Tải bản đầy đủ (.pdf) (63 trang)

Chuyên đề hàm số lượng giác và phương trình lượng giác Võ Anh Dũng

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (328 KB, 63 trang )

Quý thầy cô muốn nhận file word liên hệ mail.
CHUYÊN ĐỀ HÀM SỐ LƯỢNG GIÁC
I. CÁC HÀM SỐ LƢỢNG GIÁC
1. Đồ thị hàm số y = sinx.

2. Đồ thị hàm số y = cosx.

Ghi nhớ:
Hàm số y = sinx
 Tập xác định là  .
 Tập giá trị [-1; 1].
 Là hàm số lẻ.
 Là hàm số tuần hoàn với chu kỳ 2  .
 Đồng biến trên mỗi khoảng

 

   k 2 ;  k 2  và nghịch biến trên
2
 2

3


mỗi khoảng   k 2 ;
 k 2  , k  .
2
2

 Có đồ thị là một đường hình sin.
3. Đồ thị hàm số y = tanx.



Hàm số y = cosx
 Tập xác định là  .
 Tập giá trị [-1; 1].
 Là hàm số chẵn.
 Là hàm số tuần hoàn với chu kỳ 2  .
 Đồng biến trên mỗi khoảng    k 2 ; k 2 
và nghịch biến trên mỗi khoảng
 k 2 ;  k 2  , k .
 Có đồ thị là một đường hình sin.

4. Đồ thị hàm số y = cotx.

Ghi nhớ:
1 | P a g e - />
ST VÀ BIÊN SOẠN: Võ Anh Dũng


Quý thầy cô muốn nhận file word liên hệ mail.
Hàm số y = tanx
Hàm số y = cotx


 Tập xác định là  k ; k  Z  .
 Tập xác định là  \   k ; k  Z  .
2

 Tập giá trị  .
 Tập giá trị  .
 Là hàm số lẻ.

 Là hàm số lẻ.
 Là hàm số tuần hoàn với chu kỳ  .
 Là hàm số tuần hoàn với chu kỳ  .
 Đồng biến trên mỗi khoảng
 Nghịch biến trên mỗi khoảng

 

 k ;  k  , k .
   k ;  k  , k .
2
 2

 Đồ thị nhận mỗi đường
 Đồ thị nhận mỗi đường x  k (k ). làm

một đường tiệm cận.
x   k (k  ). làm một đường tiệm
2
cận.
PHƢƠNG PHÁP GIẢI TOÁN
Dạng 1: Tìm tập xác định của hàm số
Phƣơng pháp:
 y  sin u xác định  u xác định.
 y  cos u xác định  u xác định.

 y  tan u xác định  u   k (k ).
2
 y  cot u xác định  u  k (k ).
Để tìm tập xác định của hàm số ta cần nhớ:

 y  f ( x) xác định  f ( x)  0 .
1
xác định  f ( x)  0 .
 y
f ( x)
1
 y
xác định  f ( x)  0 .
f ( x)
Dạng 2: Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số lượng giác
Phƣơng pháp: Cho hàm số y = f(x) xác định trên tập D.
 f ( x)  M , x  D
 M = max f ( x)  
D
x0  D : f ( x0 )  M .
 f ( x)  m, x  D
 m = min f ( x)  
D
x0  D : f ( x0 )  m.
Ghi nhớ:
 1  sin x  1 ; 1  cos x  1; x .
 0  sin 2 x  1 ; 0  cos2 x  1; x  .
Dạng 3: Tìm chu kỳ của hàm số lượng giác.
Phƣơng pháp:
 Hàm số y = f(x) xác định trên tập D tuần hoàn nếu có số T sao cho với mọi x  D ta có:
x  T  D, x  T  D, f ( x  T )  f ( x).
 T chu kỳ  T dƣơng nhỏ nhất: f ( x  T )  f ( x).
Chú ý:
 Hàm số y = f1(x) có chu kỳ T1 ; y = f2(x) có chu kỳ T2. Thì hàm số y  f1 ( x)  f 2 ( x) có chu kỳ T0 là
bội chung nhỏ nhất của T1 và T2.

2 | P a g e - />
ST VÀ BIÊN SOẠN: Võ Anh Dũng


Quý thầy cô muốn nhận file word liên hệ mail.
 y  sin x có chu kỳ T0  2 . Hàm số y = sin(ax + b) có chu kỳ T0 

2
.
a

 y  cos x có chu kỳ T0  2 . Hàm số y = cos(ax + b) có chu kỳ T0 

2
.
a


.
a

 y  cot x có chu kỳ T0   . Hàm số y = cot(ax + b) có chu kỳ T0  .
a
 y  tan x có chu kỳ T0   . Hàm số y = tan(ax + b) có chu kỳ T0 

 Hàm số f ( x)  a sin ux  b cos vx  c ( với u, v  ) là hàm số tuần hoàn với chu kì T 

2
(u, v)


(( (u, v) là ước chung lớn nhất).
 Hàm số f ( x)  a.tan ux  b.cot vx  c (với u, v  ) là hàm tuần hoàn với chu kì T 


(u, v)

.

Dạng 4: Xét tính đồng biến, nghịch biến của hàm số lượng giác.
Phƣơng pháp:

 

 Hàm số y = sinx đồng biến trên mỗi khoảng    k 2 ;  k 2  và nghịch biến trên mỗi khoảng
2
 2

3


 k 2  , k  .
  k 2 ;
2
2

 Hàm số y = cosx đồng biến trên mỗi khoảng    k 2 ; k 2  và nghịch biến trên mỗi khoảng

 k 2 ;  k 2  , k .

 


 Hàm số y = tanx đồng biến trên mỗi khoảng    k ;  k  , k .
2
 2

 Hàm số y = cotx nghịch biến trên mỗi khoảng  k ;   k  , k .
II. PHƢƠNG TRÌNH LƢỢNG GIÁC.
PHƢƠNG PHÁP GIẢI TOÁN
1. Phƣơng trình lƣợng giác cơ bản.
1.1. Phương trình sin x  a .
 a  1 : Phương trình vô nghiệm
 a 1



 x    k 2
sin x  sin   
 k  
x





k
2


 x   0  k 3600
0

sin x  sin   
 k  
0
0
0
 x  180    k 360

 x  arc sin a  k 2
sin x  a  
k  
 x    arc sin a  k 2
 Các trƣờng hợp đặc biệt

 sin x  1  x   k 2  k   
2

 sin x  1  x    k 2  k   
2
 sin x  0  x  k  k   


 Bài tập minh họa:

3 | P a g e - />
ST VÀ BIÊN SOẠN: Võ Anh Dũng


Quý thầy cô muốn nhận file word liên hệ mail.
Ví dụ: Giải các phương trình sau:


1
a)sin x  sin
c) sin 3x 
b)sin 2 x   sin 360
12
2
Giải




x   k 2
x   k 2



12
12
a)sin x  sin  

k  
12
 x      k 2
 x  11  k 2
12
12






b) sin 2 x   sin 36  sin 2 x  sin 36
0

0



d )sin x 

2
3

 2 x  360  k 3600
 2 x  360  k 3600


0
0
0
0
0
 2 x  180  36  k 360
 2 x  216  k 360





 x  180  k1800


k  
0
0
 x  108  k180



2


3x   k 2
x  k


1

6
18
3
c)sin 3x   sin 3x  sin  

k  
2
6
3x  5  k 2
 x  5  k 2


6

18
3
2

x  arcsin  k 2

2
3
d )sin x   
k  
3
 x    arcsin 2  k 2

3
1.2. Phương trình cos x  a
 a  1 : Phương trình vô nghiệm
 a 1


cosx  cos  x    k 2  k  



cosx  cos 0  x    0  k 3600  k  

 cosx  a  x   arccosa  k 2  k  
 Các trƣờng hợp đặc biệt

cos x  0  x   k
2

cos x  1  x  k2

cos x  1  x    k2
 Bài tập minh họa:

Ví dụ: Giải các phương trình sau:
2

b) cos  x  450  
a) cos x  cos
2
4
a) cos x  cos


4

x


4

c)cos4 x  

2
;
2

d ) cos x 


3
4

Giải
 k 2  k   

 x  450  450  k 3600
 x  450  k 3600
2
0
0
b) cos x  45 
 cos x  45  cos45  

k  
0
0
0
0
0
2
 x  90  k 360
 x  45  45  k 360



0








4 | P a g e - />
ST VÀ BIÊN SOẠN: Võ Anh Dũng


Quý thầy cô muốn nhận file word liên hệ mail.
2
3
3
3

c)cos4 x  
 cos4 x  cos
 4x  
 k 2  x  
 k , k  
2
4
4
16
2
3
3
d ) cos x   x   arccos  k 2 , k  
4
4
1.3. Phương trình tan x  a

 tan x  t an  x =   k  k   

k  
 tan x  a  x = arctan a  k  k   
 tan x  t an 0  x = 0  k1800
 Các trƣờng hợp đặc biệt
tan x  0  x  k

tan x  1  x  


 k
4

 Bài tập minh họa:

Ví dụ: Giải các phương trình sau:

a) tan x  tan
3



b) tan 4 x  

c) tan  4 x  200   3

1
3


Giải



 x   k ,  k   
3
3
1
1

 1
 1
b) tan 4 x    4 x  arctan     k  x  arctan     k ,  k   
3
4
4
 3
 3
a) tan x  tan









c) tan 4 x  200  3  tan 4 x  200  tan 600  4 x  200  600  k1800  4 x  800  k1800
 x  200  k 450 ,  k   


1.4. Phương trình cot x  a
 cot x  cot   x =  + k  k   

k  
 cot x  a  x = arc cot a + k  k   
 cot x  cot  0  x =  0 + k1800
 Bài tập minh họa:

Ví dụ: Giải các phương trình sau:
3
a) cot 3x  cot
7

 1

c) cot  2 x   
6
3


b) cot 4 x  3

Giải
3
3


a) cot 3x  cot
 3x 

 k  x   k ,  k   
7
7
7
3
1

b) cot 4 x  3  4 x  arctan  3  k  x  arctan  3  k ,  k   
4
4
 1


 





c) cot  2 x   
 cot  2 x    cot  2 x    k  2 x   k  x   k ,  k   
6
6
6
6 6
3
6
2
3



BÀI TẬP TƢƠNG TỰ
Bài 1: Giải các phương trình sau:





1) sin  2 x  1  sin  3x  1
2) cos  x    cos  2 x  
3) tan  2 x  3  tan
3
4
2


4) cot  450  x  

3
3

5 | P a g e - />
5) sin 2 x 

3
2






6) cos 2 x  250 

 2
2

ST VÀ BIÊN SOẠN: Võ Anh Dũng


Quý thầy cô muốn nhận file word liên hệ mail.





3
3

7) sin3x  sin x

8) cot  4 x  2    3

10) sin 8x  600   sin 2 x  0

11) cos



13) tan x  cot   2 x 
4



14) sin 2 x  cos3x

16) sin 4 x   cos x

17) sin 5x   sin 2 x


2 
15) sin  x 
  cos2 x
3 

18) sin2 2 x  sin2 3x

20) sin 4 x  cos5x  0

21) 2sin x  2 sin 2 x  0

23) sin5x.cos3x  sin6 x.cos2 x

24) cos x  2sin2

19) tan  3x  2   cot 2 x  0
22) sin2 2 x  cos2 3x  1



x

  cos 2 x  300
2

9) tan x  150 





25) tan  3x   cot  5x     1
26) tan5x.tan3x  1
2



28) tan   sin x  1   1
4

   
Bài 2: Tìm x  
;  sao cho: tan  3x  2   3 .
 2 2




Bài 3: Tìm x   0;3  sao cho: sin  x    2 cos  x    0 .
3
6




12) sin x  cos 2 x  0

x
0
2



2
27) sin  cos x  
4
 2

2. Phƣơng trình bậc hai đối với một HSLG:
a. a sin 2 x  bsinx  c  0

b. acos2 x  bcosx  c  0

c. a tan 2 x  b t anx  c  0
d. a cot 2 x  b cot x  c  0
Cách giải:
đặt t  sinx / cosx  -1  t  1 hoặc t  t anx / cot x  t   ta được phương trình bậc hai theo t.
 Bài tập minh họa:

Ví dụ: Giải phương trình sau:
a) 2sin 2 x  sin x  3  0 là phương trình bậc hai đối với sin x .
b) cos 2 x  3cosx  1  0 là phương trình bậc hai đối với cosx .
c) 2 tan 2 x  tan x  3  0 là phương trình bậc hai đối với tan x .

d) 3cot 2 3x  2 3 cot 3x  3  0 là phương trình bậc hai đối với cot 3x .

Giải
a) 2sin x  sin x  3  0(1)
2

Đặt t  sin x , điều kiện t  1 . Phương trình (1) trở thành:

t  1  nhân 
2t  t  3  0   3
t   loai 
 2
Với t=1, ta được sin x  1  x  k 2  k  
2

b) cos 2 x  3cosx  1  0  2 
Đặt t  cosx , điều kiện t  1 . Phương trình (2) trở thành:

6 | P a g e - />
ST VÀ BIÊN SOẠN: Võ Anh Dũng


Quý thầy cô muốn nhận file word liên hệ mail.
 3  13
 nhân 
t 
2
t 2  3t  1  0  
 3  13
 loai 

t 

2
3  13
3  13
3  13
Với t 
ta được cosx 
 x   arccos
 k 2  k   
2
2
2
Các câu còn lại giải tƣơng tự
Ví dụ: Giải các phương trình sau:
a) 3sin 22 x  7 cos 2 x  3  0

b)7 tan x  4cot x  12
Giải
2
2
a) 3sin 2 x  7 cos 2 x  3  0  3 1  cos 2 x  7 cos 2 x  3  0





cos 2 x  0
 3cos 2 2 x  7 cos 2 x  0  cos 2 x  3cos 2 x  7   0  
3cos 2 x  7  0




*) Giải phương trình: cos 2 x  0  2 x   k  x   k ,  k   
2
4
2
7
*) Giải phương trình: 3cos 2 x  7  0  cos 2 x 
3
7
Vì  1 nên phương trình 3cos 2 x  7  0 vô nghiệm.
3


Kết luận: vậy nghiệm của phương trình đã cho là x   k ,  k   
4
2
b)7 tan x  4cot x  12 1
Điều kiện: sin x  0 và cos x  0 . Khi đó:
1
 12  0  7 tan 2 x  12 tan x  4  0
1  7 tan x  4.
tan x
t

tan
x , ta giải phương trình bậc hai theo t: 7t 2  4t  12  0
Đặt


BÀI TẬP TƢƠNG TỰ
Bài 4: Giải các phương trình sau:
29) 2cos2 x  3cos x  1  0
30) cos2 x  sin x  1  0
31) 2 cos2 x  4 cos x  1
2
32) 2sin x  5sinx – 3  0
33) 2cos2x  2cosx - 2  0 34) 6 cos 2 x  5 sin x  2  0
35) 3 tan 2 x  (1  3) tan x=0
36) 24 sin 2 x  14cosx 21  0



2
2
37) sin  x    2cos  x    1 38) 4cos x 2( 3 1)cosx  3  0
3
3



3. Phƣơng trình bậc nhất đối với sinx và cosx: a sinx  bcosx = c

 a 2  b2  0 

Cách giải:
 Chia hai vế của phương trình cho

a 2  b2 , ta được:


a
a b
2

2

sin x 

b
a b
2

2

cos x 

c
a  b2
2

(1)
Đặt

a
a 2  b2

 cos a ;

b
a 2  b2


 sin a . Khi đó:

 Pt(1) thành : sin x cos a  cos x sin a 

7 | P a g e - />
c
a 2  b2

 sin  x  a 

c
a 2  b2

(2).

