Sở GD & ĐT Thanh hóa Đề khảo sát chất lợng lần I năm 2009
Trờng THPT Hoằng Hóa IV Môn: Toán Khối A
----------------o0o--------------- Thời gian :180 phút (Không kể thời gian giao đề)
I/ Phần chung cho tất cả các thí sinh (7,0 điểm)
Câu I( 2điểm)
Cho hàm số :
( )
3 2
y x m 3 x 3mx 2m= + +
(1) với m là tham số thực.
1. Khảo sát sự biến thiên và vẽ đồ thị của hàm số khi m=0
2. Tìm tất cả các giá trị của tham số m để đồ thị (1) cắt đờng thẳng (d): y= - 2x tại ba điểm phân
biệt có hoành độ lập thành một cấp số cộng theo một thứ tự nào đó.
CâuII(2điểm).
1. Giải phơng trình:
2
3 4sin 2 2cos 2 (1 2sin ) = +x x x
2. Giải bất phơng trình:
x x
3
log (16 2.12 ) 2x 1 +
CâuIII (2điểm)
1. Tính tích phân:
3
2 2
4
sin
cos . 1 cos
x
dx
x x+
2. Tìm m để phơng trình sau có đúng hai nghiệm thực phân biệt:
2
1 8 7 8x x x x m+ + + + + =
CâuIV(1điểm)
Cho khối chóp SABC có đáy ABC là tam giác vuông tại B .Biết SA vuông góc với mặt phẳng
(ABC) và AB=SA=a, BC=2a. Một phặt phẳng qua A vuông góc SC tại H và cắt SB tại K .
Tính diện tích tam giác AHK theo a.
II/ Phần riêng (3,0 điểm)
Thí sinh chỉ đợc làm một trong hai phần theo chơng trình Chuẩn hoặc Nâng cao.
1. Theo ch ơng trình Chuẩn.
CâuVa(2điểm)
1. Trong mặt phẳng với hệ tọa độ Oxy ,cho tam giác ABC biết A(5 ; 2) .Phơng trình đờng trung
trực cạnh BC, đờng trung tuyến CC lần lợt là (d
1
): x+y-6=0 và (d
2
): 2x- y+3=0
Tìm tọa độ các đỉnh của tam giác ABC.
2. Trong không gian với hệ trục tọa độ Oxyz , cho H(1;2;3) . Lập phơng trình mặt phẳng đi qua H
và cắt Ox tại A,Oy tại B ,Oz tại C sao cho H là trực tâm của tam giác ABC.
CâuVIa(1điểm)
Tìm hệ số của x
4
trong khai triển biểu thức:
( )
n
3
A 1 x 3x
=
thành đa thức, trong đó n là số
nguyên dơng thỏa mãn:
2 2 2 2
2 3 n n 1
2(C C ... C ) 3A
+
+ + + =
2. Theo ch ơng trình Nâng cao.
CâuVb(2điểm)
1. Trong mặt phẳng với hệ tọa độ Oxy ,cho parabol (P) có phơng trình:
2
4y x=
. Lập phơng trình
các cạnh của một tam giác có ba đỉnh nằm trên parabol, biết một đỉnh của tam giác trùng với
đỉnh của (P) và trực tâm tam giác trùng tiêu điểm của (P).
2. Trong không gian với hệ trục tọa độ Oxyz , cho M(1;2;3).Lập phơng trình mặt phẳng đi qua M
và cắt ba tia Ox tại A,Oy tại B ,Oz tại C sao cho thể tích tứ diện OABC nhỏ nhất.
CâuVIb(1điểm)
Tìm hệ số của x
5
trong khai triển biểu thức:
( )
n
3
A 1 x 3x=
thành đa thức, trong đó n là số
nguyên dơng thỏa mãn:
( ... )
2 2 2 2
2 3 n n 1
2 C C C 3A
+
+ + + =
-----------------Hết-----------------
Ghi chú: Cán bộ coi thi không giải thích gì thêm.
