Truy cập website www.tailieupro.com để nhận thêm nhiều tài liệu hơn
CHỦ ĐỀ
HÀM SỐ LƯNG GIÁC VÀ
PHƯƠNG TRÌNH LƯNG GIÁC
/>Tác giả: Huỳnh Đức Khánh
SĐT: 0975120189
/>Facebook: /> />Bài 01
/>HÀM SỐ LƯNG GIÁC
/>I – ĐỊNH NGHĨA
1) Hàm số sin
/> /> /> />2) Hàm số cơsin
/> /> />3) Hàm số tang
/>(
)
/> /> />4) Hàm
số cơtang
(
)
/> />{
}
/>II – TÍNH
TUẦN HO=N V= CHU KÌ CỦA H=M SỐ LƯỢNG GIÁC
1) Định
nghĩa
/>( )
/> />(
)
( )
Quy tắc đặt tương ứng với mỗi số thực x với số thực sin x
sin x : ℝ → ℝ
x ֏ y = sin x
được gọi là hàm số sin, kí hiệu là y = sin x .
Tập xác định của hàm số sin là ℝ.
Quy tắc đặt tương ứng với mỗi số thực x với số thực cos x
cos x : ℝ → ℝ
x ֏ y = cos x
được gọi là hàm số sin, kí hiệu là y = cos x .
Tập xác định của hàm số cơ sin là ℝ.
Hàm số tang là hàm số được xác định bởi cơng thức y =
sin x
cos x
cos x ≠ 0 , kí hiệu
là y = tan x .
π
Tập xác định của hàm số y = tan x là D = ℝ \
+ k π, k ∈ ℤ.
2
Hàm số cơtang là hàm số được xác định bởi cơng thức y =
cos x
sin x
sin x ≠ 0 , kí
hiệu là y = cot x .
Tập xác định của hàm số y = cot x là D = ℝ \ k π, k ∈ ℤ .
Hàm số y = f x
có tập xác định D được gọi là hàm số tuần hồn, nếu tồn tại
một số T ≠ 0 sao cho với mọi x ∈ D ta có:
x −T ∈ D và x +T ∈ D.
●
●
f x +T = f x .
Cảm ơn q giáo viên đã cho ra đời những tài liệu tuyệt vời <3
Truy cập website www.tailieupro.com để nhận thêm nhiều tài liệu hơn
Số dương T nhỏ nhất thỏa mãn các tính chất trên được gọi là chu kì của hàm số tuần
hoàn đó.
Người ta chứng minh được rằng hàm số y = sin x tuần hoàn với chu kì T = 2π ; hàm
/> />2) Chú ý
/>(
)
/>(
)
/>(
)
/>(
)
/>( )
( )
/>( )
( )
/>III />– SỰ BIẾN THIÊN V= ĐỒ THỊ CỦA H=M SỐ LƯỢNG GIÁC
1) Hàm số y = sin x
/>[
]
/>(
)
/> /> /> /> /> /> />2) Hàm số y = cos x
/>[
]
/>(
)
/>(
)
số y = cos x tuần hoàn với chu kì T = 2π ; hàm số y = tan x tuần hoàn với chu kì
T = π ; hàm số y = cot x tuần hoàn với chu kì T = π.
●
Hàm số y = sin ax + b tuần hoàn với chu kì T0 =
2π
.
a
●
Hàm số y = cos ax + b tuần hoàn với chu kì T0 =
2π
.
a
●
Hàm số y = tan ax + b tuần hoàn với chu kì T0 =
π
.
a
●
Hàm số y = cot ax + b tuần hoàn với chu kì T0 =
π
.
a
●
Hàm số y = f 1 x tuần hoàn với chu kì T1 và hàm số y = f 2 x tuần hoàn với chu
kì T2 thì hàm số y = f 1 x ± f 2 x tuần hoàn với chu kì T0 là bội chung nhỏ nhất của
T1 và T2 .
●
Tập xác định D = ℝ , có nghĩa xác định với mọi x ∈ ℝ;
●
Tập giá trị T = −1;1 , có nghĩa −1 ≤ sin x ≤ 1;
●
Là hàm số tuần hoàn với chu kì 2 π, có nghĩa sin x + k 2π = sin x với k ∈ ℤ .
π
π
Hàm số đồng biến trên mỗi khoảng − + k 2π; + k 2π và nghịch biến trên
2
2
π
3π
mỗi khoảng + k 2π; + k 2π , k ∈ ℤ .
2
2
●
●
Là hàm số lẻ nên đồ thị hàm số nhận gốc tọa độ O làm tâm đối xứng.
●
Tập xác định D = ℝ , có nghĩa xác định với mọi x ∈ ℝ;
●
Tập giá trị T = −1;1 , có nghĩa −1 ≤ cos x ≤ 1;
●
Là hàm số tuần hoàn với chu kì 2 π, có nghĩa cos x + k 2 π = cos x với k ∈ ℤ .
●
Hàm số đồng biến trên mỗi khoảng −π + k 2π; k 2π và nghịch biến trên mỗi
khoảng (k 2 π; π + k 2π ) , k ∈ ℤ .
Cảm ơn quí giáo viên đã cho ra đời những tài liệu tuyệt vời <3
Truy cập website www.tailieupro.com để nhận thêm nhiều tài liệu hơn
●
Là hàm số chẵn nên đồ thị nhận trục tung làm trục đối xứng.
/> /> />3) Hàm số y = tan x
/> /> />(
)
/> /> /> /> /> /> />4) Hàm số y = cot x
/>{
}
/>(
)
(
)
/> /> /> /> /> /> />●
π
Tập xác định D = ℝ \
+ k π, k ∈ ℤ ;
2
Tập giá trị T = ℝ;
●
Là hàm số tuần hoàn với chu kì π, có nghĩa tan x + k π = tan x với k ∈ ℤ .
●
π
π
Hàm số đồng biến trên mỗi khoảng − + k π; + k π , k ∈ ℤ;
2
2
●
Là hàm số lẻ nên đồ thị hàm số nhận gốc tọa độ O làm tâm đối xứng.
●
y
x
−
3π
2
−π
π
−
2
O
π
2
π
3π
2
●
Tập xác định D = ℝ \ k π, k ∈ ℤ ;
●
Tập giá trị T = ℝ;
●
Là hàm số tuần hoàn với chu kì π, có nghĩa tan x + k π = tan x với k ∈ ℤ .
●
Hàm số đồng biến trên mỗi khoảng k π; π + k π , k ∈ ℤ;
●
Là hàm số lẻ nên đồ thị hàm số nhận gốc tọa độ O làm tâm đối xứng.
y
−2π
−
3π
2
−π
−
π
2
O
π
2
π
3π
2
2π
x
Cảm ơn quí giáo viên đã cho ra đời những tài liệu tuyệt vời <3
Truy cập website www.tailieupro.com để nhận thêm nhiều tài liệu hơn
CÂU HỎI TRẮC NGHIỆM
/>Vấn đề 1. TẬP XÁC ĐỊNH
/> />{ }
/>{
}
/> />{
}
/> /> />{
}
{
}
/>{
}
/> />{
}
/> />(
)
)
{(
}
/> /> /> /> /> /> /> />Câu 1. Tìm tập xác định D của hàm số y =
A. D = ℝ.
2017
.
sin x
B. D = ℝ \ 0 .
π
D. D = ℝ \
+ k π, k ∈ ℤ.
2
Lời giải. Hàm số xác định khi và chỉ khi sin x ≠ 0 ⇔ x ≠ k π, k ∈ ℤ.
C. D = ℝ \ k π, k ∈ ℤ .
Vật tập xác định D = ℝ \ k π, k ∈ ℤ . Chọn C.
Câu 2. Tìm tập xác định D của hàm số y =
A. D = ℝ.
C. D = ℝ \ k π, k ∈ ℤ .
1 − sin x
.
cos x −1
π
B. D = ℝ \
+ k π, k ∈ ℤ.
2
D. D = ℝ \ k 2π, k ∈ ℤ .
Lời giải. Hàm số xác định khi và chỉ khi cos x − 1 ≠ 0 ⇔ cos x ≠ 1 ⇔ x ≠ k 2π, k ∈ ℤ.
Vậy tập xác định D = ℝ \ k 2π, k ∈ ℤ . Chọn D.
Câu 3. Tìm tập xác định D của hàm số y =
π
A. D = ℝ \ k , k ∈ Z.
2
π
C. D = ℝ \ 1 + 2 k , k ∈ Z.
2
1
.
π
sin x −
2
B. D = ℝ \ k π, k ∈ Z .
D. D = ℝ \ 1 + 2 k π, k ∈ Z .
π
π
π
Lời giải. Hàm số xác định ⇔ sin x − ≠ 0 ⇔ x − ≠ k π ⇔ x ≠ + k π, k ∈ ℤ.
2
2
2
π
Vậy tập xác định D = ℝ \ + k π, k ∈ ℤ. Chọn C.
