Tải bản đầy đủ (.pdf) (39 trang)

DSpace at VNU: Nghiên cứu chế tạo vật liệu tổ hợp ống nano TiO2 Ag ứng dụng trong quang xúc tác

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (3.06 MB, 39 trang )

ĐẠI HỌC QUỐC GIA HÀ NỘI
TRƢỜNG ĐẠI HỌC CÔNG NGHỆ

ĐẠI HỌC QUỐC GIA TP HỒ CHÍ MINH
PTN CÔNG NGHỆ NANO

LƢU KIẾN QUỐC

NGHIÊN CỨU CHẾ TẠO VẬT LIỆU TỔ HỢP ỐNG
NANO TiO2/Ag ỨNG DỤNG TRONG QUANG XÚC TÁC

LUẬN VĂN THẠC SĨ : VẬT LIỆU VÀ LINH KIỆN NANO

Thành phố Hồ Chí Minh - 2015

Luận văn Thạc sĩ


ĐẠI HỌC QUỐC GIA HÀ NỘI
TRƢỜNG ĐẠI HỌC CÔNG NGHỆ

ĐẠI HỌC QUỐC GIA TP HỒ CHÍ MINH
PTN CÔNG NGHỆ NANO

LƢU KIẾN QUỐC

NGHIÊN CỨU CHẾ TẠO VẬT LIỆU TỔ HỢP ỐNG
NANO TiO2/Ag ỨNG DỤNG TRONG QUANG XÚC TÁC
Chuyên ngành: Vật liệu và linh kiện nano
Mã số: Chuyên ngành đào tạo thí điểm


LUẬN VĂN THẠC SĨ : VẬT LIỆU VÀ LINH KIỆN NANO

NGƢỜI HƢỚNG DẪN KHOA HỌC : PGS. TS Lê Văn Hiếu

Thành phố Hồ Chí Minh - 2015
Luận văn Thạc sĩ


Luận văn Thạc sĩ


Luận văn Thạc sĩ


Luận văn Thạc sĩ


Luận văn Thạc sĩ


Luận văn Thạc sĩ


Luận văn Thạc sĩ


LỜI CAM ĐOAN

Tôi xin cam đoan luận văn này là công trình nghiên cứu của riêng tôi và các sinh
viên làm việc dƣới sự hƣớng dẫn của tôi và PGS. TS Lê Văn Hiếu. Các số liệu trong

luận văn là trung thực và chƣa đƣợc công bố trong bất kỳ công trình nào mà tôi không
tham gia.

Luận văn Thạc sĩ


LỜI CẢM ƠN
Quá trình học tập và nghiên cứu làm luận văn cao học với nhiều niềm yêu thích,
đam mê sẽ là một giai đoạn đáng nhớ trong đời tôi. Luận văn này sẽ không thể hoàn
thành nếu tôi không nhận đƣợc sự động viên, giúp đỡ, dạy bảo tận tình từ những ngƣời
thầy, đồng nghiệp, bạn bè và gia đình thân yêu. Và đây là thời điểm tuyệt vời để tôi
gửi lời cám ơn đến mọi ngƣời.
Con xin gửi lời cảm ơn sâu sắc đến thầy PGS. TS Lê Văn Hiếu. Thầy là ngƣời
hƣớng dẫn con trên con đƣờng khoa học từ những ngày đầu. Những lúc khó khăn nhất,
con luôn tìm đến sự giúp đỡ của thầy để định hƣớng khoa học, giải đáp những thắc
mắc và sửa chữa sai sót. Con đã học từ thầy rất nhiều, từ phƣơng thức học tập nghiên
cứu, đến kỹ năng giảng dạy và phong cách sống giản dị.
Em cũng xin gửi lời cảm ơn chân thành đến Th.S Phạm Văn Việt vì sự giúp đỡ,
chỉ dạy tận tình của anh dành cho em từ lý thuyết đến thực nghiệm. Sự định hƣớng, chỉ
dẫn không ngơi nghỉ của anh đã giúp em có thêm sức mạnh để hoàn thành đề tài này.
Anh xin cám ơn em Nguyễn Thị Ngọc Thúy vì vai trò tích cực và sự hỗ trợ của em
trong nhóm nghiên cứu. Xin cám ơn bạn Vũ Đức Lân vì đã giúp mình thiết lập các hệ
thí nghiệm và vì những ngày cùng nhau làm việc hiệu quả.
Con xin cảm ơn ba mẹ đã nuôi nấng con trƣởng thành, động viên, ủng hộ con
trên con đƣờng học tập và nghiên cứu khoa học. Con xin cảm ơn những ngày ba mẹ ở
nhà mòn mỏi đợi con đi làm, đi học về ăn bữa cơm chung gia đình. Anh xin cảm ơn
em Ngọc Thảo, vì đã chia sẻ khó khăn, vui buồn bên anh trên suốt chặng đƣờng dài.
TP.Hồ Chí Minh, ngày 23/5/2015
Lƣu Kiến Quốc


