Tải bản đầy đủ (.doc) (16 trang)

Mot so de tong hop on thi vao THPT.doc

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (155.54 KB, 16 trang )

Nguyễn Trần Khánh
Một số đề tổng hợp
Đề số 1
Bài 1: Cho M =
6
3
a a
a
+
+
a) Rút gọn M.
b) Tìm a để / M /

1
c) Tìm giá trị lớn nhất của M.
Bài 2: Cho hệ phơng trình
4 3 6
5 8
x y
x ay
=


+ =

a) Giải phơng trình.
b) Tìm giá trị của a để hệ có nghiệm duy nhất âm.
Bài 3: Giải toán bằng cách lập phơng trình
Một đoàn xe dự định chở 40 tấn hàng. Nhng thực tế phải chở 14 tấn nữa nên phải điều thêm
hai xe và mỗi xe phải chở thêm 0,5 tấn. Tính số xe ban đầu.
Bài 4: Cho 3 điểm M, N, P thẳng hàng theo thứ tự đó. Một đờng tròn (O) thay đổi đi qua hai


điểm M, N. Từ P kẻ các tiếp tuyến PT, PT với đờng tròn (O)
a) Chứng minh: PT
2
= PM.PN. Từ đó suy ra khi (O) thay đổi vẫn qua M, N thì T, T
thuộc một đờng tròn cố định.
b) Gọi giao điểm của TT với PO, PM là I và J. K là trung điểm của MN.
Chứng minh: Các tứ giác OKTP, OKIJ nội tiếp.
c) Chứng minh rằng: Khi đờng tròn (O) thay đổi vẫn đi qua M, N thì TT luôn đi qua
điểm cố định.
d) Cho MN = NP = a. Tìm vị trí của tâm O để góc

TPT = 60
0
.
Bài 4: Giải phơng trình
3
4 2
1
3 7 4
x x
x x

=
+
1
Nguyễn Trần Khánh
Đề số 2
Bài 1: Cho biểu thức
C =
3 3 4 5 4 2

:
9
3 3 3 3
x x x x
x
x x x x x

+ +

ữ ữ
ữ ữ

+

a) Rút gọn C
b) Tìm giá trị của C để / C / > - C
c) Tìm giá trị của C để C
2
= 40C.
Bài 2: Giải toán bằng cách lập phơng trình
Hai ngời đi xe đạp từ A đến B cách nhau 60km với cùng một vận tốc. Đi đợc 2/3 quãng đờng
ngời thứ nhất bị hỏng xe nên dừng lại 20 phút đón ôtô quay về A. Ngời thứ hai vẫn tiếp tục đi
với vẫn tốc cũ và tới B chậm hơn ngời thứ nhất lúc về tới A là 40 phút. Hỏi vận tốc ngời đi xe
đạp biết ôtô đi nhanh hơn xe đạp là 30km/h.
Bài 3: Cho ba điểm A, B, C trên một đờng thẳng theo thứ tự ấy và đờng thẳng d vuông góc với
AC tại A. Vẽ đờng tròn đờng kính BC và trên đó lấy điểm M bất kì. Tia CM cắt đờng thẳng d
tại D; Tia AM cắt đờng tròn tại điểm thứ hai N; Tia DB cắt đờng tròn tại điểm thứ hai P.
a) Chứng minh: Tứ giác ABMD nội tiếp đợc.
b) Chứng minh: Tích CM. CD không phụ thuộc vào vị trí điểm M.
c) Tứ giác APND là hình gì? Tại sao?

d) Chứng minh trọng tâm G của tam giác MAB chạy trên một đờng tròn cố định.
Bài 4:
a) Vẽ đồ thị hàm số y = x
2
(P)
b) Tìm hệ số góc của đờng thẳng cắt trục tung tại điểm có tung độ bằng 1 sao cho đ-
ờng thẳng ấy :
Cắt (P) tại hai điểm
Tiếp xúc với (P)
Không cắt (P)
Đề số 3
Bài 1: Cho biểu thức
2
Nguyễn Trần Khánh
M =
25 25 5 2
1 :
25
3 10 2 5
a a a a a
a
a a a a

+

ữ ữ
ữ ữ

+ +


a) Rút gọn M
b) Tìm giá trị của a để M < 1
c) Tìm giá trị lớn nhất của M.
Bài 2: Giải toán bằng cách lập phơng trình
Diện tích hình thang bằng 140 cm
2
, chiều cao bằng 8cm. Xác định chiều dài các cạnh dáy
của nó, nếu các cạnh đáy hơn kém nhau 15cm
Bài 3: a) Giải phơng trình
3 2 1 4x x
+ =
b)Cho x, y là hai số nguyên dơng sao cho
2 2
71
880
xy x y
x y xy
+ + =


+ =

Tìm x
2
+ y
2
Bài 4: Cho ABC cân (AB = AC) nội tiếp đờng tròn (O). Điểm M thuộc cung nhỏ AC, Cx là
tia qua M.
a) Chứng minh: MA là tia phân giác của góc tia BMx.
b) Gọi D là điểm đối xứng của A qua O. Trên tia đói của tia MB lấy MH = MC. Chứng

minh: MD // CH.
c) Gọi K và I theo thứ tự là trung điểm của CH và BC. Tìm điểm cách đều bốn điểm A,
I, C, K.
d) Khi M chuyển động trên cung nhỏ AC, tìm tập hợp các trung điểm E của BM.
Bài 5: Tìm các cặp(a, b) thoả mãn:
1. 1a b b a
=
Sao cho a đạt giá trị lớn nhất.
Đề số 4
Bài 1: Cho biểu thức
3
Nguyễn Trần Khánh
4 3 2 4
:
2 2 2
x x x x
P
x x x x x

