ĐẠI HỌC QUỐC GIA HÀ NỘI
TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN
Trịnh Thị Thanh Huệ
SÓNG RAYLEIGH TRONG CÁC BÁN KHÔNG GIAN
ĐÀN HỒI KHÔNG TỰ DO ĐỐI VỚI ỨNG SUẤT
Chuyên ngành: Cơ học Vật thể rắn
Mã số: 62 44 21 01
DỰ THẢO TÓM TẮT LUẬN ÁN TIẾN SĨ CƠ HỌC
Hà Nội - 2016
Công trình được hoàn thành tại:
Trường Đại học Khoa học Tự nhiên, Đại học Quốc gia Hà Nội
Người hướng dẫn khoa học: GS. TS. Phạm Chí Vĩnh
Phản biện: ......................................................
......................................................
Phản biện: ......................................................
......................................................
Phản biện: ......................................................
......................................................
Luận án sẽ được bảo vệ trước Hội đồng cấp Đại học Quốc gia
chấm luận án tiến sĩ họp tại ...................................................
vào hồi
giờ
ngày
tháng
năm 20......
Có thể tìm hiểu luận án tại:
- Thư viện Quốc gia Việt Nam
- Trung tâm Thông tin - Thư viện, Đại học Quốc gia Việt Nam
Mở đầu
Các bài toán truyền sóng trong các môi trường đàn hồi (xem, chẳng hạn Achenbach (1973), Ben-Menahem and Singh (2000), Brekhovskikh and Goncharov (1994),
Ewing, Jardetzky and Press (1957)), nổi bật là sóng mặt Rayleigh, là cơ sở lý thuyết
cho nhiều ứng dụng khác nhau trong khoa học công nghệ.
Sóng mặt Rayleigh truyền trong môi trường đàn hồi đẳng hướng nén được, mà
Rayleigh tìm ra hơn một trăm năm trước (năm 1885), và vẫn đang được nghiên cứu
một cách mạnh mẽ vì những ứng dụng to lớn của nó trong nhiều lĩnh vực khác nhau
của khoa học và công nghệ như địa chấn học, âm học, địa vậy lý, công nghệ truyền
thông và khoa học vật liệu. Có thể nói rằng những nghiên cứu của Rayleigh về sóng
mặt truyền trong bán không gian đàn hồi có ảnh hưởng sâu rộng đến cuộc sống hiện
đại. Nó được sử dụng để nghiên cứu động đất, thiết kế mobile phone và nhiều thiết
bị điện tử cực nhỏ, ... như Adams và các cộng sự (2007) đã nhấn mạnh. Đã có một
số lượng nghiên cứu rất lớn về sóng mặt Rayleigh. Google.Scholar, một trong những
công cụ tìm kiếm mạnh nhất về khoa học, cho chúng ta hơn một triệu đường links
cho yêu cầu tìm kiếm "Rayleigh waves". Kết quả tìm kiếm thu được thật đáng kinh
ngạc! Nó chỉ ra rằng, sóng mặt Rayleigh có vị trí cao trong khoa học, đã và đang
được sự quan tâm rất lớn của các nhà khoa học trong và ngoài nước.
Tuy nhiên, trong hầu hết các nghiên cứu trước đây về sóng Rayleigh, bán không
gian đàn hồi được giả thiết là tự do đối với ứng suất. Có rất ít nghiên cứu dành cho
bán không gian đàn hồi không tự do đối với ứng suất. Chính vì lý do này mà luận
án đi nghiên cứu các bài toán truyền sóng Rayleigh trong các bán không gian đàn
hồi không tự do đối với ứng suất.
Đối tượng và phạm vi nghiên cứu của luận án
• Đối tượng nghiên cứu: Sóng Rayleigh trong các bán không gian đàn hồi
không tự do đối với ứng suất như bán không gian chịu điều kiện biên trở kháng,
bán không gian phủ lớp mỏng.
• Phạm vi nghiên cứu: Tìm ra các phương trình tán sắc chính xác và xấp xỉ
của sóng Rayleigh dưới dạng tường minh.
1
Mục tiêu của luận án
• Mục tiêu thứ nhất của luận án là phát triển phương pháp vectơ phân cực cho
trường hợp khi ma trận Stroh là ma trận phức (được gọi là "phương pháp
vectơ phân cực phức").
• Mục tiêu thứ hai của luận án là tìm ra các phương trình tán sắc dạng hiện
(dạng tường minh) của sóng Rayleigh truyền trong các bán không gian đàn
hồi không tự do đối với ứng suất.
Phương pháp nghiên cứu
• Các phương trình tán sắc dạng hiện (dạng tường minh) thu được trong luận
án được tìm ra bằng phương pháp truyền thống và phương pháp vectơ phân
cực phức.
• Đưa bài toán truyền sóng trong bán không gian đàn hồi phủ lớp mỏng đàn hồi
về bài toán truyền sóng trong bán không gian không tự do đối với ứng suất
bằng phương pháp điều kiện biên hiệu dụng.
Các kết quả mới của luận án
• Phát triển phương pháp vectơ phân cực khi ma trận Stroh là ma trận phức.
• Tìm được phương trình tán sắc chính xác dạng tường minh của sóng Rayleigh
trong bán không gian đàn hồi dị hướng (trực hướng và monoclinic với mặt
phẳng đối xứng x3 = 0) nén được và không nén được chịu điều kiện biên trở
kháng.
• Xây dựng được phương trình tán sắc chính xác dạng hiện của sóng Rayleigh
trong bán không gian đàn hồi có ứng suất trước (chịu kéo nén thuần túy và
đồng thời chịu kéo nén và cắt) chịu điều kiện biên trở kháng.
• Thiết lập được phương trình tán sắc chính xác dạng hiện của sóng Rayleigh
trong bán không gian đàn hồi monoclinic với mặt phẳng đối xứng x3 = 0 quay
chịu điều kiện biên trở kháng và sóng Rayleigh trong bán không gian đàn hồi
không nén được quay có gia cố cốt sợi chịu điều kiện biên trở kháng.