Luận văn Thạc sĩ


MỤC LỤC
LỜI CAM ĐOAN .............................................................................................................i
LỜI CẢM ƠN ..................................................................................................................x
MỤC LỤC ......................................................................................................................xi
DANH MỤC BẢNG BIỂU ........................................................................................... xv
DANH MỤC HÌNH VẼ ...............................................................................................xvi
MỞ ĐẦU ......................................................................................................................... 1
CHƢƠNG 1 - TỔNG QUAN .......................................................................................... 4
1.1

Vật liệu ống nano TiO2 (TNTs)..........................................................................4

1.1.1

Vật liệu TiO2 ............................................................................................... 4

1.1.2

Sự hình thành và chuyển pha của vật liệu TiO2 ..........................................6

1.1.3

Hiện tƣợng quang xúc trên bề mặt vật liệu nano TiO2 ............................... 6

1.1.4

Một số dạng vật liệu nano TiO2 ..................................................................9


1.1.4.1 Hạt cầu TiO2 ............................................................................................ 9
1.1.4.2 Sợi và ống TiO2 (1 chiều) ......................................................................10
1.1.4.3 Tấm nano TiO2....................................... Error! Bookmark not defined.
1.1.5

Một số tính chất của vật liệu nano TiO2 .... Error! Bookmark not defined.

1.1.5.1 Tính chất điện ........................................ Error! Bookmark not defined.
1.1.5.2 Tính chất quang [18, 55] ........................ Error! Bookmark not defined.
1.1.5.3 Tính chất hấp phụ .................................. Error! Bookmark not defined.
1.1.6

Tổng hợp nano TiO2 bằng phƣơng pháp thủy nhiệt Error! Bookmark not

defined.
1.1.7

Ứng dụng của vật liệu nano TiO2 .............. Error! Bookmark not defined.

1.1.7.1 Trong pin mặt trời nhạy quang [13, 27, 31, 37] .. Error! Bookmark not
defined.
1.1.7.2 Trong lĩnh vực quang xúc tác ................ Error! Bookmark not defined.
1.1.7.3 Cảm biến khí .......................................... Error! Bookmark not defined.
Luận văn Thạc sĩ


1.2

Tổng quan về nano bạc. ................................... Error! Bookmark not defined.


1.2.1

Vật liệu nano bạc ....................................... Error! Bookmark not defined.

1.2.2

Hiệu ứng cộng hƣởng plasmon bề mặt ..... Error! Bookmark not defined.
Các phƣơng pháp tổng hợp hạt nano Ag ...... Error! Bookmark not defined.

1.2.3

1.2.3.1 Phƣơng pháp khử hóa học ..................... Error! Bookmark not defined.
1.2.3.2 Phƣơng pháp khử vật lý ......................... Error! Bookmark not defined.
1.2.3.3 Phƣơng pháp sinh học ............................ Error! Bookmark not defined.
1.2.4

Tổng hợp nano Ag trên TNTs bằng phƣơng pháp khử quang .......... Error!

Bookmark not defined.
1.2.5
1.3

Ứng dụng của hạt nano Ag........................ Error! Bookmark not defined.