2
1
.
sin x − cos x
π
B. D = ℝ \ − + k π, k ∈ ℤ.
4
Câu 4. Tìm tập xác định D của hàm số y =
A. D = ℝ.
π
C. D = ℝ \ + k 2π, k ∈ ℤ.
4
π
D. D = ℝ \ + k π, k ∈ ℤ.
4
π
Lời giải. Hàm số xác định ⇔ sin x − cos x ≠ 0 ⇔ tan x ≠ 1 ⇔ x ≠ + k π, k ∈ ℤ.
4
π
Vậy tập xác định D = ℝ \ + k π, k ∈ ℤ. Chọn D.
4
Cảm ơn quí giáo viên đã cho ra đời những tài liệu tuyệt vời <3
Truy cập website www.tailieupro.com để nhận thêm nhiều tài liệu hơn
Câu 5. Hàm số y = tan x + cot x +
1
1
+
không xác định trong khoảng nào trong
sin x cos x
/> />(
)
/> />(
)
/>(
)
/> /> /> /> /> /> /> /> /> /> /> /> /> /> /> /> />các khoảng sau đây?
3π
π
A. k 2π; + k 2 π với k ∈ ℤ.
B. π + k 2 π; + k 2 π với k ∈ ℤ.
2
2
π
C. + k 2π; π + k 2π với k ∈ ℤ.
D. π + k 2π;2 π + k 2π với k ∈ ℤ.
2
sin x ≠ 0
kπ
Lời giải. Hàm số xác định ⇔
⇔ sin 2 x ≠ 0 ⇔ 2 x ≠ k π ⇔ x ≠
, k ∈ ℤ.
cos x ≠ 0
2
3π
3π
nhưng điểm
thuộc khoảng π + k 2π;2 π + k 2π .
2
2
Vậy hàm số không xác định trong khoảng π + k 2π;2 π + k 2π . Chọn D.
Ta chọn k = 3
→x ≠
π
Câu 6. Tìm tập xác định D của hàm số y = cot 2 x − + sin 2 x .
4
π
A. D = ℝ \ + k π, k ∈ ℤ.
4
π
π
C. D = ℝ \ + k , k ∈ ℤ.
2
8
B. D = ∅.
D. D = ℝ.
π
π
π kπ
Lời giải. Hàm số xác định sin 2 x − ≠ 0 ⇔ 2 x − ≠ k π ⇔ x ≠ + , k ∈ ℤ.
4
4
8
2
π
π
Vậy tập xác định D = ℝ \
+ k , k ∈ ℤ. Chọn C.
8
2
x π
Câu 7. Tìm tập xác định D của hàm số y = 3 tan 2 − .
2 4
3π
A. D = ℝ \ + k 2 π, k ∈ ℤ.
2
3π
C. D = ℝ \
+ k π, k ∈ ℤ.
2
π
B. D = ℝ \ + k 2π, k ∈ ℤ.
2
π
D. D = ℝ \
+ k π, k ∈ ℤ.
2
x π
3π
x π π
Lời giải. Hàm số xác định ⇔ cos 2 − ≠ 0 ⇔ − ≠ + k π ⇔ x ≠
+ k 2 π, k ∈ ℤ.
2 4
2 4 2
2
3π
Vậy tập xác định D = ℝ \ + k 2 π, k ∈ ℤ. Chọn A.
2
Câu 8. Hàm số y =
cos 2 x
không xác định trong khoảng nào trong các khoảng sau
1 + tan x
đây?
π
3π
A. + k 2π; + k 2π với k ∈ ℤ.
2
4
3π
3π
C. + k 2π; + k 2π với k ∈ ℤ.
4
2
π
π
B. − + k 2π; + k 2π với k ∈ ℤ.
2
2
3π
D. π + k 2 π; + k 2 π với k ∈ ℤ.
2
Lời giải. Hàm số xác định khi và chỉ khi 1 + tan x ≠ 0 và tan x xác định
x ≠ − π + k π
tan x ≠ −1
4
⇔
⇔
, k ∈ ℤ.
cos x ≠ 0
π
x
≠
+
k
π
2
Cảm ơn quí giáo viên đã cho ra đời những tài liệu tuyệt vời <3
Truy cập website www.tailieupro.com để nhận thêm nhiều tài liệu hơn
x ≠ − π
π
π
π
4
Ta chọn k = 0
→
nhưng điểm − thuộc khoảng − + k 2π; + k 2π .
2
π
4
2
x ≠
2
π
π
Vậy hàm số không xác định trong khoảng − + k 2π; + k 2π . Chọn B.
2
2
/> /> /> />{
}
/> /> /> /> />[
)
[
]
/> /> />{
}
[
]
/> /> /> />{
}
/> />( )
( )
/> /> /> />3 tan x − 5
.
1 − sin 2 x
π
B. D = ℝ \ + k π, k ∈ ℤ.
2
Câu 9. Tìm tập xác định D của hàm số y =
π
A. D = ℝ \ + k 2π, k ∈ ℤ.
2
C. D = ℝ \ π + k π, k ∈ ℤ .
D. D = ℝ.
Lời giải. Hàm số xác định khi và chỉ khi 1 − sin 2 x ≠ 0 và tan x xác định
sin 2 x ≠ 1
π
⇔
⇔ cos x ≠ 0 ⇔ x ≠ + k π, k ∈ ℤ.
cos x ≠ 0
2
π
Vậy tập xác định D = ℝ \
+ k π, k ∈ ℤ. Chọn B.
2
Câu 10. Tìm tập xác định D của hàm số y = sin x + 2.
A. D = ℝ.
B. D = −2; +∞ .
C. D = 0;2π .
D. D = ∅.
Lời giải. Ta có −1 ≤ sin x ≤ 1
→ 1 ≤ sin x + 2 ≤ 3, ∀x ∈ ℝ.
Do đó luôn tồn tại căn bậc hai của sin x + 2 với mọi x ∈ ℝ.
Vậy tập xác định D = ℝ. Chọn A.
Câu 11. Tìm tập xác định D của hàm số y = sin x − 2.
A. D = ℝ.
B. ℝ \ k π, k ∈ ℤ .
C. D = −1;1 .
D. D = ∅.
→−3 ≤ sin x − 2 ≤ −1, ∀x ∈ ℝ.
Lời giải. Ta có −1 ≤ sin x ≤ 1
Do đó không tồn tại căn bậc hai của sin x − 2.
Vậy tập xác định D = ∅. Chọn D.
Câu 12. Tìm tập xác định D của hàm số y =
A. D = ℝ \ k π, k ∈ ℤ .
1
.
1 − sin x
π
B. D = ℝ \
+ k π, k ∈ ℤ.
2
π
C. D = ℝ \ + k 2π, k ∈ ℤ.
D. D = ∅.
2
Lời giải. Hàm số xác định khi và chỉ khi 1 − sin x > 0 ⇔ sin x < 1.
Mà −1 ≤ sin x ≤ 1 nên * ⇔ sin x ≠ 1 ⇔ x ≠
*
π
+ k 2π, k ∈ ℤ.
2
π
Vậy tập xác định D = ℝ \
+ k 2π, k ∈ ℤ. Chọn C.
2
Câu 13. Tìm tập xác định D của hàm số y = 1 − sin 2 x − 1 + sin 2 x .
A. D = ∅.
π
5π
C. D = + k 2π; + k 2π , k ∈ ℤ.
6
6
B. D = ℝ.
5π
13π
D. D = + k 2π;
+ k 2π , k ∈ ℤ.
6
6
Cảm ơn quí giáo viên đã cho ra đời những tài liệu tuyệt vời <3
Truy cập website www.tailieupro.com để nhận thêm nhiều tài liệu hơn
1 + sin 2 x ≥ 0
Lời giải. Ta có −1 ≤ sin 2 x ≤ 1 ⇒
, ∀x ∈ ℝ.
1 − sin 2 x ≥ 0
Vậy tập xác định D = ℝ. Chọn B.
/> /> />{
}
/> /> /> /> /> /> /> /> /> />{
}
/>( )
/>( )
/>{
}
/> /> /> /> /> />π
Câu 14. Tìm tập xác định D của hàm số y = 5 + 2 cot 2 x − sin x + cot + x .
2
k π
A. D = ℝ \ , k ∈ ℤ.
2
C. D = ℝ.
π
B. D = ℝ \ − + k π, k ∈ ℤ.
2
D. D = ℝ \ k π, k ∈ ℤ .
Lời giải. Hàm số xác định khi và chỉ khi các điều kiện sau thỏa mãn đồng thời
π
5 + 2 cot 2 x − sin x ≥ 0 , cot + x xác định và cot x xác định.
2
2 cot 2 x ≥ 0
→ 5 + 2 cot 2 x − sin x ≥ 0, ∀x ∈ ℝ.
Ta có
−1 ≤ sin x ≤ 1
→
−
≥
5
sin
x
0
π
π
π
π
cot + x xác định ⇔ sin + x ≠ 0 ⇔ + x ≠ k π ⇔ x ≠ − + k π, k ∈ ℤ.
