Tải bản đầy đủ (.pdf) (1 trang)

Thay thuong hocmai vn câu 47 đề tham khảo BGD 2017

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (313.73 KB, 1 trang )

Thầy Lưu Huy Thưởng - hocmai
/>Câu 47 (Đề tham khảo Bộ Giáo Dục – 2017) Trong không gian với hệ trục tọa độ Oxyz,
cho mặt phẳng  P  : x  2y  2z  3  0 và mặt cầu  S  : x 2  y 2  z 2  2x  4y 2z 5 0.
Giả sử điểm M   P  và N   S  sao cho vec-tơ MN cùng phương phương với vec-tơ

u   1; 0;1 và khoảng cách giữa M và N lớn nhất. Tính MN.
A. MN  3.

B. MN  1  2 2.

D. MN  14.

C. MN  3 2.

Hướng dẫn
Gọi H là hình chiếu vuông góc của N trên  P  .

N

Mặt phẳng  P  có vec-tơ pháp tuyến: n  1; 2; 2 
I

Góc giữa MN và  P  :

sin  

n.u
n.u




1 2
2.3



1
2

u

   450

 MHN vuông cân tại H  MN  2HN

450

M

 MN lớn nhất  HN lớn nhất.

 NH đi qua tâm I  1; 2;1 của mặt cầu  S  .
 NH  IH  R  d  I;(P)   R  2  1  3
Khi đó: MN  2NH  3 2.
Chọn đáp án C.

1

Hocmai.vn | Tham gia khóa học PEN C – I – M tại hocmai.vn để đạt kết quả cao nhất

H




×