Vật liệu tổ hợp ống nano TiO2/ Ag (TNTs/Ag) ............. Error! Bookmark not

defined.
1.4


Tổng quan tình hình nghiên cứu trong và ngoài nƣớc. .. Error! Bookmark not

defined.
CHƢƠNG 2. QUÁ TRÌNH THỰC NGHIỆM .............. Error! Bookmark not defined.
2.1

Chế tạo ống nano bằng phƣơng pháp thủy nhiệt ........... Error! Bookmark not

defined.
2.1.1

Hóa chất và dụng cụ .................................. Error! Bookmark not defined.

2.1.2

Quy trình thủy nhiệt .................................. Error! Bookmark not defined.

2.2

Tổng hợp nano TNTs/Ag bằng phƣơng pháp chiếu đèn UVC ................ Error!

Bookmark not defined.
2.2.1

Hóa chất và dụng cụ. ................................. Error! Bookmark not defined.

2.2.2

Quy trình phản ứng khử quang tổng hợp TNTs/Ag Error! Bookmark not


defined.
2.3

Khảo sát khả năng quang xúc tác của vật liệu TNTs/Ag lên Methylene Blue
Error! Bookmark not defined.

2.3.1

Chất chỉ thị Methylene Blue ..................... Error! Bookmark not defined.

2.3.2

Hệ thí nghiệm đo quang xúc tác. ............... Error! Bookmark not defined.
Luận văn Thạc sĩ


2.3.3
2.4

Quy trình đo quang xúc tác ....................... Error! Bookmark not defined.

Các phƣơng pháp phân tích ............................. Error! Bookmark not defined.

2.4.1

Giản đồ nhiễu xạ tia X .............................. Error! Bookmark not defined.

2.4.2

Kính hiển vi điện tử truyền qua (TEM) .. Error! Bookmark not defined.


2.4.3

Kính hiển vi điện tử quét và phổ tán sắc năng lƣợng tia X ............ Error!

Bookmark not defined.
CHƢƠNG 3. KẾT QUẢ VÀ BÀN LUẬN ................... Error! Bookmark not defined.
3.1 Tổng hợp ống nano TiO2 (TNTs)......................... Error! Bookmark not defined.
3.2 Tổng hợp TNTs/Ag bằng phƣơng pháp khử quang ........... Error! Bookmark not
defined.
3.2.1 Ảnh hƣởng của thời gian khử ........................ Error! Bookmark not defined.
3.2.2 Ảnh hƣởng của nồng độ nồng độ dung dịch AgNO3 ... Error! Bookmark not
defined.
3.2.3 Ảnh hƣởng của nhiệt độ nung........................ Error! Bookmark not defined.
3.3 Khảo sát khả năng quang xúc tác của TNTs/Ag. Error! Bookmark not defined.
3.3.1 Khảo sát đặc tính quang xúc tác của vật liệu TNTs, TNTs/Ag và TiO2
thƣơng mại .............................................................. Error! Bookmark not defined.
3.3.2 Khảo sát đặc tính quang xúc tác giữa các mẫu TNTs/Ag tổng hợp với nồng
độ AgNO3 khác nhau. ............................................. Error! Bookmark not defined.
3.3.3 Khảo sát ảnh hƣởng quá trình nung lên đặc tính quang xúc tác. ........... Error!
Bookmark not defined.
KẾT LUẬN VÀ HƢỚNG PHÁT TRIỂN .................... Error! Bookmark not defined.
4.1 Các kết quả đạt đƣợc của đề tài............................ Error! Bookmark not defined.
4.2 Hạn chế của đề tài ................................................ Error! Bookmark not defined.
4.3 Hƣớng phát triển .................................................. Error! Bookmark not defined.
Tài liệu tham khảo .........................................................................................................11