2
2
2
2
cot x xác định ⇔ sin x ≠ 0 ⇔ x ≠ k π, k ∈ ℤ.
π
x ≠ − + kπ
kπ
Do đó hàm số xác định ⇔
⇔x≠
, k ∈ ℤ.
2
2
x ≠ k π
kπ
Vậy tập xác định D = ℝ \
, k ∈ ℤ. Chọn A.
2
π
Câu 15. Tìm tập xác định D của hàm số y = tan cos x .
2
π
A. D = ℝ \ + k π, k ∈ ℤ .
2
C. D = ℝ .
π
B. D = ℝ \ + k 2π, k ∈ ℤ .
2
D. D = ℝ \ k π, k ∈ ℤ .
Lời giải. Hàm số xác định khi và chỉ khi
π
π
.cos x ≠ + k π ⇔ cos x ≠ 1 + 2 k . *
2
2
Do k ∈ ℤ nên * ⇔ cos x ≠ ±1 ⇔ sin x ≠ 0 ⇔ x ≠ k π, k ∈ ℤ.
Vậy tập xác định D = ℝ \ k π, k ∈ ℤ . Chọn D.
Cảm ơn quí giáo viên đã cho ra đời những tài liệu tuyệt vời <3
Truy cập website www.tailieupro.com để nhận thêm nhiều tài liệu hơn
Vấn đề 2. TÍNH CHẴN LẺ
/> /> /> /> /> /> /> />( )
( )
( )
( )
/>( )
( )
( )
(
)
/>( )
( )
( )
( )
( )
( )
/>( ) { ( ) ( )}
/>( )
( )
( )
( )
/>( )
( )
[
]
( )
( )
/>( )
( )
( ) ( )
/>( )
( )
/> />( )
/> />( )
(
)
( )
( )
( )
/> />( ) ( )
( )
( )
( )
( )
/>)}
{ (
Câu 16. Trong các hàm số sau, hàm số nào là hàm số chẵn?
A. y = sin x .
B. y = cos x .
C. y = tan x .
D. y = cot x .
Lời giải. Nhắc lại kiến thức cơ bản:
Hàm số y = sin x là hàm số lẻ.
Hàm số y = cos x là hàm số chẵn.
Hàm số y = tan x là hàm số lẻ.
Hàm số y = cot x là hàm số lẻ.
Vậy B là đáp án đúng. Chọn B.
Câu 17. Trong các hàm số sau, hàm số nào là hàm số chẵn?
A. y = − sin x .
B. y = cos x − sin x .
C. y = cos x + sin x .
D. y = cos x sin x .
2
Lời giải. Tất các các hàm số đều có TXĐ: D = ℝ . Do đó ∀x ∈ D ⇒ −x ∈ D.
Bây giờ ta kiểm tra f −x = f x hoặc f −x = − f x .
Với y = f x = − sin x . Ta có f −x = − sin −x = sin x = − − sin x
→ f −x = − f x . Suy ra hàm số y = − sin x là hàm số lẻ.
Với y = f x = cos x − sin x . Ta có f −x = cos −x − sin −x = cos x + sin x
→ f −x ≠ − f x , f x
. Suy ra hàm số y = cos x − sin x không chẵn không lẻ.
Với y = f x = cos x + sin 2 x . Ta có f − x = cos − x + sin 2 − x
2
2
= cos − x + sin − x = cos x + − sin x = cos x + sin 2 x
→ f −x = f x . Suy ra hàm số y = cos x + sin 2 x là hàm số chẵn. Chọn C.
Với y = f x = cos x sin x . Ta có f − x = cos − x .sin − x = − cos x sin x
→ f −x = − f x . Suy ra hàm số y = cos x sin x là hàm số lẻ.
Câu 18. Trong các hàm số sau, hàm số nào là hàm số chẵn?
A. y = sin 2 x .
B. y = x cos x .
C. y = cos x .cot x .
D. y =
tan x
.
sin x
Lời giải.
Xét hàm số y = f x = sin 2 x .
TXĐ: D = ℝ . Do đó ∀x ∈ D ⇒ −x ∈ D.
Ta có f −x = sin −2 x = − sin 2 x = − f x
→ f x là hàm số lẻ.
Xét hàm số y = f x = x cos x .
TXĐ: D = ℝ . Do đó ∀x ∈ D ⇒ −x ∈ D.
Ta có f −x = − x .cos − x = − x cos x = − f x
→ f x là hàm số lẻ.
Xét hàm số y = f x = cos x cot x .
TXĐ: D = ℝ \ k π k ∈ ℤ . Do đó ∀x ∈ D ⇒ −x ∈ D.
Ta có f (−x ) = cos (− x ).cot (− x ) = − cos x cot x = − f ( x )
→ f ( x ) là hàm số lẻ.
Cảm ơn quí giáo viên đã cho ra đời những tài liệu tuyệt vời <3
Truy cập website www.tailieupro.com để nhận thêm nhiều tài liệu hơn
tan x
.
sin x
π
TXĐ: D = ℝ \ k ( k ∈ ℤ ). Do đó ∀x ∈ D ⇒ −x ∈ D.
2
tan (− x ) − tan x tan x
Ta có f (−x ) =
→ f ( x ) là hàm số chẵn. Chọn D.
=
=
= f ( x )
sin (− x ) − sin x
sin x
Xét hàm số y = f ( x ) =
/> /> /> /> /> /> /> /> />( )
/> /> /> /> /> /> /> /> /> /> /> /> />Câu 19. Trong các hàm số sau, hàm số nào là hàm số chẵn?
x
A. y = sin x .
B. y = x 2 sin x .
C. y =
.
cos x
D. y = x + sin x .
Lời giải. Ta kiểm tra được A là hàm số chẵn, các đáp án B, C, D là hàm số lẻ.
Chọn A.
Câu 20. Trong các hàm số sau, hàm số nào có đồ thị đối xứng qua trục tung?
π
A. y = sin x cos 2 x .
B. y = sin 3 x .cos x − .
2
C. y =
tan x
.
tan 2 x + 1
D. y = cos x sin 3 x .
Lời giải. Ta dễ dàng kiểm tra được A, C, D là các hàm số lẻ nên có đồ thị đối xứng
qua gốc tọa độ O .
π
Xét đáp án B, ta có y = f x = sin 3 x .cos x − = sin 3 x .sin x = sin 4 x . Kiểm tra được
2
đây là hàm số chẵn nên có đồ thị đối xứng qua trục tung. Chọn B.
Câu 21. Trong các hàm số sau, hàm số nào là hàm số lẻ?
A. y = cos x + sin 2 x .
B. y = sin x + cos x .
C. y = − cos x .
D. y = sin x .cos 3x .
Lời giải. Ta kiểm tra được đáp án A và C là các hàm số chẵn. Đáp án B là hàm số
không chẵn, không lẻ. Đáp án D là hàm số lẻ. Chọn D.
Câu 22. Trong các hàm số sau, hàm số nào có đồ thị đối xứng qua gốc tọa độ?
sin x + 1
A. y = cot 4 x .
B. y =
C. y = tan 2 x .
D. y = cot x .
.
cos x
Lời giải. Ta kiểm tra được đáp án A là hàm số lẻ nên có đồ thị đối xứng qua gốc tọa
độ. Chọn A.
Đáp án B là hàm số không chẵn, không lẻ. Đáp án C và D là các hàm số chẵn.
Câu 23. Trong các hàm số sau, hàm số nào là hàm số lẻ?
π
cot x
tan x
A. y = sin − x . B. y = sin 2 x .
C. y =
D. y =
.
.
2
cos x
sin x
π
Lời giải. Viết lại đáp án A là y = sin − x = cos x .
2
Ta kiểm tra được đáp án A, B và D là các hàm số chẵn. Đáp án C là hàm số lẻ.
Chọn C.
Câu 24. Trong các hàm số sau, hàm số nào là hàm số lẻ?
A. y = 1 − sin 2 x .
B. y = cot x .sin 2 x .
C. y = x 2 tan 2 x − cot x .
D. y = 1 + cot x + tan x .
Cảm ơn quí giáo viên đã cho ra đời những tài liệu tuyệt vời <3
Truy cập website www.tailieupro.com để nhận thêm nhiều tài liệu hơn
Lời giải. Ta kiểm tra được đáp án A, B và D là các hàm số chẵn. Đáp án C là hàm số
lẻ. Chọn C.
Câu 25. Cho hàm số f ( x ) = sin 2 x và g ( x ) = tan 2 x. Chọn mệnh đề đúng
/>( )
( )
/>( )
( )
( )
( )
/>( )
( )
/>( )
/>( )
(
)
( )
( )
/>( )
(
)
/>( )
( ) (
)
( )
( )
/> />( )
( )
/>( )
( )
( )
( )
/>( )
( )
( )
( )
/>( )
/>(
)
/>( )
( )
( )
(
)
/>( )
/>(
)
/>(
)
(
)
( )
( )
( )
( )
/>( )
( )
/> />(
)
/> />A. f x là hàm số chẵn, g x là hàm số lẻ.