§¸p ¸n- Thang ®iÓm
Câu Nội dung
Than
g
điểm
CâuI
2điểm
1. (1 điểm)
Khi m=0 hàm số trở thành:
3 2
3 ( )y x x C=
Tập xác định: D=R
Sự biến thiên:
* Chiều biến thiên:
2
0
' 3 6 0
2
x
y x x
x
=
= =
=
Hàm số đồng biến
( ) ( )
;0 2;va +
, nghịch biến: (0; 2)
* Cực trị: Hàm số đạt cực đại tại: x
CĐ
=0; y
CĐ
=0
Hàm số đạt cực tiểu tại: x
CT
=2; y
CT
= - 4
* Giới hạn:
3 2
lim ( 3 )
x
x x
=
* BBT:
x
0 2
+
y + 0 - 0 +
y
0
+
-4
Đồ thị:
f(x)=x^3 - 3x^2
-8 -6 -4 -2 2 4 6 8
-5
5
x
y
2. (1điểm) * Xét phơng trình hoành độ giao điểm:
3 2 3 2
( 3) 3 2 2 ( 3) (3 2) 2 0x m x mx m x x m x m x m + + = + + + =
1
2
x
x
x m
=
=
=
Nếu 1; 2; m lập thành CSC
1+m=4
m=3
Nếu 2;1;m lập thành CSC
2+m=2
m=0
Nếu 2;m;1 lập thành CSC
2m=3
m=3/2
Vậy giá trị cần tìm m là: m={ 0; 3/2 ; 3}
0.25
0.25
0.25
0.25
0.5
0.5
CâuII
2điểm
1. (1điểm)
Phơng trình
3 2(1 cos 4 ) 2 cos 2 4cos 2 .sinx x x x = +
2(cos 4 cos 2 ) 2(sin 3 sin ) 1 0
( 4sin 3 .sin 2sin 3 ) (2 sin 1) 0
1
sin
2
(2sin 1)(1 2sin 3 ) 0
1
sin 3
2
2
1
6
* sin
7
2
2
6
2
1
18 3
* sin 3
5 2
2
18 3
x x x x
x x x x
x
x x
x
x k
x
x k
x k
x
x k
+ =
+ + =
=
+ =
=
= +
=
= +
= +
=
= +
Vậy Pt có 4 họ nghiệm:
A
S CHK
Sở GD & ĐT Thanh hóa Đề khảo sát chất lợng lần I năm 2009
Trờng THPT Hoằng Hóa IV Môn: Toán Khối B
----------------o0o--------------- Thời gian :180 phút (Không kể thời gian giao đề)
I/ Phần chung cho tất cả các thí sinh (7,0 điểm)
Câu I( 2điểm)
Cho hàm số :
3 2
y x (m 3)x 3mx 2m= + +
(1) với m là tham số thực.
1. Khảo sát sự biến thiên và vẽ đồ thị của hàm số khi m=0
2. Tìm tất cả các giá trị của tham số m để đồ thị (1) cắt đờng thẳng (d): y= - 2x tại ba điểm phân
biệt có hoành độ lập thành một cấp số cộng theo một thứ tự nào đó.
CâuII(2điểm).
1. Giải phơng trình:
sin 3x 3 cos 3x 2sin 2009x 0 =
2. Giải bất phơng trình:
x x
3
log (16 2.12 ) 2x 1 +
CâuIII (2điểm)
1. Tính tích phân:
3
2
4
tan x
dx
cos x 1 cos x
+
2. Tìm m để phơng trình sau có đúng hai nghiệm thực phân biệt:
2
1 x 8 x x 7x 8 m+ + + + + =
CâuIV(1điểm)
Cho khối chóp SABC có đáy ABC là tam giác vuông tại B .Biết SA vuông góc với mặt phẳng
(ABC) và AB=SA=a, BC=2a. Một phặt phẳng qua A vuông góc SC tại H và cắt SB tại K .
Tính diện tích tam giác AHK theo a.
II/ Phần riêng (3,0 điểm)
Thí sinh chỉ đợc làm một trong hai phần theo chơng trình Chuẩn hoặc Nâng cao.
1. Theo ch ơng trình Chuẩn.
CâuVa(2điểm)
1. Trong mặt phẳng với hệ tọa độ Oxy ,cho tam giác ABC biết A(5 ; 2) .Phơng trình đờng trung
trực cạnh BC, đờng trung tuyến CC lần lợt là (d
1
): x+y-6=0 và (d
2
): 2x- y+3=0
Tìm tọa độ các đỉnh của tam giác ABC.
2. Trong không gian với hệ trục tọa độ Oxyz , cho H(1;2;3) . Lập phơng trình mặt phẳng đi qua H
và cắt Ox tại A,Oy tại B ,Oz tại C sao cho H là trực tâm của tam giác ABC
CâuVIa(1điểm)
Tìm hệ số của x
4
trong khai triển biểu thức:
( )
n
3
A 1 x 3x=
thành đa thức, trong đó n là số
nguyên dơng thỏa mãn:
n 1 n
n 4 n 3
C C 6(n 3)
+
+ +
= +
2. Theo ch ơng trình Nâng cao.
CâuVb(2điểm)
1. Trong mặt phẳng với hệ tọa độ Oxy ,cho tam giác ABC biết A(5 ; 2) .Phơng trình đờng trung
trực cạnh BC, đờng trung tuyến CC lần lợt là (d
1
): x+y-6=0 và (d
2
): 2x- y+3=0.
Lập phơng trình cạnh BC của tam giác ABC.
2. Trong không gian với hệ trục tọa độ Oxyz , cho M(1;2;3).Lập phơng trình mặt phẳng đi qua M
và cắt ba tia Ox tại A,Oy tại B ,Oz tại C sao cho thể tích tứ diện OABC nhỏ nhất
CâuVIb(1điểm)
Tìm hệ số của x
5
trong khai triển biểu thức:
( )
n
3
A 1 x 3x=
thành đa thức, trong đó n là số
nguyên dơng thỏa mãn:
n 1 n
n 4 n 3
C C 6(n 3)
+
+ +
= +
-----------------Hết-----------------
Ghi chó: C¸n bé coi thi kh«ng gi¶i thÝch g× thªm.
§¸p ¸n- Thang ®iÓm