Luận văn Thạc sĩ



DANH MỤC TỪ CÁC TỪ VIẾT TẮT

DSSC: Dye sensitized solar cell (Pin mặt trời nhạy quang)
EDX: Energy dispersive X-ray spectroscopy (phổ tán sắc năng lƣợng tia X)
HOMO: Highest occupied molecular orbital (Vân đạo phân tử liên kết có mức năng
lƣợng cao nhất)
HRTEM: High resolution transmission electron microscopy (Kính hiển vi điện tử
truyền qua phân giải cao)
LUMO: Lowest occupied molecular orbital (vân đạo phân tử phản liên kết có mức
năng lƣợng thấp nhất)
MB: Methylene nlue
PL: Photoluminescence (Phổ phát quang)
SEM: Scanning electron microscopy (Kính hiển vi điện tử quét)
TNTs: Ống nano TiO2
TNTs/Ag: Ống nano TiO2/Ag
TEM: Transmission electron microscopy (Kính hiển vi điện tử truyền qua)
UVA: Ultraviolet – A (Tia tử ngoại A – 365nm)
UVC: Ultraviolet – C (Tia tử ngoại C – 254nm)
XPS: X-ray photoelectron spectroscopy (Phổ quang điện tử tia X)
XRD: X-ray diffraction (giản đồ nhiễu xạ tia X)

Luận văn Thạc sĩ


DANH MỤC BẢNG BIỂU
Chƣơng 1.
Bảng 1. 1 Một số tính chất vật lý của TiO2…………………………………………….5
Chƣơng 3.
Bảng 3. 1 Ảnh hƣởng thời gian khử lên thành phần nguyên tử……………...……….42
Bảng 3. 2 Ảnh hƣởng nồng độ dung dịch khử AgNO3 lên thành phần nguyên tử…...45


Luận văn Thạc sĩ


DANH MỤC HÌNH VẼ
Hình 1. 1. Các dạng thù hình của oxit titan .....................................................................4
Hình 1. 2 Giản đồ sự hình thành cặp điện tử – lỗ trống dƣới tác dụng tia tử ngoại trên
TiO2. ................................................................................................................................ 7
Hình 1. 3 Các quá trình xảy ra trên TiO2 dƣới ảnh hƣởng bức xạ cực tím .....................7
Hình 1. 4 Cơ chế hình thành bề mặt siêu kỵ nƣớc của TiO2 dƣới tác dụng bức xạ tử
ngoại ................................................................................................................................ 8
Hình 1. 5 Hạt cầu nano TiO2 và cơ chế tán xạ ánh ánh [55]. ........................................10
Hình 1. 6 Ảnh SEM mặt cắt ngang của vật liệu nano TiO2 [51]. Error! Bookmark not
defined.
Hình 1. 7 Sơ đồ biểu diễn các điện tử truyền dẫn a) trong các hạt nano sắp xếp không
có trật tự, b) trong cấu trúc 1D sắp xếp có trật tự [91]. . Error! Bookmark not defined.
Hình 1. 8 Hệ thủy nhiệt tổng hợp TNTs. Thể tích hệ thủy nhiệt 150mL. ............. Error!
Bookmark not defined.
Hình 1. 9 Cơ chế hoạt động của TiO2 trong pin mặt trời nhạy quang Error! Bookmark
not defined.
Hình 1. 10 Minh họa sự di chuyển của hạt tải trong a) tiếp xúc p-n ; b) hạt nano trong
polymer dẫn ; c) nanorod định hƣớng ngẫu nhiên trong polymer dẫn ; d) nanorod định
hƣớng trật tự trong polymer dẫn. ................................... Error! Bookmark not defined.
Hình 1. 11 Giản đồ điện tử vùng hóa trị trong hạt nano vàng tƣơng tác với sóng phẳng
tới, với điện trƣờng phân cực E trên ma trận chất nền. . Error! Bookmark not defined.
Hình 1. 12 Bƣớc sóng và tần số UVC trong dải phổ điện từ....... Error! Bookmark not
defined.

Hình 2. 1 Quy trình tổng hợp TNTs .............................. Error! Bookmark not defined.
Hình 2. 2 Lò sấy chân không Vacucell MMM standardError! Bookmark not defined.

