Phơng trình lợng giác
góc lợng giác & công thức lợng giác
i.lý thuyết
1.giá trị l ơng giác của góc l ợng giác
a.các định nghĩa :
sin
=
OK
cos
=
OH
tan
=
AT
cot
=
BU
b. tính chất
i> sin (
+ k2
) = sin
cos (
+ k2
) = cos
; k
Z
tan (
+ k
) = tan
cot (
+ k
) = cot
; k
Z
ii> với
ta có : - 1
sin
1 ; - 1
cos
1
iii> cos
2
+ sin
2
= 1 tan
.cot
= 1
1 + tan
2
=
2
cos
1
( cos
0 ) 1 + cot
2
=
2
sin
1
( sin
0 )
c. dấu các hàm số l ợng giác :
d. bảng hàm số của cung l ợng giác đặc biệt
Chú ý :
+ > sin
= 0
= k
; k
Z
Góc phần t Số đo của góc sin
cos
tan
cot
I 0 <
<
/2
+ + + +
II
/2 <
<
+ - - -
III
<
< 3
/2
- - + +
IV
3
/2 <
< 2
- + - -
+ > sin
= 1
=
/2 + k2
; k
Z
+> sin
= - 1
= -
/2 + k2
; k
Z
+ > cos
= 0
=
/2 + k
; k
Z
+> cos
= 1
= k2
; k
Z
+> cos
= - 1
=
+ k2
; k
Z
2. giá trị l ơng giác của các góc có liên quan đặc biệt
i> cung đối nhau : cos ( -
) = cos
sin ( -
) = - sin
tan ( -
) = - tan
cot ( -
) = - cot
ii> cung hơn kém
: sin (
+
) = - sin
cos(
+
) = - cos
tan(
+
) = tan
cot(
+
) = cot
iii> cung bù nhau : sin (
-
) = sin
cos (
-
) = - cos
tan(
-
) = - tan
cot(
-
) = - cot
iv> cung phụ nhau : sin (
/2 -
) = cos
cos (
/2 -
) = sin
tan (
/2 -
) = cot
cot(
/2 -
) = tan
v> cung hơn kém
/2 : sin (
/2 +
) = cos
cos (
/2 +
) = - sin
tan (
/2 +
) = - cot
cot(
/2 +
) = - cot
3. công thức l ợng giác
a. công thức cộng : cos( x y ) = cosx.cosy + sinx.siny ( 1)
cos( x + y ) = cosx.cosy sinx.siny ( 2 )
sin( x y ) = sinx.cosy cosx.siny ( 3)
sin( x + y) = sinx.cosy + cosx.siny ( 4 )
tan( x y ) =
yx
yx
tan.tan1
tantan
+
( 5 )
tan( x + y ) =
yx
yx
tan.tan1
tantan
+
( 6 )
b. công thức nhân đôi :
i> công thức nhân đôi : sin 2x = 2sinx.cosx ( 7) công thức nhân 3 :
cos 2x = cos
2
x sin
2
x ( 8 ) sin3x = 3sinx 4sin
3
x
tan 2x =
x
x
2
tan1
tan2
( 9 ) cos3x = 4cos
3
x 3cosx
ii> công thức hạ bậc : sin
2
x =
2
2cos1 x
( 10 )
cos
2
x =
2
2cos1 x
+
( 11 )
tan
2
x =
x
x
2cos1
2cos1
+
( 12 )
iii> công thức tính theo t = tan x/2 : đặt t = tanx/2 khi đó ta có các công thức biểu diễn sau:
sin x =
2
1
2
t
t
+
( 13 )
cos x =
2
2
1
1
t
t
+
−
( 14 )
tan x =
2
1
2
t
t
−
( 15 )
c. c«ng thøc biÕn ®æi tÝch thµnh tæng vµ ng îc l¹i
i> c«ng thøc biÕn ®æi tÝch thµnh tæng
cosx.cosy =
2
1
[ cos ( x - y ) + cos ( x + y ) ] ( 16 )
sinx.siny =
2
1
[ cos ( x - y ) - cos ( x + y ) ] ( 17 )
sinx.cosy =
2
1
[ sin( x - y ) + sin ( x + y ) ] ( 18 )
ii> c«ng thøc biÕn ®æi tæng thµnh tÝch :
cosx + cosy = 2cos
2
yx
+
. cos
2
yx
−
( 19 )
cosx - cosy = - 2sin
2
yx
+
. sin
2
yx
−
( 20 )
sinx + siny = 2sin
2
yx
+
. cos
2
yx
−
( 21 )
sinx - siny = 2cos
2
yx
+
. sin