• Dẫn ra được phương trình tán sắc xấp xỉ của sóng Rayleigh trong bán không
gian đàn hồi dị hướng (nén được và không nén được) được phủ lớp mỏng đàn
hồi dị hướng (nén được và không nén được). Phương trình tán sắc tìm được
có dạng bậc hai đối với độ dày của lớp mỏng.
2
Cấu trúc của luận án
Luận án bao gồm bốn chương:
• Chương 1: Tổng quan
Trình bày tổng quan tình hình nghiên cứu trong và ngoài nước về sóng mặt
Rayleigh trong các bán không gian tự do và không tự do đối với ứng suất.
• Chương 2: Sóng Rayleigh trong bán không gian đàn hồi chịu điều kiện biên
trở kháng
• Chương 3: Sóng Rayleigh trong các bán không gian đàn hồi quay chịu điều
kiện trở kháng
• Chương 4: Sóng Rayleigh trong bán không gian đàn hồi monoclinic với mặt
phẳng đối xứng x3 = 0 được phủ lớp mỏng đàn hồi
3
Chương 1
Tổng quan
Một bán không gian đàn hồi mà trên mặt biên của nó véctơ ứng suất bằng
không được gọi là “bán không gian tự do đối với ứng suất”. Sóng Rayleigh truyền
trong bán không gian này được gọi là “sóng Rayleigh tự do ứng suất” hay sóng
Rayleigh thông thường. Một bán không gian đàn hồi mà trên mặt biên của nó véctơ
ứng suất không triệt tiêu được gọi là “bán không gian không tự do đối với ứng suất”.
Sóng Rayleigh truyền trong bán không gian này được gọi là “sóng Rayleigh không
tự do ứng suất” hay sóng Rayleigh suy rộng.
1.1. Sóng Rayleigh tự do ứng suất
Sóng Rayleigh tự do ứng suất truyền trong môi trường đàn hồi đẳng hướng
nén được được Rayleigh năm 1885, vẫn đang được nghiên cứu một cách mạnh mẽ
vì những ứng dụng to lớn của nó trong nhiều lĩnh vực khác nhau của khoa học và
công nghệ như địa chấn học, âm học, địa vật lý, công nghệ truyền thông và khoa
học vật liệu, như đã nhấn mạnh ở phần mở đầu.
Đối với sóng Rayleigh nói chung, phương trình tán sắc dạng tường minh (dạng
hiện) có ý nghĩa đặc biệt quan trọng. Nó được sử dụng để giải bài toán thuận: khảo
sát sự phụ thuộc của vận tốc sóng vào các tham số vật liệu, đặc biệt, nó là cơ sở lý
thuyết để giải bài toán ngược: xác định các tham số vật liệu từ các giá trị đo được
của vận tốc sóng. Do vậy, phương trình tán sắc dạng tường minh là mục tiêu đầu
tiên và quan trọng nhất đối với các nghiên cứu liên quan đến sóng Rayleigh tự do
cũng như không tự do ứng suất.
Đối với các bán không gian đàn hồi đẳng hướng hoặc trực hướng, phương trình
tán sắc của sóng Rayleigh tự do ứng suất được tìm ra bằng phương pháp truyền
thống, dựa vào phương trình đặc trưng của sóng. Tuy nhiên, đối với các môi trường
đàn hồi có tính dị hướng cao hơn (chẳng hạn môi trường monoclinic, hoặc môi
trường đàn hồi dị hướng chịu ảnh hưởng của các yếu tố khác như điện trường, từ
4
trường, sự quay vi mô), phương trình đặc trưng của sóng mất tác dụng, phương
pháp truyền thống không còn hiệu lực. Để tìm ra phương trình tán sắc dạng hiện
của sóng Rayleigh tự do ứng suất đối với các môi trường phức tạp, các phương pháp
mới đã được đề ra. Đó là phương pháp vectơ phân cực, phương pháp tích phân đầu
và phương pháp ma trận trở kháng. Tuy nhiên, các pháp này mới chỉ áp dụng được
cho các môi trường là các bán không gian có điều kiện biên là thực (như điều kiện
biên tự do đối với ứng suất).
1.2. Sóng Rayleigh không tự do ứng suất
Ngoài cấu trúc gồm chỉ một bán không gian (không tự do ứng suất), các cấu
trúc sau:
i) Bán không gian đàn hồi phủ một lớp đàn hồi,
ii) Bán không gian đàn hồi liên kết với một bán không gian đàn hồi khác, cũng
đưa được về mô hình “một bán không gian đàn hồi không tự do đối với ứng suất”,
bằng cách thay thế toàn bộ ảnh hưởng của lớp đàn hồi hay bán không gian đàn hồi
bằng một “điều kiện biên hiệu dụng” trên mặt phân chia giữa bán không gian và
lớp, giữa bán không gian và giữa bán không gian. Điều kiện biên hiệu dụng là một
hệ thức liên hệ tuyến tính véctơ ứng suất và véctơ chuyển dịch trên mặt biên của
bán không gian. Chú ý rằng, lớp (bán không gian) đàn hồi có thể thay thế bằng một
lớp chất lỏng (một bán không gian chất lỏng).
Luận án quan tâm nghiên cứu sóng Rayleigh không tự do ứng suất truyền trong
các môi trường sau:
- Sóng Rayleigh trong bán không gian đàn hồi chịu điều kiện biên trở kháng.
- Sóng Rayleigh trong bán không gian đàn hồi có ứng suất trước chịu điều kiện
biên trở kháng.
- Sóng Rayleigh trong các bán không gian đàn hồi quay, chịu điều kiện biên trở
kháng.
- Sóng Rayleigh trong bán không gian đàn hồi phủ lớp mỏng.