Hình 2. 3 Hệ chiếu khử quang UVC ............................. Error! Bookmark not defined.
Hình 2. 4 Quy trình tổng hợp vật liệu tổ hợp TNTs/Ag Error! Bookmark not defined.
Hình 2. 5 Công thức cấu tạo Methylene blue ................ Error! Bookmark not defined.
Hình 2. 6 Phổ hấp thu của dung dịch MB ..................... Error! Bookmark not defined.
Hình 2. 7 Hệ chiếu bức xạ UVA. .................................. Error! Bookmark not defined.
Hình 2. 8 Quang phổ kết Optima SP300. ...................... Error! Bookmark not defined.
Luận văn Thạc sĩ


Hình 2. 9 Máy phân tích nhiễu xạ tia X Bruker D8 – Advance 5005 Error! Bookmark
not defined.
Hình 2. 10 Thiết bị phân tích hiển vi điện tử truyền qua JEM 1400 (TEM) ......... Error!
Bookmark not defined.
Hình 2. 11 Thiết bị phân tích hiển vi điện tử quét JOEL JSM 7401F Error! Bookmark
not defined.

Hình 3. 1 Giản đồ nhiễu xạ tia X của (a) TiO2 thƣơng mại, (b) ống nano TiO2. .. Error!
Bookmark not defined.
Hình 3. 2 Ảnh SEM của mẫu TiO2 thƣơng mại (a), ảnh TEM của mẫu TNTs (b,c)
....................................................................................... Error! Bookmark not defined.
Hình 3. 3 Ảnh TEM khảo sát ảnh hƣởng của thời gian khử quang lên hình thái vật liệu
TNTs/Ag. Thời gian khử là: (a,b) TNTs/Ag 6h; (c,d) TNTs/Ag 24h; (e,f) 36h; Error!
Bookmark not defined.
Hình 3. 4 Mẫu bột TNTs/Ag khử trong 24 giờ. ............ Error! Bookmark not defined.
Hình 3. 5 Giản đồ nhiễu xạ tia X các mẫu TNTs, TNTs/Ag với thời gian khử 6 giờ, 12
giờ, 24 giờ ...................................................................... Error! Bookmark not defined.
Hình 3. 6 Ảnh TEM khảo sát ảnh hƣởng nồng độ dung dịch AgNO3 lên hình thái
TNTs/Ag. (a, b) dung dịch AgNO3 nồng độ 0,01M; (c,d) dung dịch AgNO3 nồng độ
0,02M. ............................................................................ Error! Bookmark not defined.
Hình 3. 7 Giản đồ nhiễu xạ tia X các mẫu TNTs/Ag, TNTs/Ag 300oC, 400oC, 500oC

....................................................................................... Error! Bookmark not defined.
Hình 3. 8 Ảnh TEM khảo sát ảnh hƣởng của nhiệt độ nung lên hình thái vật liệu
TNTs/Ag. (a,b) mẫu nung ở 400oC; (c,d) mẫu nung ở 500oC ..... Error! Bookmark not
defined.
Hình 3. 9 Các mẫu dung dịch khảo sát quang xúc tác sau khi chiếu UVA 150 phút.
....................................................................................... Error! Bookmark not defined.
Hình 3. 10 Độ hấp thụ của các dung dịch MB, và TiO2 thƣơng mại, TNTs, TNTs/Ag
24h (phân tán trong MB) chiếu đèn UVA. .................... Error! Bookmark not defined.
Hình 3. 11 Khảo sát đặc tính quang xúc tác UVA của các mẫu TNTs/Ag 24h tại các
nồng độ dung dịch AgNO3 trong phản ứng khử quang 0,01M, 0,02M, 0,04M. ... Error!
Bookmark not defined.
Luận văn Thạc sĩ


Hình 3. 12 Khảo sát đặc tính quang xúc tác UVA của các mẫu TNTs/Ag 24h tại các
nhiệt độ nung khác nhau ................................................ Error! Bookmark not defined.
Hình 3. 13 Khảo sát đặc tính quang xúc tácUVA của các mẫu TNTs và TNTs/Ag tại
cùng nhiệt độ nung ........................................................ Error! Bookmark not defined.