ST VÀ BIÊN SOẠN: Võ Anh Dũng


Quý thầy cô muốn nhận file word liên hệ mail.
Pt(2) là pt lượng giác dạng cơ bản nên giải dễ dàng.
Nhận xét :
2
2
2
 Phương trình a sin x  b cos x  c có nghiệm khi và chỉ khi a  b  c .
 Các phương trình: a sin x  b cos x  c , a cos x  b sin x  c cũng được giải tương tự.
 Bài tập minh họa:

Ví dụ: Giải các phương trình:


a) 3sin x  cos x  2
c) 3 sin 3x  cos3 x  2

b) 3sin x  cos x  2
d) sin 5x  cos5x   2
Giải



2
3
1
2
 sin x cos  cos x sin 
sin x  cos x 
2
2
2
6
6
2
 



x
k
2





x

 k 2




6
4
12
 sin( x  )  sin  
,k 


3

7

6
4
x  
x 
 k 2
 k 2


6 4

12


2
3
1
2
 sin x cos  cos x sin 
sin x  cos x 
b) 3sin x  cos x  2 
2
2
2
6
6
2
 
5


x    k2
x
 k 2




6
4
12

 sin( x  )  sin  

,k 

3

11

6
4
x  
x 
 k 2
 k 2


6 4
12
a) 3sin x  cos x  2 

3
1

 
2 k 2
sin 3x  cos 3x  1  sin (3x  ) =1  3x    k 2  x 

6
6 2
9

3
2
2



1
1
d) sin 5x  cos5x   2 
sin 5 x 
cos 5 x  1  sin (5 x  ) = - 1  5 x     k 2 
4
4
2
2
2
3 k 2
x

20
5

c) 3 sin 3x  cos3 x  2 

BÀI TẬP TƢƠNG TỰ
Bài 5: Giải các phương trình sau:
39) 2sin x  2 cos x  2

40) 3sin x  4cos x  5


41) 3sin  x  1  4 cos  x  1  5

42) 3cos x  4sin x  5

43) 2sin 2 x  2cos 2 x  2

44) 5sin 2 x  6cos 2 x  13;(*)


 1
45) sin 4 x  cos4  x    (*)
4 4

4. Phƣơng trình dẳng cấp bậc hai: a sin 2 x  b sin x cos x  c cos2 x  0 ( a 2  b2  c2  0 )
Cách giải:
p
 Xét xem x   k p có là nghiệm của phương trình không .
2
p
 Với x   k p ( cos x  0 ), chia hai vế của phương trình cho cos 2 x ( hoặc sin 2 x ) ta được phương
2
trình bậc 2 theo tan x (hoặc cot x ).
Chú ý:
 Áp dụng công thức hạ bậc và công thức nhân đôi ta có thể đưa phương trình về dạng bậc nhất theo
sin 2x và cos 2x .
8 | P a g e - />
ST VÀ BIÊN SOẠN: Võ Anh Dũng


Quý thầy cô muốn nhận file word liên hệ mail.

 Phương trình a sin 2 x  b sin x cos x  c cos2 x  d cũng được xem là phương trình đẳng cấp bậc hai vì





d  d sin 2 x  cos2 x .
 Làm tương tự cho phương trình đẳng cấp bậc n.

5. Phƣơng trình đối xứng: a  sinx  cosx   b sin xcosx  c  0 ( a 2  b2  0 )
Cách giải:


t2 1

Đặt t  sinx  cosx  2 sin  x   , t  2  sin xcosx 
ta được phương trình bậc hai theo t.
4
2

Chú ý:
 Phương trình a  sinx-cosx   b sin xcosx  c  0 được giải tương tự.










2
2
 Phương trình a tan x  cot x  b  t anx  cot x   c  0 (*)  sinx, cosx  0 

đặt t  t anx  cot x  t  2  tan2 x  cot 2 x  t 2  2





2
2
 Phương trình a tan x  cot x  b  t anx-cot x   c  0 giải tương tự.

TẬP XÁC ĐỊNH
1
Câu 1: Tập xác định của hàm số y 

sin x  cos x

A. x  k .

B. x  k 2 .

Câu 2: Tập xác định của hàm số y 
A. x 


2


 k .

1  3cos x

sin x

B. x  k 2 .

Câu 3 : Tập xác định của hàm số y=


A.  \   k , k  Z  .
4




C.  \   k , k  Z  .
2
4


Câu 4: Tập xác định của hàm số y 

3

sin x  cos 2 x

A. x  k 2


C. x 


2

 k .

D. x 

k
.
2


4

 k .

D. x  k .

2



B.  \   k , k  Z  .
2

 3


D.  \   k 2 , k  Z  .
4


cot x

cos x  1



B.  \   k , k  Z 
2

2sin x  1
Câu 5: Tập xác định của hàm số y 

1  cos x
 

A.  \ k , k  Z 
 2


C. x 

B. x  k



Câu 6: Tập xác định của hàm số y  tan  2x   là

3

 k
5
A. x  
B. x 
 k
6 2
12
Câu 7: Tập xác định của hàm số y  tan 2x là
9 | P a g e - />
C.  \ k , k  Z 

C. x 

C. x 


2


2

D. 

 k

D. x 

 k


D. x 


2

 k 2

5

k
12
2

ST VÀ BIÊN SOẠN: Võ Anh Dũng


Quý thầy cô muốn nhận file word liên hệ mail.
 k

 k

A. x 
B. x   k
C. x  
D. x   k

4
2
2

4 2
4
1  sin x
Câu 8: Tập xác định của hàm số y 

sin x  1

3
A. x   k 2 .
B. x  k 2 .
C. x 
D. x    k 2 .
 k 2 .
2
2
Câu 9: Tập xác định của hàm số y  cos x là
A. x  0 .
B. x  0 .
C.  .
D. x  0 .
1  2cos x

Câu 10: Tập xác định của hàm số y 
sin 3x  sin x

  k



A.  \ k ;  k , k   

B.  \  
, k   .
4
4 2




k



C.  \ k , k   .
D.  \ k ; 
, k   .
4 2


Câu 11: Hàm số y  cot 2x có tập xác định là




D.  \   k ; k   
2
4





 

B.  \   k ; k    C.  \ k ; k   
4

 2

Câu 12:Tập xác định của hàm số y  tan x  cot x là

A. k

A. 

B.  \ k ; k  

Câu 13: Tập xác định của hàm số y 

2x

1  sin 2 x

5
A.  .
2

C. y  sin x  x  sin x  x .
Câu 14: Tập xác định của hàm số y  tan x là




C. D   \   k 2 , k    .
2

Câu 15: Tập xác định của hàm số y  cot x là


A. D   \   k , k    .
4

C. D   \ k , k  .

A. D   \ 0.



A. D   \   k , k    .
2


D. D   \ k , k  .


B. D   \   k , k    .
2

D. D  .

1

sin x


C. D   \ k , k  .
Câu 17: Tập xác định của hàm số y 



B. D   \   k , k    .
2

 k
D. x   
.
3 2


B. D   \   k , k    .
2


A. D  .

Câu 16: Tập xác định của hàm số y 



 

C.  \   k ; k    D.  \ k ; k   
2


 2


B. D   \ k 2 , k   .
D. D   \ 0;  .

1

cot x

10 | P a g e - />
B. D   \ k , k  .