B. f x là hàm số lẻ, g x là hàm số chẵn.
C. f x là hàm số chẵn, g x là hàm số chẵn.
D. f x và g x đều là hàm số lẻ.
Lời giải.
Xét hàm số f x = sin 2 x .
TXĐ: D = ℝ . Do đó ∀x ∈ D ⇒ −x ∈ D.
Ta có f −x = sin −2 x = − sin 2 x = − f x
→ f x là hàm số lẻ.
Xét hàm số g x = tan 2 x .
π
TXĐ: D = ℝ \ + k π k ∈ ℤ . Do đó ∀x ∈ D ⇒ −x ∈ D.
2
2
2
Ta có g −x = tan −x = − tan x = tan 2 x = g x
→ f x là hàm số chẵn.
Chọn B.
Câu 26. Cho hai hàm số f x =
sin 2 x − cos 3 x
cos 2 x
và g x =
. Mệnh đề nào
2
1 + sin 3 x
2 + tan 2 x
sau đây là đúng?
A. f x lẻ và g x chẵn.
B. f x và g x chẵn.
C. f x chẵn, g x lẻ.
D. f x và g x lẻ.
cos 2 x
.
1 + sin 2 3 x
TXĐ: D = ℝ . Do đó ∀x ∈ D ⇒ −x ∈ D.
cos −2 x
cos 2 x
Ta có f −x =
→ f x là hàm số chẵn.
=
= f x
2
1 + sin −3 x
1 + sin 2 3 x
Lời giải.
Xét hàm số f x =
Xét hàm số g x =
sin 2 x − cos 3 x
.
2 + tan 2 x
π
TXĐ: D = ℝ \ + k π k ∈ ℤ . Do đó ∀x ∈ D ⇒ −x ∈ D.
2
Ta có g −x =
sin −2 x − cos −3 x
2 + tan 2 −x
=
sin 2 x − cos 3 x
2 + tan 2 x
→ g x là hàm số chẵn.
= g x
Vậy f x và g x chẵn. Chọn B.
Câu 27. Trong các hàm số sau, hàm số nào có đồ thị đối xứng qua gốc tọa độ?
π
π
1
A. y =
B. y = sin x + .
C. y = 2 cos x − . D. y = sin 2 x .
.
3
4
4
sin x
π
1
Lời giải. Viết lại đáp án B là y = sin x + =
sin x + cos x .
4
2
π
Viết lại đáp án C là y = 2 cos x − = sin x + cos x .
4
Kiểm tra được đáp án A là hàm số lẻ nên có đồ thị đối xứng qua gốc tọa độ. Chọn A.
Cảm ơn quí giáo viên đã cho ra đời những tài liệu tuyệt vời <3
Truy cập website www.tailieupro.com để nhận thêm nhiều tài liệu hơn
Ta kiểm tra được đáp án B và C là các hàm số không chẵn, không lẻ.
Xét đáp án D.
π
Hàm số xác định ⇔ sin 2 x ≥ 0 ⇔ 2 x ∈ [ k 2π; π + k 2π ] ⇔ x ∈ k π; + k π
2
π
→ D = k π; + k π (k ∈ ℤ).
2
/> /> /> /> /> /> /> /> />(
)
/> />(
)
/> /> /> />(
)
/> /> /> /> /> /> />π
π
∈ D nhưng −x = − ∉ D. Vậy y = sin 2 x không chẵn, không lẻ.
4
4
Câu 28. Mệnh đề nào sau đây là sai?
A. Đồ thị hàm số y = sin x đối xứng qua gốc tọa độ O.
Chọn x =
B. Đồ thị hàm số y = cos x đối xứng qua trục Oy.
C. Đồ thị hàm số y = tan x đối xứng qua trục Oy.
D. Đồ thị hàm số y = tan x đối xứng qua gốc tọa độ O.
Lời giải. Ta kiểm tra được hàm số y = sin x là hàm số chẵn nên có đồ thị đối xứng
qua trục Oy . Do đó đáp án A sai. Chọn A.
Câu 29. Trong các hàm số sau, hàm số nào là hàm số chẵn?
π
π
π
A. y = 2 cos x + + sin π − 2 x .
B. y = sin x − + sin x + .
2
4
4
π
C. y = 2 sin x + − sin x .
D. y = sin x + cos x .
4
π
Lời giải. Viết lại đáp án A là y = 2 cos x + + sin π − 2 x = −2 sin x + sin 2 x .
2
π
π
π
Viết lại đáp án B là y = sin x − + sin x + = 2 sin x .cos = 2 sin x .
4
4
4
π
Viết lại đáp án C là y = 2 sin x + − sin x = sin x + cos x − sin x = cos x .
4
Ta kiểm tra được đáp án A và B là các hàm số lẻ. Đáp án C là hàm số chẵn. Chọn C.
Xét đáp án D.
sin x ≥ 0
π
Hàm số xác định ⇔
→ D = k 2 π; + k 2 π k ∈ ℤ .
2
cos x ≥ 0
π
π
∈ D nhưng −x = − ∉ D. Vậy y = sin x + cos x không chẵn, không lẻ.
4
4
Câu 30. Trong các hàm số sau, hàm số nào là hàm số lẻ ?
π
π
A. y = x 4 + cos x − .
B. y = x 2017 + cos x − .
3
2
Chọn x =
C. y = 2015 + cos x + sin 2018 x .
D. y = tan 2017 x + sin 2018 x .
π
Lời giải. Viết lại đáp án B là y = x 2017 + cos x − = y = x 2017 + sin x .
2
Ta kiểm tra được đáp án A và D không chẵn, không lẻ. Đáp án B là hàm số lẻ. Đáp án
C là hàm số chẵn. Chọn B.
Cảm ơn quí giáo viên đã cho ra đời những tài liệu tuyệt vời <3
Truy cập website www.tailieupro.com để nhận thêm nhiều tài liệu hơn
Vấn đề 3. TÍNH TUẦN HO=N
/> /> /> /> /> /> /> /> />(
)
( )
(
)
(
)
/>(
)
( )
/>(
)
/>(
)
/> /> /> /> /> /> />(
)
/> /> />Câu 31. Mệnh đề nào sau đây là sai?
A. Hàm số y = sin x tuần hoàn với chu kì 2 π.
B. Hàm số y = cos x tuần hoàn với chu kì 2 π.
C. Hàm số y = tan x tuần hoàn với chu kì 2 π.
D. Hàm số y = cot x tuần hoàn với chu kì π.
Lời giải. Chọn C. Vì hàm số y = tan x tuần hoàn với chu kì π.
Câu 32. Trong các hàm số sau đây, hàm số nào là hàm số tuần hoàn?
A. y = sin x
B. y = x + sin x
C. y = x cos x .
D y=
sin x
.
x
Lời giải. Chọn A.
Hàm số y = x + sin x không tuần hoàn. Thật vậy:
Tập xác định D = ℝ .
Giả sử f x +T = f x , ∀x ∈ D
⇔ x +T + sin x +T = x + sin x , ∀x ∈ D
⇔ T + sin x +T = sin x , ∀x ∈ D .
*
T + sin x = sin 0 = 0
Cho x = 0 và x = π , ta được
T + sin π +T = sin π = 0
→ 2T + sin T + sin π +T = 0 ⇔ T = 0 . Điều này trái với định nghĩa là T > 0 .
Vậy hàm số y = x + sin x không phải là hàm số tuần hoàn.
Tương tự chứng minh cho các hàm số y = x cos x và y =
sin x
không tuần hoàn.
x
Câu 33. Trong các hàm số sau đây, hàm số nào không tuần hoàn?
A. y = cos x .
B. y = cos 2 x .
C. y = x 2 cos x .
D. y =
1
.
sin 2 x
D. T =
π
.
8
Lời giải. Chọn C.
π
Câu 34. Tìm chu kì T của hàm số y = sin 5 x − .
4
A. T =
2π
.
5
B. T =
5π
.
2
C. T =
π
.
2
Lời giải. Hàm số y = sin ax + b tuần hoàn với chu kì T =
2π
.
a
π
2π
Áp dụng: Hàm số y = sin 5 x − tuần hoàn với chu kì T =
. Chọn A.
4
5
x
Câu 35. Tìm chu kì T của hàm số y = cos + 2016.
2
A. T = 4 π.
B. T = 2π.
C. T = −2π.
D. T = π.
Cảm ơn quí giáo viên đã cho ra đời những tài liệu tuyệt vời <3
Truy cập website www.tailieupro.com để nhận thêm nhiều tài liệu hơn
Lời giải. Hàm số y = cos (ax + b ) tuần hoàn với chu kì T =
2π
.
a
/> />(
)
/> />(
)
/> /> /> /> /> /> /> /> /> /> />(
)
/> />(
)
/> /> />(
)
/> />x
Áp dụng: Hàm số y = cos + 2016 tuần hoàn với chu kì T = 4 π. Chọn A.