+
= +
ữ ữ
ữ ữ


a) Rút gọn P
b) Tìm các giá trị của x để P > 0
c) Tính giá trị nhỏ nhất của
P
d) Tìm giá trị của m để có giá trị x > 1 thoả mãn:

( )
4123
=
xmpxm

Bài 2: Cho đờng thẳng (d) có phơng trình: y = mx -
2
m
- 1 và parabol (P) có phơng trình y =
2
2
x
.
a) Tìm m để (d) tiếp xúc với (P).
b) Tính toạ độ các tiếp điểm
Bài 3: Cho ABC cân (AB = AC) và góc A nhỏ hơn 60
0
; trên tia đối của tia AC lấy điểm D
sao cho AD = AC.
a) Tam giác BCD là tam giác gì ? tại sao?
b) Kéo dài đờng cao CH của ABC cắt BD tại E. Vẽ đờng tròn tâm E tiếp xúc với CD
tại F. Qua C vẽ tiếp tuyến CG của đờng tròn này. Chứng minh: Bốn điểm B, E, C, G
thuộc một đờng tròn.
c) Các đờng thẳng AB và CG cắt nhau tại M, tứ giác àGM là hình gì? Tại sao?
d) Chứng minh: MBG cân.
Bài 4:
Giải phơng trình: (1 + x
2
)
2

= 4x (1 - x
2
)
Đề số 5
Bài 1: Cho biểu thức
4
Nguyễn Trần Khánh
P =
( )
( )
( )
2 2
2
1 3 2 1
2
1 1
3 1
a a
a a a
a a

+

+
a) Rút gọn P.
b) So sánh P với biểu thức Q =
2 1
1
a
a



Bài 2: Giải hệ phơng trình
1 5 1
5 1
x y
y x

=


= +


Bài 3: Giải toán bằng cách lập phơng trình
Một rạp hát có 300 chỗ ngồi. Nếu mỗi dãy ghế thêm 2 chỗ ngồi và bớt đi 3 dãy ghế thì rạp
hát sẽ giảm đi 11 chỗ ngồi. Hãy tính xem trớc khi có dự kiến sắp xếp trong rạp hát có mấy dãy
ghế.
Bài 4: Cho đờng tròn (O;R) và một điểm A nằm trên đờng tròn. Một góc xAy = 90
0
quay
quanh A và luôn thoả mãn Ax, Ay cắt đờng tròn (O). Gọi các giao điểm thứ hai của Ax, Ay với
(O) tơng ứng là B, C. Đờng tròn đờng kính AO cắt AB, AC tại các điểm thứ hai tơng ứng là M,
N. Tia OM cắt đờng tròn tại P. Gọi H là trực tâm tam giác AOP. Chứng minh rằng
a) AMON là hình chữ nhật
b) MN // BC
c) Tứ giác PHOB nội tiếp đợc trong đờng tròn.
d) Xác định vị trí của góc xAy sao cho tam giác AMN có diện tích lớn nhất.
Bài 5:
Cho a 0. Giả sử b, c là nghiệm của ph ơng trình:

2
2
1
0
2
x ax
a
=
CMR: b
4
+ c
4


2 2
+
Đề số 6
Bài 1:
1/ Cho biểu thức
5
Nguyễn Trần Khánh
A =
3 1 1 1 8
:
1 1
1 1 1
m m m m m
m m
m m m


+

ữ ữ
ữ ữ

+

a) Rút gọn A.
b) So sánh A với 1
2/ Tìm giá trị nhỏ nhất của biểu thức:
y = (x - 1)(x + 2)(x + 3)(x + 6)
Bài 2: Cho hệ phơng trình
2
3 5
mx y
x my
=


+ =

a) Tìm giá trị của m để hệ có nghiệm x = 1, y =
3 1
Bài 3: Giải toán bằng cách lập phơng trình
Một máy bơm theo kế hoạch bơm đầy nớc vào một bể chứa 50 m
3
trong một thời gian nhất
định. Do ngời công nhân đã cho máy bơm hoạt động với công suất tăng thêm 5 m
3
/h, cho nên

đã bơm đầy bể sớm hơn dự kiến là 1h 40. Hãy tính công suất của máy bơm theo kế hoạch ban
đầu.
Bài 4: Cho đờng tròn (O;R) và một đờng thẳng d ở ngoài đờng tròn. Kẻ OA d. Từ một điểm
M di động trên d ngời ta kẻ các tiếp tuyến MP
1
, MP
2
với đờng tròn, P
1
P
2
cắt OM, OA lần lợt tại
N và B
a) Chứng minh: OA. OB = OM. ON
b) Gọi I, J là giao điểm của đờng thẳng OM với cung nhỏ P
1
P
2
và cung lớn P
1
P
2
.
Chứng minh: I là tâm đờngtròn nội tiếp MP
1
P
2
và P
1
J là tia phân giác góc ngoài của góc

MP
1
P
2
.
c) Chứng minh rằng: Khi M di động trên d thì P
1
P
2
luôn đi qua một điểm cố định.
d) Tìm tập hợp điểm N khi M di động.
Bài 5:
So sánh hai số:
2005 2007
+
và 2
2006
Đề số 7
Bài 1: Cho biểu thức
6

×