Tải bản đầy đủ (.doc) (8 trang)

Hàm số bậc ba

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (80.01 KB, 8 trang )

ÔN TẬP VỀ HÀM SỐ BẬC 3
(Trung tâm Luyện thi đại học Vónh Viễn)
Giả sử : y = ax
3
+ bx
2
+ cx + d với a ≠ 0 có đồ thò là (C). y’ = 3ax
2
+ 2bx + c, y” = 6ax + 2b
1) y” = 0 ⇔ x =
a3
b

(a ≠ 0 )
x =
a3
b

là hoành độ điểm uốn. Đồ thò hàm bậc 3 nhận điểm uốn làm tâm đối xứng.
2) Để vẽ đồ thò 1 hàm số bậc 3, ta cần biết các trường hợp sau :
i) a > 0 và y’ = 0 vô nghiệm ⇒ hàm số tăng trên R (luôn luôn tăng)
ii) a < 0 và y’ = 0 vô nghiệm ⇒ hàm số giảm (nghòch biến) trên R (luôn luôn giảm)
iii) a > 0 và y’ = 0 có 2 nghiệm phân biệt x
1
, x
2
với x
1
< x
2
⇒ hàm số đạt cực đại tại x


1
và đạt cực tiểu tại x
2
.
Ngoài ra ta còn có :
+ x
1
+ x
2
= 2x
0
với x
0
là hoành độ điểm uốn.
+ hàm số tăng trên (−∞, x
1
)
+ hàm số tăng trên (x
2
, +∞)
+ hàm số giảm trên (x
1
, x
2
)
iv) a < 0 và y’ = 0 có 2 nghiệm phân biệt x
1
, x
2
với x

1
< x
2
⇒ hàm đạt cực tiểu tại x
1
và đạt cực đại tại x
2
thỏa điều kiện x
1
+ x
2
= 2x
0
(x
0
là hoành độ điểm
uốn). Ta cũng có :
+ hàm số giảm trên (−∞, x
1
)
+ hàm số giảm trên (x
2
, +∞)
+ hàm số tăng trên (x
1
, x
2
)
3) Giả sử y’ = 0 có 2 nghiệm phân biệt và y = k(Ax + B)y’ + r x + q với k là hằng số khác 0;
thì phương trình đường thẳng qua 2 điểm cực trò là y = r x + q

4) (C) cắt Ox tại 3 điểm phân biệt






<
=
0)
2
x(y).
1
x(y
2
x,
1
x biệt ânnghiệm ph 2 có 0'y
5) Giả sử a > 0 ta có :
i) (C) cắt Ox tại 3 điểm phân biệt > α








<


<<α=
0)
2
x(y).
1
x(y
0)(y
2
x
1
x thỏa biệt ânnghiệm ph 2 có 0'y
ii) (C) cắt Ox tại 3 điểm phân biệt < α








<

α<<=
0)
2
x(y).
1
x(y
0)(y
2

x
1
x thỏa biệt ânnghiệm ph 2 có 0'y
Tương tự khi a < 0 .
6) Tiếp tuyến : Gọi I là điểm uốn. Cho M ∈ (C).
Nếu M ≡ I thì ta có đúng 1 tiếp tuyến qua M.
Nếu M khác I thì ta có đúng 2 tiếp tuyến qua M.
Biện luận số tiếp tuyến qua 1 điểm N không nằm trên (C) ta có nhiều trường hợp hơn.
7) (C) cắt Ox tại 3 điểm phân biệt cách đều nhau ⇔ y’ = 0 có 2 nghiệm phân biệt và y(x
0
) = 0 (x
0
là hoành độ điểm uốn)
8) Biện luận số nghiệm của phương trình : ax
3
+ bx
2
+ cx + d = 0 (1) (a ≠ 0) khi x = α là 1 nghiệm
của (1).
Nếu x = α là 1 nghiệm của (1), ta có
ax
3
+ bx
2
+ cx + d = (x - α)(ax
2
+ b
1
x + c
1

)
nghiệm của (1) là x = α với nghiệm của phương trình ax
2
+ b
1
x + c
1
= 0 (2). Ta có các trường
hợp sau:
i) nếu (2) vô nghiệm thì (1) có duy nhất nghiệm x = α
ii) nếu (2) có nghiệm kép x = α thì (1) có duy nhất nghiệm x = α
iii) nếu (2) có 2 nghiệm phân biệt ≠ α thì (1) có 3 nghiệm phân biệt
iv) nếu (2) có 1 nghiệm x = α và 1 nghiệm khác α thì (1) có 2 nghiệm.
v) nếu (2) có nghiệm kép ≠ α thì (1) có 2 nghiệm
BÀI TẬP ÔN VỀ HÀM BẬC 3
Cho họ đường cong bậc ba (C
m
) và họ đường thẳng (D
k
) lần lượt có phương trình là
y = −x
3
+ mx
2
− m và y = kx + k + 1.
(I) PHẦN I. Trong phần này cho m = 3. Khảo sát và vẽ đồ thò (C) của hàm số.
1) Gọi A và B là 2 điểm cực đại và cực tiểu của (C) và M là điểm bất kỳ trên cung AB với M khác
A , Bø . Chứng minh rằng trên (C) ta tìm được hai điểm tại đó có tiếp tuyến vuông góc với tiếp
tuyến tại M với (C).
2) Gọi ∆ là đường thẳng có phương trình y = 1. Biện luận số tiếp tuyến với (C) vẽ từ E ∈ ∆ với (C).