2
1
Câu 36. Tìm chu kì T của hàm số y = − sin 100π x + 50π .
2
1
1
π
A. T = .
B. T =
C. T = .
D. T = 200π 2 .
.
50
100
50
1
2π
1
Lời giải. Hàm số y = − sin 100π x + 50π tuần hoàn với chu kì T =
= .
2
100π 50
Chọn A.
x
Câu 37. Tìm chu kì T của hàm số y = cos 2 x + sin .
2
A. T = 4 π.
B. T = π.
C. T = 2π.
Lời giải. Hàm số y = cos 2 x tuần hoàn với chu kì T1 =
D. T =
π
.
2
2π
= π.
2
2π
x
tuần hoàn với chu kì T2 =
= 4 π.
1
2
2
x
Suy ra hàm số y = cos 2 x + sin tuần hoàn với chu kì T = 4 π. Chọn A.
2
Nhận xét. T là bội chung nhỏ nhất của T1 và T2 .
Hàm số y = sin
Câu 38. Tìm chu kì T của hàm số y = cos 3 x + cos 5 x .
A. T = π.
B. T = 3π.
C. T = 2π.
D. T = 5π.
2π
Lời giải. Hàm số y = cos 3 x tuần hoàn với chu kì T1 =
.
3
2π
Hàm số y = cos 5 x tuần hoàn với chu kì T2 =
.
5
Suy ra hàm số y = cos 3 x + cos 5 x tuần hoàn với chu kì T = 2π. Chọn C.
x
Câu 39. Tìm chu kì T của hàm số y = 3 cos 2 x + 1 − 2 sin − 3.
2
A. T = 2π.
B. T = 4 π
C. T = 6π
D. T = π.
2π
Lời giải. Hàm số y = 3 cos 2 x + 1 tuần hoàn với chu kì T1 =
= π.
2
x
2π
Hàm số y = −2 sin − 3. tuần hoàn với chu kì T2 =
= 4 π.
2
1
2
x
Suy ra hàm số y = 3 cos 2 x + 1 − 2 sin − 3 tuần hoàn với chu kì T = 4 π. Chọn B.
2
π
π
Câu 40. Tìm chu kì T của hàm số y = sin 2 x + + 2 cos 3 x − .
3
4
A. T = 2π.
B. T = π.
C. T = 3π.
D. T = 4 π.
2π
π
Lời giải. Hàm số y = sin 2 x + tuần hoàn với chu kì T1 =
= π.
2
3
Cảm ơn quí giáo viên đã cho ra đời những tài liệu tuyệt vời <3
Truy cập website www.tailieupro.com để nhận thêm nhiều tài liệu hơn
π
2π
Hàm số y = 2 cos 3 x − tuần hoàn với chu kì T2 =
.
4
3
π
π
Suy ra hàm số y = sin 2 x + + 2 cos 3 x − tuần hoàn với chu kì T = 2π. Chọn A.
3
4
/> /> />(
)
/> /> /> />(
)
/> /> /> /> /> /> /> /> /> /> /> /> /> /> />Câu 41. Tìm chu kì T của hàm số y = tan 3π x .
A. T =
π
.
3
4
B. T = .
3
C. T =
2π
.
3
1
D. T = .
3
Lời giải. Hàm số y = tan ax + b tuần hoàn với chu kì T =
π
.
a
1
Áp dụng: Hàm số y = tan 3π x tuần hoàn với chu kì T = . Chọn D.
3
Câu 42. Tìm chu kì T của hàm số y = tan 3 x + cot x .
A. T = 4 π.
B. T = π.
C. T = 3π.
D. T =
Lời giải. Hàm số y = cot ax + b tuần hoàn với chu kì T =
Áp dụng: Hàm số y = tan 3 x tuần hoàn với chu kì T1 =
π
.
3
π
.
a
π
.
3
Hàm số y = cot x tuần hoàn với chu kì T2 = π.
Suy ra hàm số y = tan 3 x + cot x tuần hoàn với chu kì T = π. Chọn B.
Nhận xét. T là bội chung nhỏ nhất của T1 và T2 .
Câu 43. Tìm chu kì T của hàm số y = cot
A. T = 4 π.
B. T = π.
x
+ sin 2 x .
3
C. T = 3π.
D. T =
π
.
3
x
tuần hoàn với chu kì T1 = 3π.
3
Hàm số y = sin 2 x tuần hoàn với chu kì T2 = π.
Lời giải. Hàm số y = cot
x
+ sin 2 x tuần hoàn với chu kì T = 3π. Chọn C.
3
x
π
Câu 44. Tìm chu kì T của hàm số y = sin − tan 2 x + .
2
4
Suy ra hàm số y = cot
A. T = 4 π.
B. T = π.
C. T = 3π.
D. T = 2π.
x
Lời giải. Hàm số y = sin tuần hoàn với chu kì T1 = 4 π.
2
π
π
Hàm số y = − tan 2 x + tuần hoàn với chu kì T2 = .
2
4
x
π
Suy ra hàm số y = sin − tan 2 x + tuần hoàn với chu kì T = 4 π. Chọn A.
2
4
Câu 45. Tìm chu kì T của hàm số y = 2 cos 2 x + 2017.
A. T = 3π.
B. T = 2π.
C. T = π.
D. T = 4 π.
Lời giải. Ta có y = 2 cos x + 2017 = cos 2 x + 2018.
2
Suy ra hàm số tuần hoàn với chu kì T = π. Chọn C.
Cảm ơn quí giáo viên đã cho ra đời những tài liệu tuyệt vời <3
Truy cập website www.tailieupro.com để nhận thêm nhiều tài liệu hơn
Câu 46. Tìm chu kì T của hàm số y = 2 sin 2 x + 3 cos 2 3 x .
A. T = π.
B. T = 2π.
C. T = 3π.
D. T =
π
.
3
/>(
)
/> /> /> /> />(
)
/> /> /> /> />(
)
/>(
)
/> /> />(
)
/>(
)
/> />(
)
(
)
/>(
)
/> /> />1 − cos 2 x
1 + cos 6 x 1
+ 3.
= 3 cos 6 x − 2 cos 2 x + 5 .
2
2
2
2π π
Hàm số y = 3 cos 6 x tuần hoàn với chu kì T1 =
= .
6
3
Lời giải. Ta có y = 2.
Hàm số y = −2 cos 2 x tuần hoàn với chu kì T2 = π.
Suy ra hàm số đã cho tuần hoàn với chu kì T = π. Chọn A.
Câu 47. Tìm chu kì T của hàm số y = tan 3 x − cos 2 2 x .
A. T = π.
B. T =
π
π
C. T = .
.
2
3
1 + cos 4 x 1
Lời giải. Ta có y = tan 3 x −
= 2 tan 3 x − cos 4 x −1 .
2
2
π
Hàm số y = 2 tan 3 x tuần hoàn với chu kì T1 = .
3
2π π
Hàm số y = − cos 4 x tuần hoàn với chu kì T2 =
= .
4
2
Suy ra hàm số đã cho tuần hoàn với chu kì T = π. Chọn C.
D. T = 2π.
Câu 48. Hàm số nào sau đây có chu kì khác π ?
π
π
A. y = sin − 2 x .
B. y = cos 2 x + .
3
4
C. y = tan −2 x + 1 .
D. y = cos x sin x .
Lời giải. Chọn C. Vì y = tan −2 x + 1 có chu kì T =
π
π
= .
−2
2
1
sin 2 x có chu kỳ là π.
2
Câu 49. Hàm số nào sau đây có chu kì khác 2π ?
x
x
x
A. y = cos 3 x .
B. y = sin cos .
C. y = sin 2 x + 2 .
D. y = cos 2 + 1.
2
2
2
1
Lời giải. Hàm số y = cos 3 x = cos 3 x + 3 cos x có chu kì là 2 π.
4
x
x 1
Hàm số y = sin cos = sin x có chu kì là 2 π.
2
2 2
1 1
Hàm số y = sin 2 x + 2 = − cos 2 x + 4 có chu kì là π. Chọn C.
2 2
x
1 1
Hàm số y = cos 2 + 1 = + cos x + 2 có chu kì là 2 π.
2
2 2
Nhận xét. Hàm số y = cos x sin x =
Câu 50. Hai hàm số nào sau đây có chu kì khác nhau?
x
A. y = cos x và y = cot .
B. y = sin x và y = tan 2 x .
2
x
x
C. y = sin và y = cos .
D. y = tan 2 x và y = cot 2 x .
2
2
x
Lời giải. Hai hàm số y = cos x và y = cot có cùng chu kì là 2 π.
2
Cảm ơn quí giáo viên đã cho ra đời những tài liệu tuyệt vời <3
Truy cập website www.tailieupro.com để nhận thêm nhiều tài liệu hơn
Hai hàm số y = sin x có chu kì là 2π , hàm số y = tan 2 x có chu kì là
π
. Chọn B.