1.2.1. Sóng Rayleigh trong bán không gian đàn hồi chịu điều
kiện biên trở kháng
Trong các nghiên cứu trước đây về sóng Rayleigh, hầu hết đều giả thiết bán
không gian là tự do đối với ứng suất. Tuy nhiên, trong nhiều bài toán thực tế như
trong lĩnh vực âm học hay điện từ học, bán không gian thường chịu một điều kiện
biên được gọi là "điều kiện biên trở kháng". Điều kiện này là một liên hệ tuyến tính
giữa các hàm cần tìm và các đạo hàm của chúng trên biên của bán không gian.
Trong luận án, điều kiện biên trở kháng được xét có dạng sau
σ12 + ωZ1 u1 = 0,
σ22 + ωZ2 u2 = 0
5
tại x2 = 0
(1.1)
trong đó, σij là các thành phần ứng suất, uj là các thành phần chuyển dịch, ω là
tần số góc của sóng, Zk là tham số trở kháng. Với điều kiện biên (1.1), các nghiên
cứu mới chỉ dừng lại ở bán không gian đàn hồi đẳng hướng.
1.2.2. Sóng Rayleigh trong bán không gian quay, chịu điều
kiện biên trở kháng
Sóng Rayleigh trong các bán không gian đàn hồi quay với một vận tốc không
đổi có nhiều ứng dụng thực tế. Tuy nhiên, các nghiên cứu mới chỉ tập trung cho
trường hợp khi bán không gian tự do đối với ứng suất.
1.2.3. Sóng Rayleigh trong bán không gian đàn hồi phủ lớp
mỏng
Cấu trúc "một lớp mỏng gắn với một lớp dày", mô hình hóa như một bán
không gian phủ lớp mỏng, đang được sử dụng rộng rãi trong công nghệ hiện đại.
Việc đánh giá không phá hủy các tính chất cơ học của chúng trước và trong quá
trình sử dụng là quan trọng và hết sức cần thiết. Để đánh giá không phá hủy các
tính chất cơ học của cấu trúc này, sóng mặt Rayleigh (không tự do ứng suất) là
công cụ tiện lợ. Khi đó, phương trình tán sắc của chúng được sử dụng như là cơ sở
lý thuyết để chắt lọc ra (xác định) các tính chất cơ học của cấu trúc từ các dữ liệu
(các giá trị của vận tốc sóng) đo được từ thực nghiệm.
Sử dụng giả thiết lớp mỏng, các phương trình tán sắc xấp xỉ được tìm ra bằng
cách thay thế toàn bộ ảnh hưởng của lớp mỏng bằng một "điều kiện biên hiệu dụng",
bằng cách coi lớp như bản mỏng, hoặc khai triển Taylor ứng suất tại mặt trên của
lớp theo độ dày của lớp (được giả thiết là nhỏ).
Đến nay, các nghiên cứu mới chỉ dừng lại ở bán không gian đàn hồi trực hướng.
1.2.4. Phương pháp vectơ phân cực
Phương pháp vectơ phân cực là một phương pháp dùng để tìm ra phương
trình tán sắc dạng hiện của sóng Rayleigh trong các bán không gian đàn hồi, dựa
trên các phương trình xác định vectơ biên độ chuyển dịch tại biên của bán không
gian, được gọi là vectơ phân cực. Taziev (1989) sử dụng thành công phương pháp
vectơ phân cực để tìm ra phương trình tán sắc dạng hiện của sóng Rayleigh trong
môi trường đàn hồi dị hướng tổng quát. Phương pháp vectơ phân cực tiếp tục được
phát triển bởi Collet và Destrade (2004), Ting (2005) dựa trên phát biểu Stroh.
Phương pháp vectơ phân cực được xây dựng và phát triển bởi các tác giả trên
chỉ áp dụng được khi ma trận Stroh của sóng Rayleigh là thực. Tuy nhiên, trong
nhiều bài toán thực tế, ma trận Stroh của sóng Rayleigh là phức. Do vậy, phát triển
phương pháp vectơ phân cực cho các phát biểu Stroh với ma trận phức là việc làm
hết sức có ý nghĩa (được gọi là phương pháp vectơ phân cực phức). Đó là một trong
6
các mục tiêu của luận án. Cơ sở toán học của phương pháp này được trình bày trong
mục 2.1 chương 2.
7
Chương 2
Sóng Rayleigh trong bán
không gian đàn hồi chịu điều
kiện biên trở kháng
2.1. Hệ thức cơ bản
Cơ sở toán học của phương pháp vectơ phân cực phức là hệ thức cơ bản được
trình bày dưới dạng mệnh đề sau đây
Mệnh đề 2.1: Nếu véctơ 2m chiều Y(y) là nghiệm của bài toán:
Y = iPY, 0 ≤ y < +∞, Y(+∞) = 0
(2.1)
P1
P3
(2.2)
trong đó dấu phẩy là kí hiệu của đạo hàm theo biến y và:
P=
P2
P4
với các ma trận Pk cấp m × m là các ma trận hằng số (không phụ thuộc vào biến
y) và chúng thõa mãn các hệ thức sau:
¯ T , P3 = P
¯ T , P4 = P
¯T,
P2 = P
(2.3)
2
3
1
Khi đó, ta có
trong đó
¯ T (0)ˆIPn Y(0) = 0 ∀ n ∈ Z
Y
(2.4)
0
I
(2.5)
ˆI =
I
0
với I là ma trận đơn vị cấp m × m.
Ta gọi phương trình (2.4) là hệ thức cơ bản.
8
2.2. Sóng Rayleigh trong bán không gian đàn hồi dị
hướng chịu điều kiện biên trở kháng
2.2.1. Sóng Rayleigh trong bán không gian đàn hồi trực hướng,
nén được chịu điều kiện biên trở kháng
Áp dụng phương pháp truyền thống ta thu được phương trình tán sắc (dưới dạng
không thứ nguyên) dạng hiện của sóng Rayleigh trong bán không gian đàn hồi trực
hướng, nén được chịu điều kiện biên trở kháng như sau
√
x(e1 − x)(1 − δ1 δ2 ) + [e23 − e2 (e1 − x) − δ1 δ2 x] P
√
√
√
= [δ1 e2 P + δ2 (e1 − x)] x S + 2 P
(2.6)
trong đó x = c2 /c22 , c22 = c66 /ρ, là vận tốc không thứ nguyên của sóng Rayleigh và
√
δn = Zn / ρc66 (∈ R), n = 1, 2, là các tham số trở kháng và là các đại lượng không
thứ nguyên. S and P được xác định như sau
P =
e2 (e1 − x) + 1 − x − (1 + e3 )2
(e1 − x)(1 − x)
, S=
e2
e2
(2.7)
(2.8)
e1 = c11 /c66 , e2 = c22 /c66 , e3 = c12 /c66
với cij là các hằng số vật liệu, ρ mật độ khối lượng.