ST VÀ BIÊN SOẠN: Võ Anh Dũng


Quý thầy cô muốn nhận file word liên hệ mail.
3 
 

 
C. D   \ k , k    .
D. D   \ 0; ;  ;  .
2 
 2

 2
1
Câu 18: Tập xác định của hàm số y 


cot x  3




A. D   \   k 2 , k    .
B. D   \   k , k , k    .
6

6





 2

C. D   \   k ,  k , k    .
D. D   \   k ,  k , k    .
2
2
3

 3

x 1
Câu 19: Tập xác định của hàm số: y 
là:
tan 2 x
 


A.  \ k , k  .
B.  \ k , k    .
 4



 k

C.  \   k , k    .
D.  \  , k    .
 2

2

3x  1
Câu 20: Tập xác định của hàm số y 
là:
1  cos 2 x


 

B. D   \   k , k    .
A. D   \   k , k    .
2

 2

C. D   \   k , k  .

D. D  .
Câu 21: Tập xác định của hàm số: y 


A.  \   k , k    .
2


x 1
là:
cot x

C.  \ k , k  .
Câu 22: Tập xác định của hàm số y  tan  3x  1 là:


 1

A. D   \    k , k    .
3
6 3


1



C. D   \    k , k    .
3
6 3



 k

B.  \  , k    .
 2



D.  \   k 2 , k    .
2



1

B. D   \   k , k    .
3
3


1



D. D     k , k    .
3
6 3





Câu 23:Tập xác định của hàm số y  tan  3x   là
4

A. D   .


C. D   \   k , k   
.
12

Câu 24: Tập xác định của hàm số y  sin  x  1 là:

B.
D. D  R \ k  .

A. .

B.  \{1} .



C.  \   k 2 | k    .
2


D.  \{k } .

Câu 25: Tập xác định của hàm số y  sin

A.  \ 1 .

11 | P a g e - />
x 1
là:
x 1

B.  1;1 .

ST VÀ BIÊN SOẠN: Võ Anh Dũng


Quý thầy cô muốn nhận file word liên hệ mail.




C.  \   k 2 | k    .
D.  \   k | k    .
2

2


x2  1
là:
sin x

Câu 26: Tập xác định của hàm số y 
A. .


B.  \ 0 .

C.  \ k | k   .



D.  \   k | k    .
2


Câu 27: Tập xác định của hàm số y 


A.  \   k | k    .
2

C. .

2 sin x
là:
1  cos x

Câu 28: Tập xác định của hàm số y 
A.  \   k 2 , k   .

B.  \   k 2 | k   .
D.  \ 1 .

1  sin x


1  cos x

B.  \ k 2 , k   .





C.  \   k 2 , k    .
D.  \   k 2 , k    .
4

2

Câu 29: Tập xác định D của hàm số y  sinx  2. là
A. . .
B.  2;   .

D. arcsin  2  ;   .

C.  0;2  .
Câu 30: Tập xác định của hàm số y  1  cos 2 x là
A. D  . .
B. D  0;1.
Câu 31: Hàm số nào sau đây có tập xác định .
2  cos x
A. y 
.
2  sin x

1  sin 2 x
C. y 
.
1  cot 2 x
Câu 32: Tập xác định của hàm số y 

D. D   \ k , k  .

B. y  tan 2 x  cot 2 x .
D. y 

sin 3 x
.
2 cos x  2

1  sin x

sin 2 x


B. D   \   k 2 , k    .
2

D. D   .

A. D   \ k , k   .
C. D   \ k 2 , k   .
Câu 33: Tập xác định của hàm số y 

C. D   1;1.


1  cos x
là:
cos 2 x



A. D   \   k 2 , k    .
B. D   .
2



C. D   \   k , k    .
D. D   \ k , k   .
2

2  sin 2 x
Câu 34: Hàm số y 
có tập xác định  khi
m cos x  1
A. m  0 .
B. 0  m  1 .
C. m  1.

12 | P a g e - />
D. 1  m  1 .

ST VÀ BIÊN SOẠN: Võ Anh Dũng



Quý thầy cô muốn nhận file word liên hệ mail.
tan x
Câu 35: Tập xác định của hàm số y 
là:
cos x  1
A. x  k 2 .

B. x 


3

Câu 36: Tập xác định của hàm số y 
A. x 


2

 k .


2

 k 2 .

A. x 


2


 k .

D. x 

3

sin x

k
.
2

C. x 

3
 k 2 .
2

D. x    k 2 .

C. x 

k
.
2

D. x  k .

1  3cos x


sin x

B. x  k 2 .

Câu 39: Tập xác định của hàm số y 

C. x  k .

1  sin x
là:
sin x  1

B. x  k 2 .

Câu 38: Tập xác định của hàm số y 



 x  2  k
D. 
.
 x    k

3

cot x
là:
cos x


B. x  k 2 .

Câu 37: Tập xác định của hàm số y 
A. x 

 k 2 .



 x   k
C. 
.
2
 x  k 2

A. D   .

B. D   \ k 2 , k   .



C. D   \   k , k    .
2


D. D   \ k , k   .



Câu 40: Tập xác định của hàm số y  tan  3x   là

4

A. D   .


C. D   \   k , k    .
12

Câu 41: Chọn khẳng định sai
A.Tập xác định của hàm số y  sin x là  .

  k

B. D   \  
, k   .
12 3


D. D   \ k , k   .



B.Tập xác định của hàm số y  cot x là D   \   k , k    .
2

C.Tập xác định của hàm số y  cos x là  .


D.Tập xác định của hàm số y  tan x là D   \   k , k    .
2


sin x

Câu 42: Tập xác định của hàm số y 
1  cos x


A.  \ k 2 , k   .
B.  \   k , k    .
2



C.  .
D.  \   k 2 , k    .
2

1  cos 3x
Câu 43: Tìm tập xác định của hàm số y 
1  sin 4 x

13 | P a g e - />
ST VÀ BIÊN SOẠN: Võ Anh Dũng


Quý thầy cô muốn nhận file word liên hệ mail.


 


 3

A. D   \   k , k   
B. D   \ 
 k , k  
2
2
 8

 8









C. D   \   k , k   
D. D   \   k , k   
2
2
 4

 6


1  cot 2 x
Câu 44: Tìm tập xác định của hàm số sau y 

1  sin 3x
 n2


   n2

A. D   \ k , 
B. D   \ k , 
; k , n  
; k , n  
6
3
3


 3 6


n
2


n
2





C. D   \ k , 

D. D   \ k , 
; k , n  
; k , n  
6
5
5
3




tan 2 x
Câu 44: Tìm tập xác định của hàm số sau y 
3 sin 2 x  cos 2 x
 

 





A. D   \   k ,  k ; k   
B. D   \   k ,  k ; k   
2 12
2
2 5
2
4


3

 

 





C. D   \   k ,  k ; k   
D. D   \   k ,  k ; k   
2 3
2
2 12
2
4

3



Câu 45: Tìm tập xác định của hàm số sau y  tan( x  ).cot( x  )
4
3


 3

 3


A. D   \   k ,  k ; k   
B. D   \   k ,  k ; k   
3
5
4

4





 3

C. D   \   k ,  k ; k   
D. D   \   k ,  k ; k   
3
6
4

5

Câu 46: Tìm tập xác định của hàm số sau y  tan 3x.cot 5x
 n
 n





A. D   \   k ,
B. D   \   k ,
; k , n  
; k , n  
3 5
3 5
6

5

 n
 n




C. D   \   k ,
D. D   \   k ,
; k , n  
; k , n  
4 5
3 5
6

4


TÍNH CHẴN LẺ, CHU KỲ CỦA HÀM SỐ
Câu 1: Khẳng định nào sau đây sai?
A. y  tan x là hàm lẻ.

B. y  cot x là hàm lẻ.
C. y  cos x là hàm lẻ.
D. y  sin x là hàm lẻ.
Câu 2: Trong các hàm số sau hàm số nào là hàm số chẵn?
A. y  sin 2 x .
B. y  cos3x .
C. y  cot 4 x .
D. y  tan 5 x .
Câu 3: Hàm số nào sau đây là hàm số chẵn
A. y  sin 3x .

B. y  x.cos x .

C. y  cos x.tan 2 x .

D. y 

tan x
.
sin x

Câu 4: Trong các hàm số sau, có bao nhiêu hàm số là hàm chẵn trên tập xác định của nó?
2016
x .
y  cot 2 x ; y  cos( x   ) ; y  1  sin x ; y  tan
A. 1 .
B. 2 .
Câu 5:Hàm số nào sau đây là hàm số chẵn.
A. y  sin 3x .


