Tải bản đầy đủ (.docx) (5 trang)

Bài tập trắc nghiệm chương 1 Toán lớp 12

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (60.47 KB, 5 trang )

ÔN TẬP KIỂM TRA MỘT TIẾT – CHƯƠNG 1
Phần Trắc Nghiệm (7đ)

Câu 1: Hàm số

y=

x3 x 2
+ − 2x −1
3 2
có GTLN trên đoạn [0;2] là:

A. -1/3
Câu 2: Hàm số

A.

B.

B.

1
y = x+
x
R \{ − 1}

Câu 5: Số điểm cực trị của hàm số

Câu 7: Hàm số

B. 1



A. (-1 ; 2)
Câu 8: Hàm số

B. y = −1

y = x − 3x
3

2
( x + 2) 2

D. Đồng biến trên R

là:

C.

D = R \ {0}

D. R \ {2}

là:

C. 2

D. 3

x −1
y=

x +1

là:

C . x = −1

D. x = 1

có điểm cực đại là :

B. ( -1;0)
2x − 3
y=
4− x

y=

(−1;0);(1; +∞)

y = x 4 + 100

Câu 6: Tiệm cận đứng của đồ thị hàm số

A. y = 1

D.

3
y=
( x + 1) 2


C.

( −1; 0); (0;1)

B. D =

A. 0

D. 0

đồng biến trên khoảng nào sau đây:

Câu 4: Tập xác định của hàm số

A. D = R

C.

3
y=−
( x + 1) 2

y = x4 − 2x2 −1

(−∞; −1);(0;1)

C. -1

có đạo hàm là:


2− x
y=
x +1

1
y=
( x + 1) 2

Câu 3: Hàm số
A.

B. -13/6

C. (1 ; -2)

D. (1;0)

. Chọn phát biểu đúng:

A. Luôn đồng biến trên R
1

C. Luôn nghịch biến trên từng khoảng xác định


B. Đồng biến trên từng khoảng xác định
Câu 9: Hàm số

y = − x4 + x2


A. 1

, có số giao điểm với trục hoành là:

B. 2

C. 3

Câu 10: Tiếp tuyến của đồ thị hàm số

A. 1/6

x +1
y=
x −5

B. -1/6

Câu 11: Cho hàm số

D. Luôn giảm trên R

D. 4
tại điểm A( - 1 ; 0) có hệ số góc bằng

C. 6/25

y = 2 x3 − 3x 2 + 1


D. -6/25

, có đồ thị ( C) . Chọn đáp án sai trong các đáp án sau:

A. Hàm số có 2 cực trị

C. Hàm số nghịch biến trên khoảng (0 ; 1)

B. Đồ thị hàm số đi qua điểm A( 2 ; 3)

D. Hàm số không có tiệm cận

Câu 12: Chọn phát biểu đúng trong các phát biểu sau đây:
A. Hàm số

B. Hàm số

1
y=
2x +1

y = x4 − x2

C. Hàm số

không có tiệm cận ngang

không có giao điểm với đường thẳng y = -1
có tập xác định là


y = x +1
2

D. Đồ thị hàm số

y = x3 + x 2 − 2 x

D = R \{ − 1}

cắt trục tung tại 2 điểm

Câu 13: Hình vẽ sau đây là đồ thị của hàm số nào:
y

0

A. Bậc 3

B. Bậc 4
2

x

C. Bậc 2

D. Phân thức hữu tỉ


Câu 14: Nhìn hình vẽ sau và chọn đáp án sai
y


0

x

1

-2

A. Đồ thị hàm số có tiệm cận đứng x = 1
B. Đồ thị hàm số có tiệm cận ngang y = -2
C. Đồ thị cho thấy hàm số luôn nghịch biến trên từng khoảng xác định
D. Đồ thị cho thấy hàm số luôn đồng biến trên từng khoảng xác định
Nhìn bảng biến thiên sau đây, hãy điền từ còn thiếu vào các câu hỏi 15,16,17,18:
x