2.2.2. Sóng Rayleigh trong bán không gian đàn hồi được tạo
bởi vật liệu monoclinic với mặt phẳng đối xứng x3 = 0,
nén được chịu điều kiện biên trở kháng
Sử dụng phương pháp vectơ phân cực phức, ta thiết lập được phương trình tán
sắc dạng tường minh của sóng Rayleigh trong bán không gian đàn hồi được tạo bởi
vật liệu monoclinic với mặt phẳng đối xứng x3 = 0, nén được chịu điều kiện biên
trở kháng
D12 + D22 − 4DD3 = 0
(2.9)
với
ˆ (−1,r)
Q
12
D = Q(1,r)
12
(2,r)
Q12
ˆ (−1,r)
Q
12
D2 = Q(1,r)
12
(2,r)
Q12
ˆ (−1,i)
Q
12
(1,i)
Q12
(2,i)
Q12
(−1)
ˆ
−Q
11
(1)
−Q11
(2)
−Q11
ˆ (−1)
Q
22
(1)
Q22 ,
(2)
Q22
ˆ (−1)
Q
22
(1)
Q22 ,
(2)
Q22
(−1)
ˆ
−Q
11
D1 = −Q(1)
11
(2)
−Q11
ˆ (−1,r)
Q
12
D3 = Q(1,r)
12
(2,r)
Q12
9
ˆ (−1,i)
Q
12
(1,i)
Q12
(2,i)
Q12
ˆ (−1,i)
Q
12
(1,i)
Q12
(2,i)
Q12
ˆ (−1)
Q
22
(1)
Q22
(2)
Q22
(−1)
ˆ
−Q
11
(1)
−Q11
(2)
−Q11
(2.10)
trong đó
(1)
(1)
Q11 = −η + (1 + c66 δ12 n66 )X, Q22 = (1 + c66 δ22 n22 )X,
(1)
Q12 = δ1 δ2 n26 c66 X + i(δ1 − δ2 r2 ) c66 X
(2.11)
(2)
Q11 = − 2[δ12 (n26 + n66 r6 )c66 X + r6 (X − η)],
(2)
Q22 = − 2δ22 n26 r2 c66 X
(2.12)
(2)
Q12 =η − δ1 δ2 (n22 + n66 r2 + n26 r6 )c66 X − (1 + r2 )X
− i[δ1 (r6 + n26 X) + δ2 (ηn26 − r2 r6 − n26 X)] c66 X
ˆ (−1) =X[(X − η)n22 − r22 ] − δ12 (n22 + n226 X − n22 n66 X)c66 X
Q
11
ˆ (−1) =η − [(1 + r2 ) + n66 (η − X)]X
Q
6
22
ˆ (−1)
Q
12
+ δ22 [(η − X)(n226 − n22 n66 ) − n66 r22 − n22 r62 + 2n26 r2 r6 ]c66 X
(2.13)
=δ1 δ2 (n22 r6 − n26 r2 )c66 X + X[(η − X)n26 + r2 r6 ]
+ i{δ1 (r2 − n66 r2 X + n26 r6 X) + δ2 [(X − η)n22 − r22 ]}
c66 X
c22
c26
c66
c12 c26 − c22 c16
, n26 = −
, n22 =
, r6 = −
∆
∆
∆
∆
c12 c66 − c16 c26
2
, ∆ = c22 c66 − c26 , η = c11 − r6 c16 − r2 c12 , X = ρc2
r2 =
∆
n66 =
(2.14)
ở đây cij là các hằng số vật liệu, ρ mật độ khối lượng và c là vận tốc sóng.
2.2.3. Sóng Rayleigh trong bán không đàn hồi trực hướng,
không nén được chịu điều kiện biên trở kháng
Áp dụng phương pháp truyền thống ta thu được phương trình tán sắc (dưới dạng
không thứ nguyên) dạng hiện của sóng Rayleigh trong bán không gian đàn hồi trực
hướng, nén được chịu điều kiện biên trở kháng như sau
√
√
√
(δ − x) 1 − x + (δ1 δ2 − 1)x = (δ1 1 − x + δ2 ) x
√
δ − 2 − x + 2 1 − x (2.15)
trong đó x = c2 /c22 , c22 = c66 /ρ, là vận tốc không thứ nguyên của sóng Rayleigh,
√
δ = (c11 − 2c12 + c22 )/c66 và δn = Zn / ρc66 (∈ R), n = 1, 2, là các tham số trở
kháng và là các đại lượng không thứ nguyên. Và cij là các hằng số vật liệu, ρ mật
độ khối lượng.
