








+


=
a.Rút gọn B b.Tìm x để A< 0 ,
c Tính A khi
052
2
=+
xx
Bài tập 24: Cho A=
ba
abb
a
+


+

ab
ba
aab
b
bab
a
B
+


+
+
=
a.Rút gọn A và B. bTìm (a,b) để
0
>
B
A
5

Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×