B. y  x.cos x .

C. 3 .

D. 4 .

C. y  cos x.tan 2 x .

D. y 

Câu 6:Cho hàmsố f  x   cos 2 x và g  x   tan 3x , chọn mệnh đề đúng
14 | P a g e - />
tan x
.
sin x

ST VÀ BIÊN SOẠN: Võ Anh Dũng


Quý thầy cô muốn nhận file word liên hệ mail.
A. f  x  là hàm số chẵn, g  x  là hàm số lẻ.
B. f  x  là hàm số lẻ, g  x  là hàm số chẵn.
C. f  x  là hàm số lẻ, g  x  là hàm số chẵn.
D. f  x  và g  x  đềulà hàm số lẻ.
Câu 7:
Khẳng định nào sau đây là sai?
A. Hàm số y  x 2  cos x là hàm số chẵn.
B. Hàm số y  sin x  x  sin x + x là hàm số lẻ.
sin x
là hàm số chẵn.

x
D. Hàm số y  sin x  2 là hàm số không chẵn, không lẻ.
Câu 8:
Hàm số nào sau đây là hàm số chẵn
A. y  sin 2 x  sin x .
B.  2;5 .

C. Hàm số y 

C. y  sin 2 x  tan x .
D. y  sin 2 x  cos x .
Câu 9:Trong các hàm số sau, có bao nhiêu hàm số là hàm chẵn trên tập xác định của nó y  cot 2 x,
2016
x?
y  cos( x   ), y  1  sin x, y  tan
A. 2 .
B. 1 .
C. 4 .
Câu 10: Khẳng định nào sau đây là sai?
A.Hàm số y  sinx  2 là hàm số không chẵn, không lẻ.
s inx
B.Hàm số y 
là hàm số chẵn.
x
C.Hàm số y  x 2  cos x là hàm số chẵn.

D.Hàm số y  sin x  x  sin x  x là hàm số lẻ.
Câu 11: Hàm số nào sau đây là hàm số lẻ ?
A. y  2 x  cos x .
C. y  x 2 sin  x  3 .

Câu 12: Hàm số y  tan x  2sin x là:
A.Hàm số lẻ trên tập xác định.
C.Hàm số không lẻ tập xác định.
Câu 13: Hàm số y  sin x.cos3 x là:
A.Hàm số lẻ trên  .
C.Hàm số không lẻ trên  .
Câu 14: Hàm số y  sin x  5cos x là:
A.Hàm số lẻ trên  .
C.Hàm số không chẵn, không lẻ trên  .
Câu 15: Hàm số nào sau đây không chẵn, không lẻ ?
sin x  tan x
A. y 
.
2cos 2 x
C. y  sin 2 x  cos 2 x .
Câu 16: Hàm số y  sin x  5cos x là:
A. Hàm số lẻ trên  .
C. Hàm số không chẵn, không lẻ trên  .
Câu 17: Hàm số nào sau đây không chẵn, không lẻ ?
sin x  tan x
A. y 
.
2 cos 2 x
15 | P a g e - />
D. 3 .

B. y  cos3x .
cos x
D. y  3 .
x

B.Hàm số chẵn tập xác định.
D.Hàm số không chẵn tập xác định.
B.Hàm số chẵn trên  .
D.Hàm số không chẵn  .
B.Hàm số chẵn trên  .
D.Cả A, B, C đều sai.
B. y  tan x  cot x .
D. y  2  sin 2 3x .
B. Hàm số chẵn trên  .
D. Cả A, B, C đều sai.
B. y  tan x  cot x .
ST VÀ BIÊN SOẠN: Võ Anh Dũng


Quý thầy cô muốn nhận file word liên hệ mail.
C. y  sin 2 x  cos 2 x .
Câu 18: Hàm số nào sau đây là hàm số chẵn:
A. y  5sin x.tan 2 x .
C. y  2sin 3x  5 .
Câu 19: Hàm số nào sau đây không chẵn, không lẻ:
sin x  tan x
A. y 
.
2 cos3 x

D. y  2  sin 2 3x .
B. y  3sin x  cos x .
D. y  tan x  2sin x .
B. y  tan x  cot x .


C. y  sin 2 x  cos 2 x .
D. y  2  sin 2 3x .
Câu 20: Trong các hàm số sau đây hàm số nào là hàm số lẻ?
A. y  sin 2 x .
B. y  cos x .
C. y   cos x .
Câu 21: Trong các hàm số sau đây, hàm số nào là hàm số chẵn?
B. y  cos x  sin x .
C. y  cos x  sin 2 x .
A. y   sin x .
Câu 22: Trong các hàm số dưới đây có bao nhiêu hàm số là hàm số chẵn:
y  cos3x 1 ;
y  tan 2 x  3 ;
y  sin  x 2  1  2  ;
A. 1 .
B. 2 .
C. 3 .
Câu 24: Trong các hàm số sau đây, hàm số nào là hàm số tuần hoàn?
B. y  x  1 .

A. y  sin x .

C. y  x 2 .

D. y  sin x .
D. y  cos x sin x .

y  cot x  4  .
D. 4 .
D. y 


x 1
.
x2

D. y 

x2  1
.
x

D. y 

1
.
x

Câu 25: Trong các hàm số sau đây, hàm số nào là hàm số tuần hoàn?
A. y  sin x  x .

B. y  cos x .

C. y  x sin x

Câu 26: Trong các hàm số sau đây, hàm số nào là hàm số tuần hoàn?
B. y  x tan x .

A. y  x cos x .

C. y  tan x .


Câu 27: Trong các hàm số sau đây, hàm số nào là hàm số tuần hoàn?
sin x
.
B. y  tan x  x .
C. y  x 2  1 .
A. y 
x
Câu 29: Chu kỳ của hàm số y  sin x là:

A. k 2 , k  .
B. .
C.  .
2
Câu 30: Chu kỳ của hàm số y  cos x là:
2
A. k 2 .
B.
.
C.  .
3
Câu 31: Chu kỳ của hàm số y  tan x là:

A. 2 .
B. .
C. k , k  .
4
Câu 33: Chu kỳ của hàm số y  cot x là:

A. 2 .

B. .
C.  .
2

D. y  cot x .

D. 2 .

D. 2 .

D.  .

D. k , k  .

SỰ BIẾN THIÊN VÀ ĐỒ THỊ HÀM SỐ LƯỢNG GIÁC

Câu 1: Hàm số y  sin x :



A. Đồng biến trên mỗi khoảng   k 2 ;   k 2  và nghịch biến trên mỗi khoảng   k 2 ; k 2  với
2


k  .

16 | P a g e - />
ST VÀ BIÊN SOẠN: Võ Anh Dũng



Quý thầy cô muốn nhận file word liên hệ mail.
5
 3

B. Đồng biến trên mỗi khoảng  
 k 2 ;
 k 2  và nghịch biến trên mỗi khoảng
2
 2





   k 2 ;  k 2  với k  .
2
 2

3


C. Đồng biến trên mỗi khoảng   k 2 ;
 k 2  và nghịch biến trên mỗi khoảng
2
2






   k 2 ;  k 2  với k  .
2
 2


 

D. Đồng biến trên mỗi khoảng    k 2 ;  k 2  và nghịch biến trên mỗi khoảng
2
 2

3


 k 2  với k  .
  k 2 ;
2
2

Câu 2: Hàm số y  cos x :


A. Đồng biến trên mỗi khoảng   k 2 ;   k 2  và nghịch biến trên mỗi khoảng   k 2 ; k 2  với
2

k  .
B. Đồng biến trên mỗi khoảng    k 2 ; k 2  và nghịch biến trên mỗi khoảng  k 2 ;   k 2  với

k  .
C. Đồng biến trên mỗi khoảng


3


 k 2 
  k 2 ;
2
2


và nghịch biến trên mỗi khoảng


 

   k 2 ;  k 2  với k  .
2
 2

D. Đồng biến trên mỗi khoảng  k 2 ;   k 2  và nghịch biến trên mỗi khoảng   k 2 ;3  k 2  với
k  .
Câu 3: Hàm số: y  3  2cos x tăng trên khoảng:
  
  3 
 7

A.   ;  .
B.  ;  .
C. 
; 2  .

 6

 6 2
2 2 
  
Câu 4: Hàm số nào đồng biến trên khoảng   ;  :
 3 6
A. y  cos x .
B. y  cot 2 x .
C. y  sin x .