10
2.2.4. Sóng Rayleigh truyền trong bán không gian đàn hồi
không nén được được tạo bởi vật liệu monoclinic với
mặt phẳng đối xứng x3 = 0, không nén được chịu điều
kiện biên trở kháng
Sử dụng phương pháp vectơ phân cực phức, ta suy ra phương trình tán sắc dạng
tường minh của sóng Rayleigh trong bán không gian đàn hồi được tạo bởi vật liệu
monoclinic với mặt phẳng đối xứng x3 = 0, nén được chịu điều kiện biên trở kháng
có dạng như phương trình (2.9), (2.10) trong đó
(1)
(1)
(1)
Q11 = −a1 + (δ12 + 1)X, Q22 = X, Q12 = i c66 X(δ1 − δ2 )
(2)
(2.16)
(2)
Q11 = 2b1 [−a1 + (δ12 + 1)X], Q22 = 0,
(2)
Q12 = a1 − (δ1 δ2 + 2)X + ib1
c66 X(δ1 − δ2 )
ˆ (−1) = −X, Q
ˆ (−1) = −b1 X + i[ c66 X(δ1 − δ2 ) − δ1 X
Q
11
12
ˆ (−1) = c66 (a1 −
Q
22
δ22 X)
− (a1 + c66 +
c66
b21 c66 )X
với
a1 = c11 − 2c12 + c22 −
+X
X/c66 ]
2
(c16 − c26 )2
c66
c26 − c16
b1 =
c66
(2.17)
(2.18)
(2.19)
ở đây cij là các hằng số vật liệu, X = ρc2 , ρ mật độ khối lượng và c là vận tốc sóng.
2.3. Sóng Rayleigh trong bán không gian đàn hồi có
ứng suất trước chịu điều kiện biên trở kháng
2.3.1. Sóng Rayleigh trong bán không gian đàn hồi, nén được
có ứng suất trước chịu điều kiện biên trở kháng
Phương trình tán sắc dạng hiện của sóng trong trường hợp này như sau
√
(e1 − x)[e24 − e5 (1 − x) − δ1 δ2 x] + e5 [e23 − e2 (e1 − x) − δ1 δ2 x] P
(2.20)
√
√
√
+ e5 [δ1 e2 P + δ2 (e1 − x)] x S + 2 P = 0
trong đó, S và P được xác định như sau
S=
e2 (e1 − x) + e5 (1 − x) − (e3 + e4 )2
(e1 − x)(1 − x)
,P =
e2 e5
e2 e5
11
(2.21)
√
với x = ρc2 /A1212 , δn = Zn / ρA1212 (∈ R), n = 1, 2 là các tham số trở kháng và là
các đại lượng không thứ nguyên và
e1 =
A1111
,
A1212
e2 =
A2222
,
A1212
e3 =
A1122
,
A1212
e4 =
A2112
,
A1212
e5 =
A2121
A1212
(2.22)
ở đây, c là vận tốc sóng, ρ là mật độ khối lượng còn Aijkl là các thành phần của
tenxơ đàn hồi bậc bốn.
2.3.2. Sóng Rayleigh trong bán không gian đàn hồi, không nén
được có ứng suất trước chịu điều kiện biên trở kháng
Phương trình tán sắc dạng hiện (dạng không thứ nguyên) của sóng Rayleigh
truyền trong bán không gian đàn hồi không nén được có ứng suất trước chịu điều
kiện biên trở kháng.
√
√
[δ1 δ2 e1 x − e23 + e1 (1 − x)] + e1 (2e2 + 2e3 − x) 1 − x
(2.23)
√
√
√ √
− (δ1 e1 1 − x + δ2 e1 ) x S + 2 P = 0
với
B2121
B1111 + B2222 − 2B1122 − 2B1221
, e2 =
,
B1212
2B1212
(2.24)
B2121 − σ2
2e2 − x
1−x
ρc2
e3 =
, S=
, P =
, x=
B1212
e1
e1
B1212
√
với ρ là mật độ khối lượng, c là vận tốc của sóng, δn = Zn / ρB1212 (∈ R), n = 1, 2
là các tham số trở kháng và là các đại lượng không thứ nguyên và σ2 là ứng suất
Cauchy theo hướng chính và Bijkl là các thành phần của tenxơ đàn hồi bậc bốn.
e1 =
2.3.3. Sóng Rayleigh trong bán không gian đàn hồi không nén
được, có biến dạng trước: chịu đồng thời kéo (nén) và
cắt, chịu điều kiện biên trở kháng
Sử dụng phương pháp vectơ phân cực phức, ta xây dựng được phương trình tán
sắc dạng tường minh của sóng Rayleigh trong bán không gian đàn hồi không nén
được, có biến dạng trước: chịu đồng thời kéo (nén) và cắt, chịu điều kiện biên trở
kháng có dạng như phương trình (2.9), (2.10) trong đó
νˆ2
(1)
Q11 = (1 + δ12 )X − 2(βˆ + γˆ − σ
ˆ22 ) + 21
γˆ
νˆ21 σ
ˆ22
σ
ˆ22
(1)
+ i (δ1 − δ2 ) γˆX −
δ1
Q12 = νˆ12 + νˆ21 −
γˆ
γˆ
(ˆ
γ −σ
ˆ22 )2
(1)
Q22 = X − α
ˆ+
γˆ
12
γˆX
(2.25)
(2)
Q11 =2(ˆ
ν21 − νˆ12 ) − 2
(2)
Q12 =α
ˆ + γˆ + 2
3
νˆ21
νˆ21
− 2 (1 + δ12 )X − 2βˆ + σ
ˆ22
γˆ 2
γˆ
2
νˆ21
σ
ˆ22
− 2(X − βˆ + σ
ˆ22 ) − δ1 δ2 X
γˆ
1
σ
ˆ22 (X − 2βˆ + σ
ˆ22 ) − νˆ21 (ˆ
ν12 + 2ˆ
ν21 )
γˆ
√
γˆ X
+ i [ˆ
γ (δ2 νˆ21 − δ1 νˆ12 ) − 2δ1 νˆ21 (ˆ
γ−σ
ˆ22 )]
γˆ 2
2ˆ
ν21
2ˆ
ν12
= − 2 (ˆ
γ−σ
ˆ22 )2 −
(ˆ
γ−σ
ˆ22 )
γˆ
γˆ
+
(2)
Q22
(ˆ
γ−σ
ˆ22 )2
ˆ (−1) = − (X − α)
Q
ˆ −
11
γˆ
√
ˆ − νˆ12 (ˆ
γ−σ
ˆ22 )
γˆ X
ˆ (−1) = νˆ21 (X − α)
Q
−
i
[δ1 (X − α)
ˆ + δ2 (ˆ
γ−σ
ˆ22 )]
12
γˆ
γˆ
2
2
ˆ
ˆ22 )(X − α
ˆ) − α
ˆ X − δ22 γˆ X − νˆ12
ˆ (−1) = X − 2(β + γˆ − σ
Q
22
γˆ
(2.26)
(2.27)
√
γ (∈
với X = ρc2 (với ρ là mật độ khối lượng, c là vận tốc của sóng), δn = Zn / ρˆ
R), n = 1, 2 là các tham số trở kháng và là các đại lượng không thứ nguyên, σ
ˆ22 là
thành phần của ứng suất Cauchy và
ˆ1212 ,
α
ˆ := B
ˆ2121 ,
γˆ := B
ˆ1111 + B
ˆ2222 − 2B
ˆ1122 − 2B
ˆ1221
2βˆ := B
ˆ1121 − B
ˆ2122 , νˆ12 := B
ˆ1222 − B
ˆ2111
νˆ21 := B
ˆijkl là các thành phần của tenxơ hằng số đàn hồi.