3) Tìm E ∈ ∆ để qua E có ba tiếp tuyến với (C) và có hai tiếp tuyến vuông góc với nhau.
4) Đònh p để trên (C) có 2 tiếp tuyến có hệ số góc bằng p, trong trường hợp này chứng tỏ trung
điểm của hai tiếp điểm là điểm cố đònh.
5) Tìm M ∈ (C) để qua M chỉ có một tiếp tuyến với (C).
(II) PHẦN I I.Trong phần này cho tham số m thay đổi.
6) Tìm điểm cố đònh của (C
m
). Đònh m để hai tiếp tuyến tại hai điểm cố đònh này vuông góc nhau.
7) Đònh m để (C
m
) có 2 điểm cực trò. Viết phương trình đường thẳng qua 2 điểm cực trò.
8) Đònh m để (C
m
) cắt Ox tại 3 điểm phân biệt.
9) Đònh m để : a) hàm số đồng biến trong (1, 2). b) hàm số nghòch biến trong (0, +∞).
10) Tìm m để (C
m
) cắt Ox tại 3 điểm có hoành độ tạo thành cấp số cộng.
11) Tìm điều kiện giữa k và m để (D
k
) cắt (C
m
) tại 3 điểm phân biệt. Tìm k để (D
k
) cắt (C
m
) thành
hai đoạn bằng nhau.
12) Viết phương trình tiếp tuyến với (C
m

) và đi qua điểm (-1, 1).
13) Chứng minh rằng trong các tiếp tuyến với (C
m
) thì tiếp tuyến tại điểm uốn có hệ số góc lớn nhất.
BÀI GIẢI
PHẦN I : m = 3
Khảo sát và vẽ đồ thò (độc giả tự làm)
1) Gọi n là hoành độ của M. Vì hàm số đạt cực tiểu tại x = 0 và đạt cực đại
tại x = 2 nên 0 < n < 2; y' = – 3x
2
+ 6x ⇒ hệ số góc của tiếp tuyến tại M
là k
1
= – 3n
2
+ 6n ∈ (0, 3] (vì n ∈ (0, 2)). Đường thẳng vuông góc với tiếp
tuyến tại M có hệ số góc là k
2
=
1
k
1

(với 0 < k
1
≤ 3). Hoành độ của tiếp
tuyến vuông góc với tiếp tuyến M là nghiệm của – 3x
2
+ 6x =
1

k
1

(= k
2
)
⇔ 3x
2
– 6x
1
k
1

= 0. Phương trình này có a.c < 0, ∀ k
1
∈ (0, 3] nên có 2
nghiệm phân biệt, ∀ k
1
∈ (0, 3]. Vậy trên (C) luôn có 2 điểm phân biệt
mà tiếp tuyến đó vuông góc với tiếp tuyến tại M.
2) E (e, 1) ∈ ∆. Phương trình tiếp tuyến qua E có dạng y = h(x – e) + 1 (D).
(D) tiếp xúc (C) ⇔ hệ



=+−
+−=−+−
hx6x3
1)ex(h3n3x
2

23
có nghiệm.
⇒ Phương trình hoành độ tiếp điểm của (D) và (C) là :
– x
3
+ 3x
2
– 3 = (– 3x
2
+ 6x)(x – e)+ 1 (1)
⇔ – x
3
+ 3x
2
– 4 = x(– 3x + 6)(x – e)
⇔ (x – 2)(x
2
– x – 2) = 3x(x – 2)(x – e)
⇔ x = 2 hay x
2
– x – 2 = 3x
2
– 3ex
⇔ x = 2 hay 2x
2
– (3e – 1)x + 2 = 0 (2)
(2) có ∆ = (3e – 1)
2
– 16 = (3e – 5)(3e + 3)
(2) có nghiệm x = 2 ⇔ 8 – 2(3e – 1) + 2 = 0 ⇔ e = 2

Ta có ∆ > 0 ⇔ e < – 1 hay e >
3
5
.
Biện luận :
i) Nếu e < – 1 hay
3
5
< e < 2 hay e > 2
⇒(1) có 3 nghiệm phân biệt ⇒ có 3 tiếp tuyến.
ii) Nếu e = – 1 hay e =
3
5
hay e = 2
⇒ (1) có 2 nghiệm ⇒ có 2 tiếp tuyến.
iii) Nếu – 1 < e <
3
5
⇒ (1) có 1 nghiệm ⇒ có 1 tiếp tuyến.
Nhận xét : Từ đồ thò, ta có y = 1 là tiếp tuyến tại (2, 1) nên phương trình (1)
chắc chắn có nghiệm x = 2, ∀ e.
3) Vì y = 1 là tiếp tuyến qua E (e, 1), ∀ e và đường x = α không là tiếp
tuyến nên yêu cầu bài toán.
⇔ (2) có 2 nghiệm phân biệt x
1
, x
2
thỏa : y'(x
1
).y'(x