2
/> /> />Vấn đề 4. TÍNH ĐƠN ĐIỆU
/> /> /> /> /> /> /> /> /> /> /> /> /> /> /> /> /> /> />x
x
và y = cos có cùng chu kì là 4 π.
2
2
π
Hai hàm số y = tan 2 x và y = cot 2 x có cùng chu kì là .
2
Hai hàm số y = sin
Câu 51. Cho hàm số y = sin x . Mệnh đề nào sau đây là đúng?
π
3π
A. Hàm số đồng biến trên khoảng ; π , nghịch biến trên khoảng π; .
2
2
3π π
π π
B. Hàm số đồng biến trên khoảng − ; − , nghịch biến trên khoảng − ; .
2
2 2
2
π
π
C. Hàm số đồng biến trên khoảng 0; , nghịch biến trên khoảng − ;0 .
2
2
π π
π 3π
D. Hàm số đồng biến trên khoảng − ; , nghịch biến trên khoảng ; .
2 2
2 2
Lời giải. Ta có thể hiểu thế này '' Hàm số y = sin x đồng biến khi góc x thuộc gốc
phần tư thứ IV và thứ I; nghịch biến khi góc x thuộc gốc phần tư thứ II và thứ III '' .
Chọn D.
31π 33π
Câu 52. Với x ∈
;
, mệnh đề nào sau đây là đúng?
4
4
A. Hàm số y = cot x nghịch biến.
B. Hàm số y = tan x nghịch biến.
C. Hàm số y = sin x đồng biến.
D. Hàm số y = cos x nghịch biến.
31π 33π π
π
Lời giải. Ta có
;
= − + 8π; + 8π thuộc gốc phần tư thứ I và II. Chọn C.
4
4 4
4
π
Câu 53. Với x ∈ 0; , mệnh đề nào sau đây là đúng?
4
A. Cả hai hàm số y = − sin 2 x và y = −1 + cos 2 x đều nghịch biến.
B. Cả hai hàm số y = − sin 2 x và y = −1 + cos 2 x đều đồng biến.
C. Hàm số y = − sin 2 x nghịch biến, hàm số y = −1 + cos 2 x đồng biến.
D. Hàm số y = − sin 2 x đồng biến, hàm số y = −1 + cos 2 x nghịch biến.
π
π
Lời giải. Ta có x ∈ 0; → 2 x ∈ 0; thuộc góc phần tư thứ I. Do đó
4
2
y = sin 2 x đồng biến
→ y = − sin 2 x nghịch biến.
y = cos 2 x nghịch biến
→ y = −1 + cos 2 x nghịch biến.
Chọn A.
Câu 54. Hàm số y = sin 2 x đồng biến trên khoảng nào trong các khoảng sau?
π
π
3π
3π
A. 0; .
B. ; π .
C. π; .
D. ;2π .
4
2
2
2
Cảm ơn quí giáo viên đã cho ra đời những tài liệu tuyệt vời <3
Truy cập website www.tailieupro.com để nhận thêm nhiều tài liệu hơn
π
π
Lời giải. Xét A. Ta có x ∈ 0; → 2 x ∈ 0; thuộc gốc phần tư thứ I nên hàm số
4
2
/> /> /> /> /> /> /> />Vấn đề 5. ĐỒ THỊ CỦA H=M SỐ LƯỢNG GIÁC
/>( )
/> />( )
/>( )
/>( )
/>( )
/>( )
( )
/>( )
( )
( )
( )
/>( )
(
)
/>( )
(
)
/> />( )
/> />( )
y = sin 2 x đồng biến trên khoảng này. Chọn A.
π π
Câu 55. Trong các hàm số sau, hàm số nào đồng biến trên khoảng − ; ?
3 6
π
A. y = tan 2 x + .
6
π
B. y = cot 2 x + .
6
π
π
C. y = sin 2 x + .
D. y = cos 2 x + .
6
6
π π
2π π
π
π π
Lời giải. Với x ∈ − ; → 2 x ∈ − ; → 2 x + ∈ − ; thuộc góc phần tư thứ
3 6
3 3
6 2 2
π π
π
IV và thứ nhất nên hàm số y = sin 2 x + đồng biến trên khoảng − ; . Chọn C.
3 6
6
π
Câu 56. Đồ thị hàm số y = cos x − được suy từ đồ thị C
2
của hàm số y = cos x
bằng cách:
A. Tịnh tiến C qua trái một đoạn có độ dài là
π
.
2
π
B. Tịnh tiến C qua phải một đoạn có độ dài là .
2
π
C. Tịnh tiến C lên trên một đoạn có độ dài là .
2
D. Tịnh tiến C xuống dưới một đoạn có độ dài là
π
.
2
Lời giải. Nhắc lại lý thuyết
Cho C là đồ thị của hàm số y = f x và p > 0 , ta có:
+ Tịnh tiến C lên trên p đơn vị thì được đồ thị của hàm số y = f x + p .
+ Tịnh tiến C xuống dưới p đơn vị thì được đồ thị của hàm số y = f x − p .
+ Tịnh tiến C sang trái p đơn vị thì được đồ thị của hàm số y = f x + p .
+ Tịnh tiến C sang phải p đơn vị thì được đồ thị của hàm số y = f x − p .
π
Vậy đồ thị hàm số y = cos x − được suy từ đồ thị hàm số y = cos x bằng cách tịnh
2
π
đơn vị. Chọn B.
2
Câu 57. Đồ thị hàm số y = sin x được suy từ đồ thị C
tiến sang phải
của hàm số y = cos x bằng
cách:
A. Tịnh tiến C qua trái một đoạn có độ dài là
π
.
2
Cảm ơn quí giáo viên đã cho ra đời những tài liệu tuyệt vời <3
Truy cập website www.tailieupro.com để nhận thêm nhiều tài liệu hơn
B. Tịnh tiến (C ) qua phải một đoạn có độ dài là
π
.
2
π
C. Tịnh tiến (C ) lên trên một đoạn có độ dài là .
2
/>( )
/> />( )
/> />( )
/>( )
/>( )
/>( )
/> /> /> /> /> /> /> /> /> /> /> /> /> />D. Tịnh tiến C xuống dưới một đoạn có độ dài là
π
.
2
π
π
Lời giải. Ta có y = sin x = cos − x = cos x − . Chọn B.
2
2
Câu 58. Đồ thị hàm số y = sin x được suy từ đồ thị C của hàm số y = cos x + 1 bằng
cách:
A. Tịnh tiến C qua trái một đoạn có độ dài là
π
và lên trên 1 đơn vị.
2
π
B. Tịnh tiến C qua phải một đoạn có độ dài là
và lên trên 1 đơn vị.
2
π
C. Tịnh tiến C qua trái một đoạn có độ dài là
và xuống dưới 1 đơn vị.
2
π
D. Tịnh tiến C qua phải một đoạn có độ dài là
và xuống dưới 1 đơn vị.
2
π
π
Lời giải. Ta có y = sin x = cos − x = cos x − .
2
2
Tịnh tiến đồ thị y = cos x + 1 sang phải
π
đơn vị ta được đồ thị hàm số
2
π
y = cos x − + 1.
2
π
Tiếp theo tịnh tiến đồ thị y = cos x − + 1 xuống dưới 1 đơn vị ta được đồ thị hàm
2
π
số y = cos x − . Chọn D.
2
Câu 59. Đường cong trong hình dưới đây là đồ thị của một hàm số trong bốn hàm số
được liệt kê ở bốn phương án A, B, C, D.
Hỏi hàm số đó là hàm số nào?
A. y = 1 + sin 2 x . B. y = cos x .
C. y = − sin x .
D. y = − cos x .
Lời giải. Ta thấy tại x = 0 thì y = 1 . Do đó loại đáp án C và D.
Tại x =
π
thì y = 0 . Do đó chỉ có đáp án B thỏa mãn. Chọn B.
2
Cảm ơn quí giáo viên đã cho ra đời những tài liệu tuyệt vời <3
Truy cập website www.tailieupro.com để nhận thêm nhiều tài liệu hơn
Câu 60. Đường cong trong hình dưới đây là đồ thị của một hàm số trong bốn hàm số
được liệt kê ở bốn phương án A, B, C, D.
/> /> /> /> /> /> /> /> /> /> /> /> /> /> /> /> /> /> /> /> /> />Hỏi hàm số đó là hàm số nào?
x
x
A. y = sin .
B. y = cos .
2
2
x
C. y = − cos .
4
x
D. y = sin − .
2
Lời giải. Ta thấy:
Tại x = 0 thì y = 0 . Do đó loại B và C.
Tại x = π thì y = −1 . Thay vào hai đáp án còn lại chỉ có D thỏa. Chọn D.
Câu 61. Đường cong trong hình dưới đây là đồ thị của một hàm số trong bốn hàm số
được liệt kê ở bốn phương án A, B, C, D.