với B
13
(2.28)
Chương 3
Sóng Rayleigh trong bán
không gian đàn hồi quay chịu
điều kiện biên trở kháng
3.1. Sóng Rayleigh trong bán không gian đàn hồi
monoclinic x3 = 0 quay, nén được chịu điều kiện
biên trở kháng
Sử dụng phương pháp vectơ phân cực phức, ta thu được phương trình tán sắc
dạng tường minh của sóng Rayleigh trong bán không gian đàn hồi được tạo bởi vật
liệu monoclinic với mặt phẳng đối xứng x3 = 0 quay, nén được chịu điều kiện biên
trở kháng có dạng như phương trình (2.9), (2.10) trong đó
(1)
Q11 = −η + (1 + δ 2 )X + c266 δ12 n66 X,
(1)
Q22 = (1 + δ 2 )X + c266 δ22 n22 X,
(1)
Q12 = c266 δ1 δ2 n26 X + i[−2δX + (δ1 − δ2 r2 ) c66 X]
14
(3.1)
(2)
Q11 = −2r6 (X − η) − 2c66 δ12 (n26 + n66 r6 )X − 2δ 2 r6 X
+ 4δδ1 n26 X
(2)
Q12
c66 X,
= η − (1 + r2 )X − c66 δ1 δ2 (n22 + n66 r2 + n26 r6 )X
− δ 2 (1 + r2 )X −2δ(−δ2 n22 + δ1 n66 )X
(2)
c66 X + 2iδr6 X
(3.2)
− i[(δ2 ηn26 +δ1 r6 −δ2 r2 r6 )+(1 + δ 2 )(δ1 −δ2 )n26 X] c66 X
Q22 = −2c266 δ22 n26 r2 X − 4δδ2 n26 X
c66 X
ˆ (−1) = −(1 + δ 2 )(ηn22 + r22 )X + (−1 + δ 2 )2 n22 X 2
Q
11
+ 4δδ1 n22 X
c66 X − c66 δ12 [n22 + (1 + δ 2 )(n226 − n22 n66 )X]X
ˆ (−1) = η + η[−n66 + c66 δ22 (n226 − n22 n66 )]X − X(1 + r62 − n66 X)
Q
22
− c66 δ22 (n66 r22 − 2n26 r2 r6 + n22 r62 + n226 X − n22 n66 X)X
ˆ (−1) = (1 + δ 2 )ηn26 X − c66 δ1 δ2 n26 r2 X + c66 δ1 δ2 n22 r6 X + r2 r6 X
Q
12
(3.3)
− n26 X 2 − δ 4 n26 X 2 + δ 2 (r2 r6 + 2n26 X)X
+ 2δX(−δ1 n26 − δ2 n22 r6 + δ2 n26 r2 )
c66 X
+ i[δ1 (r2 − n66 r2 X + n26 r6 X) − δ2 (ηn22 + r22 − n22 X)] c66 X
c26
c66
c12 c26 − c22 c16
c22
, n26 = −
, n22 =
, r6 = −
∆
∆
∆
∆
c12 c66 − c16 c26
2
, ∆ = c22 c66 − c26 , η = c11 − r6 c16 − r2 c12 , X = ρc2
r2 =
∆
n66 =
(3.4)
ở đây cij là các hằng số vật liệu, δ = Ω/(kc) = Ω/ω (Ω không đổi là vận tốc quay
của bán không gian), X = ρc2 , ρ mật độ khối lượng, k là số sóng và c là vận tốc
sóng.
3.2. Sóng Rayleigh trong bán không gian đàn hồi
được gia cố cốt sợi, không nén được, quay chịu
điều kiện biên trở kháng
Áp dụng phương pháp vectơ phân cực phức, ta thu được phương trình tán sắc
dạng tường minh của sóng Rayleigh trong bán không gian đàn hồi được gia cố cốt
sợi, không nén được, quay, chịu điều kiện biên trở kháng có dạng như phương trình
15
(2.9), (2.10) trong đó
(1)
Q11 = −(c21 + c22 ) + (1 + δ 2 )X + δ12 X,
(1)
Q22 = (1 + δ 2 )X,
(3.5)
(1)
Q12 = −i[2δX + (δ2 − δ1 ) c23 X]
(2)
Q11 = 0,
(2)
Q22 = 0
(2)
Q12 = (c21 + c22 ) − (2 + 2δ 2 + δ1 δ2 )X − 2
và Qij
(−1)
(3.6)
δδ1 X 2
c23 X
ˆ (−1) /q trong đó q ∈ R là định thức của ma trận Q(1) và
=Q
3
ij
ˆ (−1) = −(1 + δ 2 )X
Q
11
ˆ (−1) = (c21 + c22 ) − δ22 X
Q
22
1
+ 2 [−(1 + δ 2 )(c21 + c22 + c23 )X + (δ 2 − 1)2 X 2 − 4δδ2 X
c3
2
2
ˆ (−1) = −i[2δX + (1 + δ )δ1 X + c3 (δ2 − δ1 ) c2 X]
Q
12
3
c23
với
c21 = 4µE − µL ,
c22 = µT ,
c23 = µL
c23 X]
(3.7)
(3.8)
µL và µT là các modun lực cắt dọc và cắt ngang còn µE là modun cắt có tải. µE , µT
được liên hệ theo công thức sau:
µE =
EL
µT
ET
(3.9)
với EL , ET lần lượt là các modun Young dọc và ngang. X = ρc2 , δn = Zn / ρc23 (∈
R), n = 1, 2, là các tham số trở kháng và là các đại lượng không thứ nguyên,
δ = Ω/(kc) = Ω/ω (Ω không đổi là vận tốc quay của bán không gian), ρ mật độ
khối lượng, k là số sóng và c là vận tốc sóng.