  
D.  ;  .
6 2

D. y  cos2 x .

Câu 5: Mệnh đề nào sau đây sai?

 
A.Hàm số y  sinx tăng trong khoảng  0; 
 2
 
B.Hàm số y  cotx giảm trong khoảng  0;  .
 2
 
C.Hàm số y  tanx tăng trong khoảng  0;  .
 2
 
D.Hàm số y  cosx tăng trong khoảng  0;  .

 2

.

Câu 7: Hàm số y  sin x đồng biến trên:
A.Khoảng  0;   .
17 | P a g e - />

 

B.Các khoảng    k 2 ;  k 2  , k  .
4
 4

ST VÀ BIÊN SOẠN: Võ Anh Dũng


Quý thầy cô muốn nhận file word liên hệ mail.


  3
C.Các khoảng   k 2 ;   k 2  , k  .
D.Khoảng  ;
2

2 2
Câu 9: Hàm số y  cosx :


.



 
 
B.Tăng trong 0;  và giảm trong  ;   .
 2
2 
D.Các khẳng định trên đều sai.

A.Tăng trong  0;   .
C.Nghịch biến  0;   .

Câu 10: Hàm số y  cos x đồng biến trên đoạn nào dưới đây:
 
A. 0;  .
 2

B.  ; 2  .

C.   ;   .

D.  0;   .

 
Câu 12: Hàm số nào sau đây có tính đơn điệu trên khoảng  0;  khác với các hàm số còn lại ?
 2
B. y  cos x .
C. y  tan x .
D. y   cot x .
A. y  sin x .

Câu 13: Hàm số y  tan x đồng biến trên khoảng:
 
 
 3 
 3  
A.  0;  .
B.  0;  .
C.  0;  .
D.   ;  .
 2 2
 2
 2 
 2
Câu 14: Khẳng định nào sau đây đúng?
  3 
A.Hàm số y  sin x đồng biến trong khoảng  ;  .
4 4 
  3 
B.Hàm số y  cos x đồng biến trong khoảng  ;  .
4 4 
 3  
C.Hàm số y  sin x đồng biến trong khoảng   ;   .
4
 4
 3  
D.Hàm số y  cos x đồng biến trong khoảng   ;   .
4
 4
 
Câu 15: Hàm số nào sau đây nghịch biến trên khoảng  0;  ?

 2
A. y  sin x .
B. y  cos x .
C. y  tan x .
D. y   cot x .
  3 
Câu 16: Hàm số nào dưới đây đồng biến trên khoảng  ;  ?
2 2 
A. y  sin x .
B. y  cos x .
C. y  cot x .
D. y  tan x .

GIÁ TRỊ LỚN NHẤT VÀ NHỎ NHẤT CỦA HÀM SỐ

Câu 1:Giá trị nhỏ nhất và giá trị lớn nhất của hàm số y  3sin 2 x  5 lần lượt là:
A. 8 và  2 .
B. 2 và 8 .
C. 5 và 2 .
D. 5 và 3 .

Câu 2:Giá trị nhỏ nhất và giá trị lớn nhất của hàm số y  7  2cos( x  ) lần lượt là:
4
A. 2 và 7 .
B. 2 và 2 .
C. 5 và 9 .
D. 4 và 7 .
Câu 3:Giá trị nhỏ nhất và giá trị lớn nhất của hàm số y  4 sin x  3  1 lần lượt là:
A.


2 và 2 .

B. 2 và 4 .

C. 4 2 và 8 .

D. 4 2  1 và 7 .

Câu 4:Giá trị nhỏ nhất của hàm số y  sin x  4sin x  5 là:
A. 20 .
B. 8 .
C. 0 .
D. 9 .
2
Câu 5:Giá trị lớn nhất của hàm số y  1  2cos x  cos x là:
A. 2 .
B. 5 .
C. 0 .
D. 3 .
Câu 6:Tìm tập giá trị lớn nhất, giá trị nhỏ nhất của hàm số sau y  2  3sin 3x
A. min y  2; max y  5
B. min y  1; max y  4
2

18 | P a g e - />
ST VÀ BIÊN SOẠN: Võ Anh Dũng


Quý thầy cô muốn nhận file word liên hệ mail.
C. min y  1; max y  5

D. min y  5; max y  5
Câu 7:Tìm tập giá trị lớn nhất, giá trị nhỏ nhất của hàm số sau y  1  4sin 2 2 x
A. min y  2; max y  1
B. min y  3; max y  5
C. min y  5; max y  1
D. min y  3; max y  1

Câu 8:Tìm tập giá trị lớn nhất, giá trị nhỏ nhất của hàm số sau y  2cos(3x  )  3
3
A. min y  2 , max y  5
B. min y  1 , max y  4
D. min y  1 , max y  3
C. min y  1 , max y  5
Câu 9:Tìm tập giá trị lớn nhất, giá trị nhỏ nhất của hàm số sau y  3  2sin 2 2 x  4
A. min y  6 , max y  4  3

B. min y  5 , max y  4  2 3

C. min y  5 , max y  4  3 3

D. min y  5 , max y  4  3

Câu 10:Tìm tập giá trị lớn nhất, giá trị nhỏ nhất của hàm số sau y  2sin x  3
A. max y  5 , min y  1

B. max y  5 , min y  2 5

C. max y  5 , min y  2

D. max y  5 , min y  3


Câu 11:Tìm tập giá trị lớn nhất, giá trị nhỏ nhất của hàm số sau y  1  2cos2 x  1
A. max y  1 , min y  1  3

B. max y  3 , min y  1  3

C. max y  2 , min y  1  3

D. max y  0 , min y  1  3



Câu 12:Tìm tập giá trị lớn nhất, giá trị nhỏ nhất của hàm số sau y  1  3sin  2 x  
4

A. min y  2 , max y  4
B. min y  2 , max y  4
C. min y  2 , max y  3
D. min y  1 , max y  4
Câu 13:Tìm tập giá trị lớn nhất, giá trị nhỏ nhất của hàm số sau y  3  2cos2 3x
A. min y  1 , max y  2
B. min y  1 , max y  3
C. min y  2 , max y  3
D. min y  1 , max y  3
Câu 14:Tìm tập giá trị lớn nhất, giá trị nhỏ nhất của hàm số sau y  1  2  sin 2 x
A. min y  2 , max y  1  3

B. min y  2 , max y  2  3

C. min y  1 , max y  1  3


D. min y  1 , max y  2
4
Câu 15:Tìm tập giá trị lớn nhất, giá trị nhỏ nhất của hàm số sau y 
1  2sin 2 x
4
4
A. min y  , max y  4
B. min y  , max y  3
3
3
4
1
C. min y  , max y  2
D. min y  , max y  4
3
2
Câu 16:Tìm tập giá trị lớn nhất, giá trị nhỏ nhất của hàm số sau y  2sin 2 x  cos2 2x
3
A. max y  4 , min y 
B. max y  3 , min y  2
4
3
C. max y  4 , min y  2
D. max y  3 , min y 
4
Câu 17:Tìm tập giá trị lớn nhất, giá trị nhỏ nhất của hàm số sau y  3sin x  4cos x  1
A. max y  6 , min y  2
B. max y  4 , min y  4
C. max y  6 , min y  4

D. max y  6 , min y  1
Câu 18:Tìm tập giá trị lớn nhất, giá trị nhỏ nhất của hàm số sau y  3sin x  4cos x 1
A. min y  6; max y  4
B. min y  6; max y  5
19 | P a g e - />
ST VÀ BIÊN SOẠN: Võ Anh Dũng


Quý thầy cô muốn nhận file word liên hệ mail.
C. min y  3; max y  4 D. min y  6; max y  6
Câu 19:Tìm tập giá trị lớn nhất, giá trị nhỏ nhất của hàm số sau y  2sin 2 x  3sin 2 x  4cos2 x
A. min y  3 2  1; max y  3 2  1

B. min y  3 2  1; max y  3 2  1

C. min y  3 2; max y  3 2 1

D. min y  3 2  2; max y  3 2 1

Câu 20:Tìm tập giá trị lớn nhất, giá trị nhỏ nhất của hàm số sau y  sin 2 x  3sin 2 x  3cos2 x
A. max y  2  10; min y  2  10