2
yx
−
( 22 )
tanx + tany =
yx
yx
cos.cos
)sin(
+
( 23 )
tanx - tany =
yx
yx
cos.cos
)sin(
−
( 24 )
chó ý mét sè c«ng thøc sau :
sinx + cosx =
2
.sin( x +
π
/4 ) ( 25)
sinx - cosx =
2
.sin( x -
π
/4 ) ( 26 )
cosx + sinx =
2
.cos( x -
π
/4 ) ( 27 )
cosx - sinx =
2
.cos( x +
π
/4 ) ( 28 )
Gi¶i ph ¬ng tr×nh sau :
1. sinx.cosx + | cosx + sinx| = 1 2. 2
2
sinx( x +
π
/4 ) =
1 1
sin cosx x
+
3. 2 + cos2x = - 5sinx 4. 2tanx + cot2x = 2sin2x +
1
sin 2x
5. sin
2
x = cos
2
2x + cos
2
3x 6. 8.cos
3
(x +
π
/3 ) = cos3x
7. |sinx - cosx| + | sinx + cosx | = 2 8. cos
6
x – sin
6
x = 13/8.cos
2
2x
9. 2sin2x – cos2x = 7.sinx + 2cosx – 4 10. sin3x = cosx.cos2x.( tan
2
x + tan2x )
11. 4.cos
5
x.sinx – 4sin
5
x.cosx = sin
2
4x 12. sinx.cos4x – sin
2
2x = 4sin
2
(
π
/4 – x/2) – 7/2
13. 4cos
3
x + 3
2
.sin2x = 8cosx 14. tanx + 2cot2x =sin2x
15. sin
2
x
.sinx - cos
2
x
.sin
2
x + 1 = 2.cos
2
(
π
/4 -
2
x
) 16. 2.cos
2
x + 2cos
2
2x + 2cos
2
3x – 3 = cos4x(2sin2x + 1)
17. 4(sin
4
x + cos
4
x ) +
3
sin4x = 2 18. 1 + cot2x =
2
1 cos 2
sin 2
x
x
−
19. sin4x – cos4x = 1 + 4
2
sin( x -
π
/4 ) 20. ( 1 – tanx )( 1 + sin2x) = 1 + tanx
21.
3(sin tan )
2cos 2
tan sin
x x
x
x x
+
− =
−
22. sin
2
x + sin
2
3x – 3cos
2
2x = 0
23. 4cos
2
x – cos3x = 6cosx – 2( 1 + cos2x) 24. sin3x + cos2x = 1 + 2sinx.cos2x
25. sin2x + 4( cosx – sinx) = 4 26. 3sinx + 2cosx = 2 + 3tanx
27. cos2x + cos3x/4 – 2 = 0 28. 2sin3x -
1 1
2cos3
sin cos
x
x x
= +
29.
2
3.sin 2 2cos 2 2 2 cos 2x x x= − +
30.
2
2
sin x
+ 2tan
2
x + 5tanx + 5cotx + 4 = 0
31. tan2x + sin2x = 3/2.cotx 32.
sin 3 sin 5
3 5
x x
=
33. sin(
3 1 3
) sin( )
10 2 2 10 2
x x
π π
− = +
34. sinx – 4 sin
3
x + cosx = 0
35. sinx.sin2x + sin3x = 6cos
3
x 36. 2cosx.cos2x = 1 + cos2x + cos3x
37. 5( sinx +
cos3 sin 3
) cos 2 3
1 2sin 2
x x
x
x
+
= +
+
38. sin
2
3x – cos
2
4x = sin
2
5x – cos
2
6x
39. cos3x – 4cos2x + 3cosx – 4 = 0 40. cotx – 1 =
2
cos 2 1
sin sin 2
1 tan 2
x
x x
x
+ −
+
41. cotx – tanx + 4sinx =
2
sin 2x
42. sin
2
(
2 2
) tan cos 0
2 4 2
x x
x
π
− − =
43. 5sinx – 2 = 3( 1 – sinx)tan
2
x 44. ( 2cosx – 1)(2sinx + cosx) = sin2x – sinx
45. cos
2
3x.cos2x – cos
2
x = 0 46. 1 + sinx + cosx + sin2x + cos2x = 0
47. cos
4
x + sin
4
x + cos( x -
4
π
).sin(3x -
4
π
) -
3
2
= 0 48. ( cos2x – cos4x )
2
= 6 + 2sin3x
49. ( cos2x – cos4x)
2
= 6 + 2sin3x 50.
3
sinx + cosx =
1
cos x
51. ( 1 + cosx ).( 1 + sinx ) = 2 52. 2cosx +
2
sin10x = 3
2
+ 2cos28x.sinx
53. sin2x + cos2x = 1 + sinx – 4cosx 54. (
1 cos cosx x− +
).cos2x =
1
2
sin4x
55.
1 2(cos sin )
tan cot 2 cot 1
x x
x x x
−
=
+ −
56.