Hỏi hàm số đó là hàm số nào?
2x
2x
A. y = cos .
B. y = sin .
3
3
C. y = cos
3x
.
2
D. y = sin
3x
.
2
Lời giải. Ta thấy:
Tại x = 0 thì y = 1 . Do đó ta loại đáp án B và D.
Tại x = 3π thì y = 1 . Thay vào hai đáp án A và C thì chit có A thỏa mãn. Chọn A.
Câu 62. Đường cong trong hình dưới đây là đồ thị của một hàm số trong bốn hàm số
được liệt kê ở bốn phương án A, B, C, D.
Cảm ơn quí giáo viên đã cho ra đời những tài liệu tuyệt vời <3
Truy cập website www.tailieupro.com để nhận thêm nhiều tài liệu hơn
Hỏi hàm số đó là hàm số nào?
π
A. y = sin x − .
4
π
C. y = 2 sin x + .
4
3π
B. y = cos x + .
4
/> /> /> /> /> /> /> /> /> /> /> /> /> /> /> /> /> /> /> /> /> />
π
D. y = cos x − .
4
Lời giải. Ta thấy hàm số có GTLN bằng 1 và GTNN bằng −1 . Do đó loại đáp án C.
Tại x = 0 thì y = −
2
. Do đó loại đáp án D.
2
3π
thì y = 1 . Thay vào hai đáp án còn lại chỉ có A thỏa mãn. Chọn A.
4
Câu 63. Đường cong trong hình dưới đây là đồ thị của một hàm số trong bốn hàm số
được liệt kê ở bốn phương án A, B, C, D.
Tại x =
Hỏi hàm số đó là hàm số nào?
π
A. y = sin x − .
4
π
C. y = 2 sin x + .
4
π
B. y = cos x − .
4
π
D. y = 2 cos x + .
4
Lời giải. Ta thấy hàm số có GTLN bằng 2 và GTNN bằng − 2 . Do đó lại A và B.
3π
Tại x =
thì y = − 2 . Thay vào hai đáp án C và D thỉ chỉ có D thỏa mãn. Chọn D.
4
Câu 64. Đường cong trong hình dưới đây là đồ thị của một hàm số trong bốn hàm số
được liệt kê ở bốn phương án A, B, C, D.
Hỏi hàm số đó là hàm số nào?
A. y = sin x .
B. y = sin x .
C. y = sin x .
D. y = − sin x .
Lời giải. Ta thấy tại x = 0 thì y = 0 . Cả 4 đáp án đều thỏa.
Tại x =
π
thì y = −1 . Do đó chỉ có đáp án D thỏa mãn. Chọn D.
2
Cảm ơn quí giáo viên đã cho ra đời những tài liệu tuyệt vời <3
Truy cập website www.tailieupro.com để nhận thêm nhiều tài liệu hơn
Câu 65. Đường cong trong hình dưới đây là đồ thị của một hàm số trong bốn hàm số
được liệt kê ở bốn phương án A, B, C, D.
/> /> /> /> /> /> /> /> /> /> /> /> /> /> /> /> /> /> /> /> /> />Hỏi hàm số đó là hàm số nào?
A. y = cos x .
B. y = − cos x
C. y = cos x .
D. y = cos x .
Lời giải. Ta thấy tại x = 0 thì y = −1. Do đó chỉ có đáp án B thỏa mãn. Chọn B.
Câu 66. Đường cong trong hình dưới đây là đồ thị của một hàm số trong bốn hàm số
được liệt kê ở bốn phương án A, B, C, D.
Hỏi hàm số đó là hàm số nào?
A. y = sin x .
B. y = sin x .
C. y = cos x .
D. y = cos x .
Lời giải. Ta thấy hàm số có GTNN bằng 0 . Do đó chỉ có A hoặc D thỏa mãn.
Ta thấy tại x = 0 thì y = 0 . Thay vào hai đáp án A và D chỉ có duy nhất A thỏa mãn.
Chọn A.
Câu 67. Đường cong trong hình dưới đây là đồ thị của một hàm số trong bốn hàm số
được liệt kê ở bốn phương án A, B, C, D.
Hỏi hàm số đó là hàm số nào?
A. y = tan x .
B. y = cot x .
C. y = tan x .
D. y = cot x .
Lời giải. Ta thấy hàm số có GTNN bằng 0 . Do đó ta loại đáp án A và B.
Cảm ơn quí giáo viên đã cho ra đời những tài liệu tuyệt vời <3
Truy cập website www.tailieupro.com để nhận thêm nhiều tài liệu hơn
Hàm số xác định tại x = π và tại x = π thì y = 0 . Do đó chỉ có C thỏa mãn. Chọn C.
Câu 68. Đường cong trong hình dưới đây là đồ thị của một hàm số trong bốn hàm số
được liệt kê ở bốn phương án A, B, C, D.
/> /> /> /> /> /> /> />[
]
/> /> /> /> /> /> /> /> /> /> /> /> /> />Hỏi hàm số đó là hàm số nào?
π
A. y = sin x − −1.
2
π
C. y = − sin x − −1.
2
π
B. y = 2 sin x − .
2
π
D. y = sin x + + 1.
2
Lời giải. Ta thấy hàm số có GTLN bằng 0 , GTNN bằng −2. Do đó ta loại đán án B
π
vì y = 2 sin x − ∈ −2;2 .
2
Tại x = 0 thì y = −2 . Thử vào các đáp án còn lại chỉ có A thỏa mãn. Chọn A.
Câu 69. Đường cong trong hình dưới đây là đồ thị của một hàm số trong bốn hàm số
được liệt kê ở bốn phương án A, B, C, D.
Hỏi hàm số đó là hàm số nào?
A. y = 1 + sin x . B. y = sin x .
C. y = 1 + cos x .
D. y = 1 + sin x .
Lời giải. Ta có y = 1 + cos x ≥ 1 và y = 1 + sin x ≥ 1 nên loại C và D.
Ta thấy tại x = 0 thì y = 1 . Thay vào hai đáp án A và B thì chỉ có A thỏa. Chọn A.
Câu 70. Đường cong trong hình dưới đây là đồ thị của một hàm số trong bốn hàm số
được liệt kê ở bốn phương án A, B, C, D.
Hỏi hàm số đó là hàm số nào?
Cảm ơn quí giáo viên đã cho ra đời những tài liệu tuyệt vời <3
Truy cập website www.tailieupro.com để nhận thêm nhiều tài liệu hơn
A. y = 1 + sin x .
B. y = sin x .
C. y = 1 + cos x .
D. y = 1 + sin x .
Lời giải. Ta có y = 1 + cos x ≥ 1 và y = 1 + sin x ≥ 1 nên loại C và D.
/> />Vấn đề 6. GIÁ TRỊ LỚN NHẤT – GIÁ TRỊ NHỎ NHẤT
/> /> /> /> /> />[
]
[
]
[ ]
[ ]
/>[ ]
/> />[
]
[
]
[ ]
[ ]
/>[ ]
/> /> /> /> /> /> /> />{
}
(
)
/> />(
)
(
)
Ta thấy tại x = π thì y = 0 . Thay vào hai đáp án A và B thì chỉ có B thỏa. Chọn B.
Câu 71. Tìm giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = 3 sin x − 2.
A. M = 1, m = −5.
B. M = 3, m = 1.
C. M = 2, m = −2.
D. M = 0, m = −2.
Lời giải. Ta có −1 ≤ sin x ≤ 1
→−3 ≤ 3sin x ≤ 3
→−5 ≤ 3 sin x − 2 ≤ 1
M = 1
→−5 ≤ y ≤ 1
→
. Chọn A.
m = −5
Câu 72. Tìm tập giá trị T của hàm số y = 3 cos 2 x + 5.
A. T = −1;1 .
B. T = −1;11 .
C. T = 2;8 .
D. T = 5;8 .
Lời giải. Ta có −1 ≤ cos 2 x ≤ 1
→−3 ≤ 3cos 2 x ≤ 3
→ 2 ≤ 3 cos 2 x + 5 ≤ 8
→ 2 ≤ y ≤ 8
→T = 2;8 . Chọn C.
Câu 73. Tìm tập giá trị T của hàm số y = 5 − 3sin x .
A. T = −1;1 .
B. T = −3;3 .
C. T = 2;8 .
D. T = 5;8 .
Lời giải. Ta có −1 ≤ sin x ≤ 1
→ 1 ≥ − sin x ≥ −1
→ 3 ≥ −3sin x ≥ −3
→ 8 ≥ 5 − 3 sin x ≥ 2
→ 2 ≤ y ≤ 8
→T = 2;8 . Chọn C.
π
Câu 74. Cho hàm số y = −2 sin x + + 2 . Mệnh đề nào sau đây là đúng?