B. max y  2  5; min y  2  5

C. max y  2  2; min y  2  2
D. max y  2  7; min y  2  7
Câu 21:Tìm tập giá trị lớn nhất, giá trị nhỏ nhất của hàm số sau y  2sin 3x  1
B. min y  1, max y  2
A. min y  2, max y  3
C. min y  1, max y  3

D. min y  3, max y  3
Câu 22:Tìm tập giá trị lớn nhất, giá trị nhỏ nhất của hàm số sau y  3  4cos2 2 x
A. min y  1, max y  4
B. min y  1, max y  7
C. min y  1, max y  3
D. min y  2, max y  7
Câu 23:Tìm tập giá trị lớn nhất, giá trị nhỏ nhất của hàm số sau y  1  2 4  cos3x
A. min y  1  2 3, max y  1  2 5

B. min y  2 3, max y  2 5

C. min y  1  2 3, max y  1  2 5
D. min y  1  2 3, max y  1  2 5
Câu 24:Tìm tập giá trị lớn nhất, giá trị nhỏ nhất của hàm số sau y  4sin 6 x  3cos 6 x
A. min y  5, max y  5 B. min y  4, max y  4
C. min y  3, max y  5 D. min y  6, max y  6
3
Câu 25:Tìm tập giá trị lớn nhất, giá trị nhỏ nhất của hàm số sau y 
1  2  sin 2 x
3
3
3
4
, max y 
, max y 
A. min y 
B. min y 
1 3
1 2
1 3

1 2
2
3
3
3
, max y 
, max y 
D. min y 
C. min y 
1 3
1 2
1 3
1 2
3sin 2 x  cos 2 x
Câu 26:Tìm tập giá trị lớn nhất, giá trị nhỏ nhất của hàm số sau y 
sin 2 x  4cos 2 x  1
6  3 5
6  3 5
4  3 5
4  3 5
A. min y 
B. min y 
, max y 
, max y 
4
4
4
4
7  3 5
7  3 5

5  3 5
5  3 5
C. min y 
D. min y 
, max y 
, max y 
4
4
4
4
Câu 27:Tìm tập giá trị lớn nhất, giá trị nhỏ nhất của hàm số sau y  sin x  2  sin 2 x
A. min y  0 , max y  3
B. min y  0 , max y  4
C. min y  0 , max y  6
D. min y  0 , max y  2
Câu 28:Tìm tập giá trị nhỏ nhất của hàm số sau y  tan 2 x  4 tan x  1
A. min y  2
B. min y  3
C. min y  4

D. min y  1

Câu 29:Tìm tập giá trị nhỏ nhất của hàm số sau y  tan x  cot x  3(tan x  cot x) 1
A. min y  5
B. min y  3
C. min y  2
D. min y  4
2

2


Câu 30:Tìm m để hàm số y  5sin 4 x  6cos 4 x  2m  1 xác định với mọi x .
61  1
61  1
61  1
C. m 
D. m 
2
2
2
Câu 31:Tìm tập giá trị lớn nhất, giá trị nhỏ nhất của hàm số sau y  1  3  2sin x

A. m  1

B. m 

20 | P a g e - />
ST VÀ BIÊN SOẠN: Võ Anh Dũng


Quý thầy cô muốn nhận file word liên hệ mail.
A. min y  2; max y  1  5
B. min y  2; max y  5
C. min y  2; max y  1  5
D. min y  2; max y  4
Câu 32:Tìm tập giá trị lớn nhất, giá trị nhỏ nhất của hàm số sau y  4sin 3x  3cos3x  1
B. min y  4; max y  6
A. min y  3; max y  6
C. min y  4; max y  4 D. min y  2; max y  6
Câu 33:Tìm tập giá trị lớn nhất, giá trị nhỏ nhất của hàm số sau y  3 cos x  sin x  4

A. min y  2; max y  4
B. min y  2; max y  6
C. min y  4; max y  6
D. min y  2; max y  8
sin 2 x  2cos 2 x  3
Câu 34:Tìm tập giá trị lớn nhất, giá trị nhỏ nhất của hàm số sau y 
2sin 2 x  cos 2 x  4
2
2
A. min y   ; max y  2
B. min y  ; max y  3
11
11
2
2
C. min y  ; max y  4
D. min y  ; max y  2
11
11
2sin 2 3x  4sin 3x cos 3x  1
Câu 35:Tìm tập giá trị lớn nhất, giá trị nhỏ nhất của hàm số sau y 
sin 6 x  4cos 6 x  10
11  9 7
11  9 7
22  9 7
22  9 7
A. min y 
B. min y 
; max y 
; max y 

83
83
11
11
33  9 7
33  9 7
22  9 7
22  9 7
C. min y 
D. min y 
; max y 
; max y 
83
83
83
83
Câu 36:Tìm tập giá trị lớn nhất, giá trị nhỏ nhất của hàm số sau y  3cos x  sin x  2
A. min y  2  5; max y  2  5

B. min y  2  7; max y  2  7

C. min y  2  3; max y  2  3

D. min y  2  10; max y  2  10

sin 2 2 x  3sin 4 x
2cos 2 2 x  sin 4 x  2
5  97
5  97
5  97

5  97
A. min y 
B. min y 
, max y 
, max y 
4
4
18
18
5  97
5  97
7  97
7  97
C. min y 
D. min y 
, max y 
, max y 
8
8
8
8
Câu 38:Tìm tập giá trị lớn nhất, giá trị nhỏ nhất của hàm số sau
y  3(3sin x  4cos x)2  4(3sin x  4cos x)  1
1
1
A. min y  ; max y  96
B. min y  ; max y  6
3
3
1

C. min y   ; max y  96
D. min y  2;max y  6
3
Câu 39:Tìm m để các bất phương trình (3sin x  4cos x)2  6sin x  8cos x  2m 1 đúng với mọi x  
A. m  0
B. m  0
C. m  0
D. m  1
3sin 2 x  cos 2 x
Câu 40:Tìm m để các bất phương trình
 m  1 đúng với mọi x  
sin 2 x  4cos 2 x  1
3 5
3 5 9
3 5 9
3 5 9
A. m 
B. m 
C. m 
D. m 
4
2
4
4
4sin 2 x  cos 2 x  17
Câu 41:Tìm m để các bất phương trình
 2 đúng với mọi x  
3cos 2 x  sin 2 x  m  1
15  29
15  29

A. 10  3  m 
B. 10  1  m 
2
2
21 | P a g e - />ST VÀ BIÊN SOẠN: Võ Anh Dũng
Câu 37:Tìm tập giá trị lớn nhất, giá trị nhỏ nhất của hàm số sau y 


Quý thầy cô muốn nhận file word liên hệ mail.
15  29
C. 10  1  m 
D. 10  1  m  10  1
2
 
Câu 42:Cho x, y   0;  thỏa cos 2 x  cos 2 y  2sin( x  y)  2 . Tìm giá trị nhỏ nhất của
 2
4
4
sin x cos y
.
P

y
x
3
2
2
5
A. min P 
B. min P 

C. min P 
D. min P 
3



k sin x  1
Câu 43:Tìm k để giá trị nhỏ nhất của hàm số y 
lớn hơn 1 .
cos x  2
A. k  2
B. k  2 3
C. k  3
D. k  2 2

PHƯƠNG TRÌNH LƯỢNG GIÁC CƠ BẢN VÀ PHƯƠNG TRÌNH BẬC NHẤT VỚI MỘT HÀM SỐ
LƯỢNG GIÁC
Câu 1:Chọn khẳng định đúng trong các khẳng định sau
 x  y  k
 x  y  k 2
A. sin x  sin y  
B. sin x  sin y  
 k   .
 k   .
 x    y  k
 x    y  k 2
 x  y  k 2
 x  y  k
C. sin x  sin y  
D. sin x  sin y  

 k   .
 k   .
x


y

k
2

x


y

k



Câu 2:Phương trình sinx  sin  có nghiệm là

 x    k 2
;k 
A. 
 x      k 2
 x    k
;k  .
C. 
 x    k
Câu 3:Chọn đáp án đúng trong các câu sau:

A. sin x  1  x 



2

 k 2 , k  .