Luận văn Thạc sĩ


1

MỞ ĐẦU

Tài nguyên nƣớc là một trong những nguồn tài nguyên quan trọng nhất đối với
loài ngƣời, cũng nhƣ các loài động thực vật khác trên trái đất. Với sự phát triển nhanh
chóng của khoa học và kỹ thuật, nhiều ngành công nghiệp nhƣ hóa chất, dầu khí, hóa
dƣợc, khai khoáng, điện tử .v.v. đang định hình nền văn minh hiện đại nhƣng cũng

đồng thời gây những tác hại tiêu cực cho tất cả các nguồn tài nguyên thiên nhiên, đặc
biệt là tài nguyên nƣớc. Mỗi ngành công nghiệp trên đều tiêu thụ một lƣợng nƣớc
khổng lồ và thải ra cũng một lƣợng tƣơng đƣơng nƣớc thải chứa chất độc hại, kim loại
nặng, ô nhiểm hữu cơ. Hơn thế nữa, vấn đề bùng nổ dân số toàn cầu cũng đẩy mạnh
nhu cầu nƣớc sạch để uống và sinh hoạt thông thƣờng. Đặc biệt, để đáp ứng nhu cầu
lƣơng thực, thực phẩm cho thế giới, rất nhiều thuốc bảo vệ thực vật và kháng sinh
đƣợc sử dụng trong nông nghiệp và dƣ lƣợng hóa chất nhanh chóng đi vào sông suối,
kênh rạch, ngấm xuống mạch nƣớc ngầm và làm ô nhiễm nƣớc sạch. Để giải quyết
những vấn đề ô nhiễm nƣớc trên, và đảm bảo môi trƣờng trong sạch, các nhà khoa học
đã và đang tập trung phát triển những quy trình xử lý nƣớc mới, hiệu quả, tiết kiệm,
mạnh mẽ hơn.
Tổ chức sức khỏe thế giới ƣớc tính vào năm 2012, 780 triệu ngƣời dân trên thế
giới không đƣợc tiếp cận nguồn nƣớc sạch [96]. Nguy hiểm hơn là vấn đề thiếu hụt
nƣớc sạch không chỉ xảy ra ở những vùng hạn hán kéo dài mà còn xảy ra ở những
vùng dồi dào tài nguyên nƣớc, dẫn đến tầm quan trọng của việc phát triển phƣơng
pháp xử lý nƣớc với chi phí thấp, giảm tiêu thụ năng lƣợng và hạn chế tác dụng phụ
đối với môi trƣờng [70]. Nằm tại Đông Nam Á và có hệ thống sông ngòi dày đặc, chỉ
39% dân số vùng nông thôn Việt Nam tiếp cận đƣợc nƣớc sạch [98]. Khoảng 7 triệu
ngƣời dân đô thị đang phải sử dụng nguồn nƣớc ô nhiễm và phơi nhiễm các bệnh do
nƣớc bẩn nhƣ ung thƣ, thần kinh và da liễu. Do sự phát triển kinh tế nhanh chóng, các
sông và kênh rạch tại Việt Nam bị ảnh hƣởng bởi nhiều loại chất thải. Nƣớc bề mặt
của sông bị nhiễm bẩn cục bộ do nƣớc thải chƣa xử lý từ các nhà máy và hoạt động
nông nghiệp. Ủy ban tài nguyên nƣớc và môi trƣờng Việt Nam báo cáo 80% bệnh tật
bắt nguồn từ sử dụng nƣớc bẩn [98]. Thực trạng trên cho thấy tính cấp thiết trong
nghiên cứu xử lý nƣớc thải và nƣớc ô nhiễm.
Luận văn Thạc sĩ