−∞


y’
y

−1
0

+∞

0
+


+∞

1
0



0

+

+∞

−3

-4

-4

Câu 15: Hàm số có....................cực đại và.........................cực tiểu.
Câu 16: Hàm số đồng biến trên khoảng.........................................................., nghich biến trên
khoảng.................................................................
Câu 17: Đây là bảng biến thiên của hàm số bậc.........................
Câu 18: Ghi lại ba điểm cực trị: A(....;......), B(....;......), C(....;......)
Câu 19: Hàm số y = f(x) có đạo hàm trên khoảng K và f’(x) = 0 chỉ tại một số điểm hữu hạn thì
nghịch biến trên K nếu:.........................................
3


Câu 20: Hàm số y = f(x) có đạo hàm cấp hai trong khoảng (x 0 – h ; x0+h), h > 0. Khi đó , hàm số sẽ

đạt cực tiểu tại điểm x0, nếu:..........................................và...............................................
Câu 21: Cho hàm số

2x + 3
y=
x −5

, nếu

lim y = ...... ;
x →−∞

lim y = .........

thì đồ thị hàm số có tiệm

x →+∞

cận..........................là ...............................
Câu 22: Chọn đáp án sai
A. Đồ thị của hàm số

ax + b
y=
cx + d

nhận giao điểm của hai tiệm cận làm tâm đối xứng

B. Số giao điểm của đồ thị hàm số y = f(x) với đường thẳng d: y = g(x) là số nghiệm của
phương trình f(x) = g(x)

C. Bất kỳ đồ thị hàm số nào cũng đều phải cắt trục tung và trục hoành
D. Số cực trị tối đa của hàm trùng phương là ba
Câu 23: Cho hàm số
x3 + 3x 2 − 2 = m

y = x3 + 3x 2 − 2

có điểm cực đại là A(-2;2), Cực tiểu là B(0;-2) thì phương trình

có hai nghiệm phân biêt khi:

A. m = 2 hoặc m = -2

C. m < -2

B. m > 2

D. -2 < m < 2

Câu 24: Tiếp tuyến tại điểm cực tiểu của đồ thị hàm số:
y=

1 3
x − 2 x2 + 3x − 5
3

A. song song với đường thẳng x = 1

C. Song song với trục hoành


B. Có hệ số góc dương

D. Có hệ số góc bằng -1

Câu 25: Phương trình
A.

mx 2 + (2 + m) x − (m − 1) = 0

có hai nghiệm phân biệt khi:
C. với mọi

m≠0 ; m>4

B. Với mọi m

D. m > 0

Câu 26: Phương trình
A.

A = B2

m≠0

A=B

B.

được giải là:


A2 = B

4

C.

B≥0



A=B

D.

B≥0



A = B2


Câu 27: Cho hàm số

A. 0

y = sin 2 x

B.


, khi đó

π
y ''( )
4

C.

π

bằng:

D. -4

1
2

Câu 28: Trong số các hình chữ nhật có cùng chu vi là 16cm, thì hình chữ nhật có diện tích lớn nhất
là hình chữ nhật đó có:
A. Chiều dài phải lớn gấp đôi chiều rộng
B. Chiều dài phải gấp bốn lần chiều rộng
C. Chiều dài bằng chiều rộng
D. Không có hình chữ nhật nào có diện tích lớn nhất
Phần tự luận(3đ):
Câu 1(1đ): Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số
y = 8 − 2x2

Câu 2(1đ): Viết phương trình tiếp tuyến của đồ thị hàm số

đường thẳng d:


x+3
y=
x−3

,biết tiếp tuyến vuông góc với

y = 6x + 5

Câu 3(1đ): Cho hàm số:y = x4 – 2(m + 1)x2 +m2 (1) với m là tham số. Tìm m để đồ thị hàm số (1) có
ba điểm cực trị A, B và C sao cho tam giác ABC có diện tích bằng 1
-------------------------------------------------------------Hết------------------------------------------------

5



×