22 | P a g e - />
 x    k
;k  .
B. 
 x      k
 x    k 2
;k  .
D. 
 x    k 2
B. sin x  1  x    k 2 , k  .
ST VÀ BIÊN SOẠN: Võ Anh Dũng


Quý thầy cô muốn nhận file word liên hệ mail.
C. sin x  1  x  k 2 , k  .

D. sin x  1  x 

Câu 4:Nghiệm của phương trình sin x  1 là:
A. x  



 k .
2

B. x  



 k 2 .

2
Câu 5:Phương trình sin x  0 có nghiệm là:
A. x 


 k 2 .
2

B. x  k .


2

 k , k  .

C. x  k .

D. x 

3
 k .

2

C. x  k 2 .

D. x 


 k .
2

Câu 6:Nghiệm đặc biệt nào sau đây là sai
A. sin x  1  x  



2

B. sin x  0  x  k .

 k 2 .

C. sin x  0  x  k 2 .

D. sin x  1  x 

 2x  
   0 (với k  ) có nghiệm là
Câu 7:Phương trình sin 
 3 3
2 k 3



A. x  k .
B. x 
.
C. x   k .
3
2
3
1
Câu 8:Nghiệm của phương trình sin x  là:
2
A. x 


 k 2 .
3

Câu 9:Phương trình sin x 
A. x 

5
 k 2
6

B. x 


 k .
6



2

 k 2 .

D. x 

C. x  k .

D. x 

1


có nghiệm thỏa mãn   x  là :
2
2
2
B. x 



6

Câu 10:Nghiệm phương trình sin 2 x 



x


 k 2

4
A. 
 k    .B.
 x  3  k 2

4

C. x 

.

2
là:
2



x

 k

4

 k    .C.
 x  3  k

4



 k 2 .
3

D. x 



x

 k

8

 k    . D.
 x  3  k

8


2



k 3
.
2



 k 2 .
6


3

.



x

 k 2

8

 k  
 x  3  k 2

8

.
Câu 11:Nghiệm của phương trình sin  x  10  1 là
A. x  100  k 360 .

B. x  80  k180 .
C.
1
 x  
Câu 12:Phương trình sin 

   có tập nghiệm là
2
 5 
11

 x  6  k10
( k  ) .
A. 
B.
 x   29  k10

6
11

 x   6  k10
( k  ) .
C. 
D.
 x   29  k10

6
23 | P a g e - />
x  100  k 360 .

D. x  100  k180 .

11

 x   6  k10
( k  ) .


 x  29  k10

6
11

 x  6  k10
( k  ) .

 x  29  k10

6

ST VÀ BIÊN SOẠN: Võ Anh Dũng


Quý thầy cô muốn nhận file word liên hệ mail.
3
Câu 13:Số nghiệm của phương trình sin 2 x 
trong khoảng  0;3  là
2
A. 1 .
B. 2 .
C. 6 .



sin  x    1
2



Câu 14:Nghiệm phương trình


 k 2 .
2



 k 2 .
2
Câu 15:Phương trình: 1  sin 2 x  0 có nghiệm là:
A. x 

A. x  



2

 k 2 .

B. x  

B. x  



4


 k .

D. 4 .

C. x  k .

C. x  


4

D. x  k 2 .

 k 2 .

D. x  



Câu 16:Số nghiệm của phương trình: sin  x    1 với   x  5 là
4

A. 1.
B. 0.
C. 2.
D. 3.


Câu 17: Nghiệm của phương trình 2sin  4 x   –1  0 là:
3




7


k .
A. x   k ; x 
B. x  k 2 ; x   k 2 .
8
2
24
2
2
D. x    k 2 ; x  k

C. x  k ; x    k 2 .



2


2

 k .

.

3  2sin x  0 có nghiệm là:




2
 k 2 .
A. x   k 2  x    k 2 .
B. x    k 2  x 
3
3
3
3

2

4
 k 2 .
 k 2 .
C. x   k 2  x 
D. x    k 2  x 
3
3
3
3
Câu 19:Nghiệm của phương trình sin 3x  sin x là:




A. x   k .
B. x  k ; x   k . C. x  k 2 .

D. x   k ; k  k 2 .
2
4
2
2
1
Câu 20:Phương trình sin 2 x   có bao nhiêu nghiệm thõa 0  x   .
2
A. 1 .
B. 3 .
C. 2 .
D. 4 .



Câu 21:Số nghiệm của phương trình sin  x    1 với   x  3 là :
Câu 18:Phương trình



A. 1 .

4

B. 0 .



Câu 22:Nghiệm của phương trình 2sin  4 x    1  0 là:
3


A. x  k ; x    k 2 .



C. x  k 2 ; x   k 2 . D. x    k 2 ; x  k .
2
2
x


1



B. x 

Câu 23:Họ nghiệm của phương trình sin 
   là
2
 5 
11

 x  6  k10
A. 
B.
 k  
 x  29  k10

6

24 | P a g e - />
D. 3 .

C. 2 .


8

k


2

; x

7

k .
24
2

11

 x   6  k10

 x  29  k10

6

 k  


ST VÀ BIÊN SOẠN: Võ Anh Dũng


Quý thầy cô muốn nhận file word liên hệ mail.
11
11


 x   6  k10
 x  6  k10
C. 
D. 
 k   .
 x   29  k10
 x  29  k10


6
6





 k  






Câu 24:Phương trình 2sin 2 x  40  3 có số nghiệm thuộc 180 ;180 là:
A. 2 .

C. 6 .

B. 4 .

D. 7 .







2
Câu 25:Tìm số nghiệm nguyên dương của phương trình sau sin  3x  9 x  16 x  80   0 .
4

A. 1
B. 2
C. 3
D. 4
2
Câu 26:Nghiệm của phương trình sin x  1 là:
A. x  k 2 .

B. x 



 k .
2

C. x    k 2 .

D. x 

Câu 27:Với giá trị nào của m thì phương trình sin x  m có nghiệm:
A. m  1 .
B. m  1 .
C. 1  m  1 .
Câu 28:Phương trình 2sin x  m  0 vô nghiệm khi m là
A. 2  m  2 .
B. m  1 .
C. m  1 .
Câu 29:Nghiệm của phương trình cos x  1 là:
A. x  k .

B. x 


 k 2 .
2

D. m  1 .
D. m  2 hoặc m  2 .

C. x  k 2 .


D. x 

Câu 30:Giá trị đặc biệt nào sau đây là đúng
A. cos x  1  x 



2

 k .

C. cos x  1  x  


2

B. cos x  0  x 

 k 2 .

D. cos x  0  x 

Câu 31:Phương trình: cos 2 x  1 có nghiệm là:
A. x 


 k 2 .
2

B. x  k .



2



2

B. x  



 k 2 .


 k .
2

 k .
 k 2 .

C. x  k 2 .

D. x 


 k .
2

C. x    k 2 .


D. x 

3
 k .
2

Câu 32:Nghiệm của phương trình cos x  1 là:
A. x    k .


 k 2 .
2

2
1
Câu 33:Nghiệm phương trình cos x  là:
2






 x  6  k 2
 x  6  k 2
 x  3  k 2
A. 
 k    .B. 
 k    . C. 

 k    .D.
 x  5  k 2
 x     k 2
 x  2  k 2



6
6
3
 k   .



 x  3  k 2

 x     k 2

3

Câu 34:Nghiệm của phương trình 2cos 2 x  1  0 là:



 k 2 ; x   k 2 .
3
3
2
2
 k 2 ; x  

 k 2 .
C. x 
3
3


A. x  

B. x  
D. x 




3

6

 k 2 ; x 

 k ; x  



2
 k 2 .
3

3


 k .

Câu 35:Phương trình cos  2 x    0 có nghiệm là
2

25 | P a g e - />
ST VÀ BIÊN SOẠN: Võ Anh Dũng


×