3
A. y ≥ −4, ∀x ∈ ℝ.
B. y ≥ 4, ∀x ∈ ℝ.
C. y ≥ 0, ∀x ∈ ℝ.
D. y ≥ 2, ∀x ∈ ℝ.
π
π
Lời giải. Ta có −1 ≤ sin x + ≤ 1
→ 2 ≥ −2 sin x + ≥ −2
3
3
π
→ 4 ≥ −2 sin x + + 2 ≥ 0
→ 4 ≥ y ≥ 0 . Chọn C.
3
Câu 75. Hàm số y = 5 + 4 sin 2 x cos 2 x có tất cả bao nhiêu giá trị nguyên?
A. 3.
B. 4.
C. 5.
D. 6.
Lời giải. Ta có y = 5 + 4 sin 2 x cos 2 x = 5 + 2 sin 4 x .
Mà −1 ≤ sin 4 x ≤ 1
→−2 ≤ 2 sin 4 x ≤ 2
→ 3 ≤ 5 + 2 sin 4 x ≤ 7
y ∈ℤ
→ 3 ≤ y ≤ 7
→ y ∈ 3; 4;5;6;7 nên y có 5 giá trị nguyên. Chọn C.
Câu 76. Tìm giá trị nhỏ nhất m của hàm số y = − 2 sin 2016 x + 2017 .
A. m = −2016 2.
B. m = − 2.
C. m = −1.
D. m = −2017 2.
Lời giải. Ta có −1 ≤ sin 2016 x + 2017 ≤ 1
→ 2 ≥ − 2 sin 2016 x + 2017 ≥ − 2.
Do đó giá trị nhỏ nhất của hàm số là − 2. Chọn B.
Cảm ơn quí giáo viên đã cho ra đời những tài liệu tuyệt vời <3
Truy cập website www.tailieupro.com để nhận thêm nhiều tài liệu hơn
Câu 77. Tìm giá trị nhỏ nhất m của hàm số y =
1
.
cos x + 1
/> /> /> /> /> /> /> /> /> />[
]
[
]
/> /> /> /> /> /> /> />{
}
/> /> />(
)(
)
/>1
A. m = .
2
B. m =
1
2
.
C. m = 1.
D. m = 2.
Lời giải. Ta có −1 ≤ cos x ≤ 1 .
1
Ta có
nhỏ nhất khi và chỉ chi cos x lớn nhất ⇔ cos x = 1 .
cos x + 1
1
1
→y=
= . Chọn A.
Khi cos x = 1
cos x + 1 2
Câu 78. Gọi M , m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số
y = sin x + cos x . Tính P = M − m.
A. P = 4.
B. P = 2 2.
C. P = 2.
π
Lời giải. Ta có y = sin x + cos x = 2 sin x + .
4
π
π
→− 2 ≤ 2 sin x + ≤ 2
Mà −1 ≤ sin x + ≤ 1
4
4
D. P = 2.
M = 2
→
→ P = M − m = 2 2. Chọn B.
m = − 2
Câu 79. Tập giá trị T của hàm số y = sin 2017 x − cos 2017 x .
A. T = −2;2 .
B. T = −4034;4034 . C. T = − 2; 2 .
D. T = 0; 2 .
π
Lời giải. Ta có y = sin 2017 x − cos 2017 x = 2 sin 2017 x − .
4
π
π
Mà −1 ≤ sin 2017 x − ≤ 1
→− 2 ≤ 2 sin 2017 x − ≤ 2
4
4
→− 2 ≤ y ≤ 2
→T = − 2; 2 . Chọn C.
π
Câu 80. Hàm số y = sin x + − sin x có tất cả bao nhiêu giá trị nguyên?
3
A. 1.
B. 2.
C. 3.
D. 4.
a +b
a −b
Lời giải. Áp dụng công thức sin a − sin b = 2 cos
sin
, ta có
2
2
π
π
π
π
sin x + − sin x = 2 cos x + sin = cos x + .
3
6
6
6
π
y ∈ℤ
Ta có −1 ≤ cos x + ≤ 1
→−1 ≤ y ≤ 1
→ y ∈ −1;0;1 . Chọn C.
6
Câu 81. Hàm số y = sin 4 x − cos 4 x đạt giá trị nhỏ nhất tại x = x 0 . Mệnh đề nào sau
đây là đúng?
A. x 0 = k 2 π, k ∈ ℤ.
C. x 0 = π + k 2π, k ∈ ℤ.
B. x 0 = k π, k ∈ ℤ.
D. x 0 =
π
+ k π, k ∈ ℤ.
2
Lời giải. Ta có y = sin 4 x − cos 4 x = sin 2 x + cos 2 x sin 2 x − cos 2 x = − cos 2 x .
Mà −1 ≤ cos 2 x ≤ 1
→−1 ≥ − cos 2 x ≥ 1
→−1 ≥ y ≥ 1 .
Do đó giá trị nhỏ nhất của hàm số là −1 .
Cảm ơn quí giáo viên đã cho ra đời những tài liệu tuyệt vời <3
Truy cập website www.tailieupro.com để nhận thêm nhiều tài liệu hơn
Đẳng thức xảy ra ⇔ cos 2 x = 1 ⇔ 2 x = k 2π ⇔ x = k π (k ∈ ℤ ). Chọn B.
Câu 82. Tìm giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = 1 − 2 cos 3 x .
/> /> /> /> /> /> /> /> /> />[ ]
/>(
)
(
)
/> /> /> /> />(
)
/> /> /> /> /> />A. M = 3, m = −1.
B. M = 1, m = −1.
C. M = 2, m = −2.
D. M = 0, m = −2.
Lời giải. Ta có −1 ≤ cos 3 x ≤ 1
→ 0 ≤ cos 3 x ≤ 1
→ 0 ≥ −2 cos 3 x ≥ −2
M = 1
→ 1 ≥ 1 − 2 cos 3 x ≥ −1
→ 1 ≥ y ≥ −1
→
. Chọn B.
m = −1
π
Câu 83. Tìm giá trị lớn nhất M của hàm số y = 4 sin 2 x + 2 sin 2 x + .
4
A. M = 2.
B. M = 2 −1.
C. M = 2 + 1.
D. M = 2 + 2.
1 − cos 2 x
π
2
Lời giải. Ta có y = 4 sin x + 2 sin 2 x + = 4
+ sin 2 x + cos 2 x
4
2
π
= sin 2 x − cos 2 x + 2 = 2 sin 2 x − + 2.
4
π
π
Mà −1 ≤ sin 2 x − ≤ 1
→− 2 + 2 ≤ 2 sin 2 x − + 2 ≤ 2 + 2 .
4
4
Vậy giá trị lớn nhất của hàm số là 2 + 2. Chọn D.
Câu 84. Tìm tập giá trị T của hàm số y = sin 6 x + cos 6 x .
1
1
A. T = 0;2 .
B. T = ;1 .
C. T = ;1 .
2
4
Lời giải. Ta có y = sin 6 x + cos 6 x = sin 2 x + cos 2 x
2
1
D. T = 0; .
4
− 3 sin 2 x cos 2 x sin 2 x + cos 2 x
3
3 1 − cos 4 x 5 3
= 1 − 3sin 2 x cos 2 x = 1 − sin 2 2 x = 1 − .
= + cos 4 x .
4
4
2
8 8
1 5 3
1
Mà −1 ≤ cos 4 x ≤ 1
→ ≤ + cos 4 x ≤ 1
→ ≤ y ≤ 1. Chọn C.
4 8 8
4
Câu 85. Cho hàm số y = cos 4 x + sin 4 x . Mệnh đề nào sau đây là đúng?
2
, ∀x ∈ ℝ.
2
2
1
Lời giải. Ta có y = cos 4 x + sin 4 x = sin 2 x + cos 2 x − 2 sin 2 x cos 2 x = 1 − sin 2 2 x
2
1 1 − cos 4 x 3 1
= 1− .
= + cos 4 x .
2
2
4 4
1 3 1
1
Mà −1 ≤ cos 4 x ≤ 1
→ ≤ + cos 4 x ≤ 1
→ ≤ y ≤ 1 . Chọn B.
2 4 4
2
2
Câu 86. Hàm số y = 1 + 2 cos x đạt giá trị nhỏ nhất tại x = x 0 . Mệnh đề nào sau đây
A. y ≤ 2, ∀x ∈ ℝ. B. y ≤ 1, ∀x ∈ ℝ.
C. y ≤ 2, ∀x ∈ ℝ.
D. y ≤
là đúng?
A. x 0 = π + k 2π, k ∈ ℤ.
C. x 0 = k 2 π, k ∈ ℤ.
B. x 0 =
π
+ k π, k ∈ ℤ.
2
D. x 0 = k π, k ∈ ℤ.
Lời giải. Ta có −1 ≤ cos x ≤ 1
→ 0 ≤ cos 2 x ≤ 1
→ 1 ≤ 1 + 2 cos 2 x ≤ 3.
Do đó giá trị nhỏ nhất của hàm số bằng 1 .
Cảm ơn quí giáo viên đã cho ra đời những tài liệu tuyệt vời <3