2
) = – 1








−=+−+−
>∨−<
1)x6x3)(x6x3(
)2(củanghiệmlàx,x
3
5
e1e
2
2
21
2
1
21











−=−−
=

=+
>−<
1)2x)(2x(x.x9
1x.x
2
1e3
xx
3
5
ehay1e
2121
21
21






−=+−−
>−<
1]4)1e3(1[9
3
5

ehay1e
⇔ e =
27
55
. Vậy E






1,
27
55
4) Tiếp điểm của tiếp tuyến (với (C)) có hệ số góc bằng p là nghiệm của :
y' = p ⇔ 3x
2
– 6x + p = 0 (3)
Ta có ∆' = 9 – 3p > 0 ⇔ p < 3
Vậy khi p < 3 thì có 2 tiếp tuyến song song và có hệ số góc bằng p.
Gọi x
3
, x
4
là nghiệm của (3).
Gọi M
3
(x
3
, y

3
); M
4
(x
4
, y
4
) là 2 tiếp điểm. Ta có :
1
a2
b
2
xx
43
=

=
+
1
2
6)xx(3)xx(
2
yy
2
4
2
3
3
4
3

343
−=
−+++−
=
+
Vậy điểm cố đònh (1, –1) (điểm uốn) là trung điểm của M
3
M
4
.
5) Cách 1 : Đối với hàm bậc 3 (a ≠ 0) ta dễ dàng chứng minh được rằng :
∀ M ∈ (C), ta có :
i) Nếu M khác điểm uốn, ta có đúng 2 tiếp tuyến qua M.
ii) Nếu M là điểm uốn, ta có đúng 1 tiếp tuyến qua M.
Cách 2 : Gọi M(x
0
, y
0
) ∈ (C). Phương trình tiếp tuyến qua M có dạng :
y = k(x – x
0
)
3x3x
2
0
3
0
−+−
(D)
Phương trình hoành độ tiếp điểm của (D) và (C) là :

3 2 2 3 2
0 0 0
3 3 ( 3 6 )( ) 3 3x x x x x x x x− + − = − + − − + −
( 5 )

0)x6x3)(xx()xx(3xx
2
0
2
0
23
0
3
=+−−+−−−

0x6x3x3x3xxxx0xx
2
0
2
00
2
0
=+−−−++∨=−

0x3xx)x3(x2hayxx
0
2
00
2
0

=+−+−=

0)3xx2)(xx(hayxx
000
=−+−=

2
x3
xhayxx
0
0

==
Do đó, có đúng 1 tiếp tuyến qua M (x
0
, y
0
) ∈ (C)

1x
2
x3
x
0
0
0
=⇔

=
Suy ra, y

0
= 1. Vậy M(1, –1) (điểm uốn).
Nhận xét : vì x
0
là 1 hoành độ tiếp điểm nên pt (5) chắc chắn có nghiệm
kép là x
0
Phần II : Tham số m thay đổi. y' = – 3x
2
+ 2mx
6) (C
m
) qua (x, y), ∀m
⇔ y + x
3
= m (x
2
– 1) , ∀m




=
−=



−=
=





=+
=−
1y
1x
hay
1y
1x
0xy
01x
3
2
Vậy (C
m
) qua 2 điểm cố đònh là H(1, –1) và K(–1, 1).
Vì y' = – 3x
2
+ 2mx nên tiếp tuyến với (C
m
) tại H và K có hệ số góc lần
lượt là :
a
1
= y'(1) = – 3 + 2m và a
2
= y'(–1) = –3 – 2m.
2 tiếp tuyến tại H và K vuông góc nhau.
⇔ a

1
.a
2
= – 1 ⇔ 9 – 4m
2
= – 1 ⇔ m =
2
10
±
.
7) Hàm có cực trò ⇔ y' = 0 có 2 nghiệm phân biệt.
⇔ 3x
2
= 2mx có 2 nghiệm phân biệt.
⇔ x = 0 và x =
3
m2
là 2 nghiệm phân biệt.
⇔ m ≠ 0. Khi đó, ta có :
'ym
9
1
x
3
1
mxm
9
2
y
2







−+






−=
và phương trình đường thẳng qua 2 cực trò là :
mxm
9
2
y
2
−=
(với m ≠ 0)
8) Khi m ≠ 0, gọi x
1
, x
2
là nghiệm của y' = 0, ta có :
x
1
.x

2
= 0 và x
1
+ x
2
=
3
m2
⇒ y(x
1
).y(x
2
) =














mxm
9
2

mxm
9
2
2
2
1
2
=
2
21
2
m)xx(m
9
2
++−
=
24
mm
27
4
+−
Với m ≠ 0, ta có y(x
1
).y(x
2
) < 0

Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×