4 4
sin cos 1
(tan
sin 2 2
x x
x
x
+
= +
cotx )
57. sin2x + 2tanx = 3 58. sin
3
( x +
4
π
) =
2
sinx
59. 8
2
cos
6
x + 2
2
sin
3
x.sin3x - 6
2
cos
4
x – 1 = 0. 60. 1 – 5sinx + 2cos
2
x = 0. tho¶ m·n cosx ≥ 0.
61. cos
3
x + sin
3
x = sin2x + sinx + cosx 62. sinx.cos4x + 2sin
2
2x = 1 – 4.sin
2
(
4
π
-
2
x
)
63. 4
3
sinx.cosx.cos2x = sin8x 64. sin4x – cos4x = 1 + 4(sinx – cosx )
65. sin( 3x -
4
π
) = sin2x.sin( x +
4
π
) 66. 4sin
3
x.cos3x + 4cos
3
x.sin3x + 3
3
cos4x = 3.
67.
2
2
4
cos cos
3
0
1 tan
x
x
x
−
=
−
68. sin
2
4x – cos
2
6x = sin( 10,5
π
+ 10x)
69. tan
2
x.cot
2
x.cot3x = tan
2
x – cot
2
x + cot3x 70. sin3x + 2cos2x – 2 = 0.
71. cos2x + 3cosx + 2 = 0 72. 3cos4x – 2cos
2
3x = 1.
73. 1 + 3cosx + cos2x = cos3x + 2sinx.sin2x 74. tanx + tan2x = - sin3x.cos2x
75. 3( cotx – cosx ) – 5(tanx – sinx) = 2 76. tanx + cotx = 2( sin2x + cos2x )
77. sin
4
x + cos
4
x =
7
8
cotg( x +
3
π
).cotg(
)
6
x
π
−
78. 2
2
( sinx + cosx ).cosx = 3 + cos2x
79.sin
4
x + sin
4
( x +
4
π
) + sin
4
(x -
4
π
) =
9
8
80.
sin 2
2
1 sin
x
x
+
+
cosx = 0
81. cos
2
x + sinx – 3sin
2
x.cosx = 0 82. 2sin
3
x + cos2x = sinx
83.
3 cos cos 1 2x x− − + =
84. sinx.cosx + 2sinx + 2cosx = 2
85. sin3x(cosx – 2sin3x) + cos3x(1 + sinx – 2cos3x) = 0. 86.
3
5 4sin( )
2
3
sin
x
x
π
+ −
= −
87. 3tan
3
x – tanx +
2
2
3(1 sin )
8cos ( )
cos 4 2
x x
x
π
+
− −
= 0. 88. cos7x -
3
sin7x = -
2
,
2 6
5 7
x
π π
< <
89.cosx.cos2x.cos4x.cos8x =
1
16
90. 2cos
3
x = sin3x
91. cos2x -
3
sin2x -
3
sinx – cosx + 4 = 0 92. cos2x = cos
2
x.
1 tan x+
93. 3cot
2
x + 2
2
sin
2
2x
= ( 2 + 3
2
)cosx 94.tanx – sin2x – cos2x + 2(2cosx -
1
cos x
) = 0
95. 4( sin3x – cos2x) = 5(sinx – 1) 96.2cos2x + sin
2
x.cosx + sinx.cos
2
x = sinx + cosx
97. tanx.sin
2
x -2sin
2
x = 3( cos2x + sinx.cosx) 98.sin2x( cotx + tan2x) = 4cos
2
x
99. 48 -
4 2
1 2
(1 cot 2 .cot ) 0
cos sin
x x
x x
− + =
100. sin
6
x + cos
6
x = cos4x
101. cos
3
x + cos
2
x + 2sinx – 2 = 0 102. 2 + cosx = 2tan
2
x
103. cos3x +
2 2
2 cos 3 2(1 sin 2 )x x− = +
104. sinx + sin2x + sin3x = 0
105. cotx – tanx = sinx + cosx 106.sin3x + cos2x =1 + 2sinx.cos2x
107. 2cos2x – 8cosx + 7 =
1
cos x
108. cos3x.cos
3
x – sin3x.sin
3
x = cos
3
4x
+
1
4
109. 9sinx + 6cosx -3sin2x + cos2x = 8 110. sin
3
x.cos3x + cos
3
x.sin3x = sin
3
4x
111. sin
8
x + cos
8
x = 2( sin
10
x + cos
10
x ) +
5
4
cos2x 112.
2 4
sin 2 cos 2 1
sin .cos
x x
x x
+ −
= 0
113. 2sin
3
x – cos2x + cosx = 0 114. 1 + cos
3
x – sin
3
x = sin2x
115.
2
sin sin sin cos 1x x x x+ + + =
116. cos
2
x + cos
2
2x + cos
2
3x + cos
2
4x =
3
2
117. cosx + cos2x + cos3x + cos4x = 0 118. 3sinx + 2cosx = 2 + 3tanx.