16
Chương 4
Sóng Rayleigh trong bán
không gian đàn hồi
monoclinic có mặt phẳng đối
xứng x3 = 0 được phủ lớp
mỏng
4.1. Sóng Rayleigh trong bán không gian đàn hồi
monoclinic có mặt phẳng đối xứng x3 = 0 nén
được phủ lớp mỏng đàn hồi monoclinic có mặt
phẳng đối xứng x3 = 0 nén được
Sử dụng phương pháp vectơ phân cực phức, ta suy ra phương trình tán sắc
dạng tường minh của sóng Rayleigh trong bán không gian đàn hồi được tạo bởi vật
liệu monoclinic với mặt phẳng đối xứng x3 = 0, nén đượcphủ lớp mỏng đàn hồi
monoclinic có mặt phẳng đối xứng x3 = 0 nén được có dạng như phương trình (2.9),
(2.10) trong đó
(1)
ˆ − ηˆ)2 + r2 [ˆ
ˆ r2 − 1)]
η + X(ˆ
Q11 = X − η + n66 (X
2
(1)
ˆ X
ˆ − ηˆ) − r6 [ˆ
ˆ r2 − 1)]
ˆ r2 − 1)] + 1 2n26 X(
η + X(ˆ
Q12 = −i[ˆ
η + X(ˆ
2
(1)
ˆ2 2
ˆ r2 − 1)] − n22 X
Q = X − [ˆ
η + X(ˆ
22
17
2
(4.1)
(2)
ˆ r2 − 1)][n26 (X − η) + r2 r6 ]
Q11 = − 2r6 (X − η) − [ˆ
η + X(ˆ
ˆ − ηˆ)2
+2(n26 + n66 r6 )(X
2
(2)
ˆ
ˆ − r6 (X
ˆ − ηˆ) + r2 r6 X]
Q12 =η − (r2 + 1)X + i[n26 (X ηˆ − Xη)
(4.2)
ˆ r2 − 1)](r62 − n22 X + n66 X − n66 η)
+ [ˆ
η + X(ˆ
ˆ X
ˆ − ηˆ)
−2(n22 + n66 r2 + n26 r6 )X(
(2)
2
ˆ2
ˆ r2 − 1)](r6 + n26 X) − 2n26 r2 X
Q22 = [ˆ
η + X(ˆ
2
ˆ (−1) = [n22 (X − η) − r22 ]X + [ˆ
ˆ r2 − 1)][r22 − n22 (X − η)]
Q
η + X(ˆ
11
ˆ − ηˆ)2
−(n22 + n226 X − n22 n66 X)(X
2
ˆ (−1) = X[r2 r6 − n26 (X − η)]
Q
12
ˆ
ˆ
ˆ − ηˆ) + r2 (X
ˆ − ηˆ) + n22 X(X
− η) − r22 X]
+ i[(n26 r6 − n66 r2 )X(X
1
ˆ r2 − 1)][n26 (X − η) − r2 r6 + (n22 r6 − n26 r2 )X]
[ˆ
η + X(ˆ
2
ˆ X
ˆ − ηˆ) 2
+2(n22 r6 − n26 r2 )X(
(4.3)
ˆ (−1) = (n66 X − 1)(X − η) − r2 X
Q
6
22
ˆ r2 − 1)](r2 − n66 r2 X + n26 r6 X)
− [ˆ
η + X(ˆ
ˆ 2 [(X − η)(n226 − n22 n66 ) + r2 (n66 r2 − n26 r6 ) + r6 (n22 r6 − n26 r2 )]
+X
2
ˆ = ρˆc2 (c vận tốc của sóng, ρ, ρˆ lần lượt là mật độ khối lượng của
với X = ρc2 , X
bán không gian và lớp), = kh (k là số sóng, h là độ dày của lớp) và
rˆ2 =
cˆ12 cˆ26 − cˆ22 cˆ16
cˆ12 cˆ66 − cˆ16 cˆ26
, rˆ6 = −
cˆ22 cˆ66 − cˆ226
cˆ22 cˆ66 − cˆ226
ηˆ = cˆ11 − rˆ6 cˆ16 − rˆ2 cˆ12
c22
c26
c66
c12 c26 − c22 c16
n66 =
, n26 = −
, n22 =
, r6 = −
∆
∆
∆
∆
c12 c66 − c16 c26
, ∆ = c22 c66 − c226 , η = c11 − r6 c16 − r2 c12 ,
r2 =
∆
ở đây cij và cˆij lần lượt là hằng số đàn hồi của bán không gian và lớp.
18
(4.4)
4.2. Sóng Rayleigh trong bán không gian đàn hồi
monoclinic có mặt phẳng đối xứng x3 = 0 không
nén được phủ lớp mỏng đàn hồi monoclinic có
mặt phẳng đối xứng x3 = 0 không nén được
Sử dụng phương pháp vectơ phân cực phức, ta suy ra phương trình tán sắc
dạng tường minh của sóng Rayleigh trong bán không gian đàn hồi được tạo bởi vật
liệu monoclinic với mặt phẳng đối xứng x3 = 0, nén đượcphủ lớp mỏng đàn hồi
monoclinic có mặt phẳng đối xứng x3 = 0 nén được có dạng như phương trình (2.9),
(2.10) trong đó
ˆ −a
(X
ˆ1 )2 2
(1)
Q11 = X − a1 + a
ˆ1 +
c66
(4.5)
a
ˆ1 b1 2
(1)
a1 +
Q12 = −iˆ
2
(1)
Q22 = X − a
ˆ1 2
(2)
b1
ˆ −a
[2(X
ˆ1 )2 + a
ˆ1 c66 ] 2
c66
ˆ − 2X
ˆ2
a
ˆ1 (b21 c66 + X − a1 + 2X)
=a1 − 2X − iˆ
a1 b 1 +
2c66
Q11 =2b1 (X − a1 ) +
(2)
Q12
(2)
Q22 = − a
ˆ 1 b1
(−1)
và Qij
(−1)
ˆ
=Q
ij
2
(4.6)
2
(1)
/q trong đó q ∈ R là định thức của ma trận Q3
ˆ (−1) = − X + a
Q
ˆ1
11
và
2
ˆ
a
ˆ 1 b1 2
ˆ1 (c66 − X) + X X
ˆ (−1) = − b1 X − i a
+
Q
12
c66
2
ˆ1 (c66 − X) + X 2
ˆ (−1) = (a1 − X)(c66 − X) − b2 X − a
Q
1
22
c66
c66
(4.7)
2
ˆ = ρˆc2 (c vận tốc của sóng, ρ, ρˆ lần lượt là mật độ khối lượng của
với X = ρc2 , X
bán không gian và lớp), = kh (k là số sóng, h là độ dày của lớp) và
(ˆ
c16 − cˆ26 )2
cˆ66
c26 − c16
(c16 − c26 )2
, b1 =
a1 = c11 − 2c12 + c22 −
c66
c66
a
ˆ1 = cˆ11 − 2ˆ
c12 + cˆ22 −
ở đây cij và cˆij lần lượt là hằng số đàn hồi của bán không gian và lớp.
19
(4.8)
Kết luận
Truyền sóng trong các môi trường đàn hồi là cơ sở lý thuyết cho nhiều ứng dụng
thực tế, trải dài từ dự báo động đất đến việc chế tạo các thiết bị vi nhỏ trong công
nghệ viễn thông. Các kết quả nghiên cứu mới về sóng đàn hồi sẽ làm cho các ứng
dụng của nó ngày càng mở rộng và hiệu quả hơn. Các kết quả nghiên cứu của luận
án là mới, và do vậy là một sự đóng góp tuy nhỏ bé nhưng có nhiều ý nghĩa cho lĩnh
vực sóng đàn hồi. Các kết quả chính mà luận án thu được là:
1. Phát triển phương pháp vectơ phân cực cho phát biểu Stroh với ma trận Stroh
là phức. Phương pháp áp dụng không chỉ cho các bài toán nghiên cứu trong luận án
mà cho nhiều bài toán khác.
2. Rút ra được phương trình tán sắc dạng hiện của sóng Rayleigh trong các
bán không gian đàn hồi dị hướng (trực hướng, monoclinic với mặt phẳng đối xứng
x3 = 0) nén được, không nén được, chịu điều kiện biên trở kháng.
3. Xây dựng được phương trình tán sắc chính xác dạng hiện của sóng Rayleigh
trong bán không gian đàn hồi có ứng suất trước (chịu kéo nén thuần túy và đồng
thời chịu kéo nén và cắt) chịu điều kiện biên trở kháng.
4. Thiết lập được phương trình tán sắc chính xác dạng hiện của sóng Rayleigh
trong bán không gian đàn hồi monoclinic với mặt phẳng đối xứng x3 = 0 quay chịu
điều kiện biên trở kháng và sóng Rayleigh trong bán không gian đàn hồi không nén
được, quay, có gia cố cốt sợi chịu điều kiện biên trở kháng.
5. Dẫn ra được phương trình tán sắc xấp xỉ của sóng Rayleigh trong bán không
gian đàn hồi dị hướng (nén được và không nén được) được phủ lớp mỏng đàn hồi dị
hướng (nén được và không nén được).
Các vấn đề tiếp tục phát triển sau luận án
1. Tìm phương trình tán sắc dạng hiện của sóng Rayleigh trong bán không gian
đàn hồi quay phủ lớp mỏng.
2. Tìm phương trình tán sắc dạng hiện của sóng Rayleigh trong bán không gian
đàn hồi có phủ lớp mỏng đàn hồi mà tính chất nén được, không nén được ở bán
không gian và lớp là khác nhau.
20
3. Tìm phương trình tán sắc dạng tường minh của sóng Rayleigh trong bán không
gian liên kết với một bán không gian khác.
21
Danh mục công trình khoa học của tác giả liên quan
đến luận án
1. Phạm Chí Vĩnh, Trịnh Thị Thanh Huệ (2013), Phương trình tán sắc xấp xỉ
của sóng Rayleigh trong bán không gian đàn hồi monoclinic x3 = 0 được phủ lớp
mỏng đàn hồi trực hướng, Hội nghị Khoa học toàn quốc Cơ học Vật rắn biến dạng
lần thứ XI, pp. 1387-1394.
2. Pham Chi Vinh, Trinh Thi Thanh Hue (2014), Rayleigh waves with impedance
boundary conditions in anisotropic solids, Wave Motion (51), pp. 1082-1092.
3. Pham Chi Vinh, Trinh Thi Thanh Hue (2014), Rayleigh waves with impedance
boundary conditions in incompressible anisotropic half-space, International Journal
of Engineering Science (85), pp. 175-185.
4. Phạm Chí Vĩnh, Trịnh Thị Thanh Huệ (2015), Phương trình tán sắc xấp xỉ
của sóng Rayleigh trong bán không gian đàn hồi monoclinic x3 = 0 được phủ lớp
mỏng đàn hồi monoclinic x3=0 không nén được, Hội nghị Khoa học toàn quốc Cơ
học Vật rắn biến dạng lần thứ XII, pp. 1685-1691.
22