2


Một phƣơng pháp xử lý nƣớc lý tƣởng cần có khả năng phân hủy các chất độc
hữu cơ hoàn toàn mà không để lại các thành phần có hại. Các phƣơng pháp sinh học,
cơ học, nhiệt, hóa, xử lý vật lý hoặc sự kết hợp của chúng có thể áp dụng để làm sạch
nƣớc bẩn. Sự lựa chọn phƣơng pháp tối ƣu còn phụ thuộc vào đặc tính tự nhiên của
nguồn ô nhiễm trong nƣớc bẩn, và mức độ ô nhiễm cho phép của nguồn nƣớc sau xử
lý. Hơn thế nữa, hiệu quả kinh tế của phƣơng pháp xử lý nƣớc cũng đóng vai trò quan
trọng trong việc lựa chọn phƣơng pháp. Một số phƣơng pháp xử lý nƣớc đang đƣợc sử
dụng phổ biến đã đạt đƣợc những thành công nhất định tuy nhiên mỗi phƣơng pháp
đều có hạn chế riêng, và phạm vi ứng dụng phù hợp. Nổi lên trong những thập kỷ gần
đây là công nghệ nano và các phƣơng pháp xử lý nƣớc bằng chất xúc tác nano với
nhiều ƣu điểm so với các phƣơng pháp truyền thống.
Công nghệ nano là khoa học nghiên cứu và chức năng hóa vật liệu có kích thƣớc
nano và hƣớng tới mục tiêu tạo ra vật liệu hoặc linh kiện nano với những tính chất ƣu
việt bằng cách tăng diện tích bề mặt vật liệu so với vật liệu khối [8]. Việc tăng tỷ số
diện tích so với thể tích sẽ tăng độ nhạy của vật liệu đối với tác nhân vật lý, hóa học và
sinh học [12, 14, 16, 41]. Nhờ công nghệ nano, việc sử dụng các chất xúc tác nano, hạt
nano kim loại và bộ lọc nano đã cải thiện đƣợc đáng kể hiệu suất cũng nhƣ giảm giá
thành và thân thiện với môi trƣờng trong quy trình xử lý môi trƣờng [8, 11, 12, 95].
Nhờ kích thƣớc hạt có thể điều khiển từ 1nm đến 100nm và sự đồng nhất về hình thái,
những tính chất ƣu việt của vật liệu nano đã đƣợc khám phá và ứng dụng trong các
lĩnh vực điện, quang học, cảm biến, xúc tác, sinh học [89, 93, 95, 99]. Trong lĩnh vực
quang xúc tác và diệt khuẩn, vật liệu nano TiO2 và nano bạc có ƣu thế vƣợt trội [8, 10,
11, 89]. TiO2 là vật liệu không độc hại, phổ biến trong các ứng dụng trong lĩnh vực
năng lƣợng mặt trời [19] và đặc biệt là xử lý môi trƣờng bởi tính quang xúc tác mạnh
và bền vững hóa học của chúng [8, 20]. Do có độ rộng vùng cấm khá lớn (3.2 eV) nên
sự hấp thụ photon để tạo cặp điện tử - lỗ trống xảy ra trong vùng ánh sáng tử ngoại. Vì
vậy vật liệu nano TiO2 thể hiện rõ đặc tính quang xúc tác mạnh trong vùng ánh sáng tử
ngoại và có những hạn chế về quang xúc tác trong điều kiện ánh sáng khả kiến [19, 33,
43] Nhằm khắc phục hạn chế này, nhiều nhóm nghiên cứu đã tìm cách pha tạp nano
TiO2 nhằm cải thiện hoạt tính kháng khuẩn và quang xúc tác, trong đó bạc là một ứng

viên có triển vọng [8].

Luận văn Thạc sĩ


3

Bạc là một kim loại đã đƣợc sử dụng từ rất lâu với các mục đích nhƣ trang sức,
tiền tệ, tráng gƣơng .v..v. và các ứng dụng diệt khuẩn, chống nhiễm trùng, khử độc.
Ngày nay, các nhà nghiên cứu đã tìm ra quy trình quang khử ion bạc trên nền vật liệu
TiO2 nhằm chế tạo ra vật liệu vừa có khả năng kháng khuẩn vừa có đặc tính quang xúc
tác [19, 20, 39]. Nhờ quy trình quang khử này, đã tổng hợp đƣợc vật liệu tổ hợp ống
nano TiO2 và bạc. Sự hiện diện của nano bạc trong vật liệu tổ hợp này đã cải thiện
đáng kể khả năng hấp thụ photon nhờ hiệu ứng plasmon bề mặt và từ đó làm tăng số
lƣợng cặp điện tử - lỗ trống trên bán dẫn nano TiO2 [43]. Các nghiên cứu về tính
quang xúc tác của vật liệu tổ hợp trên đã đƣợc thực hiện trên các chất nhƣ αhexachlorobenzene và dicofol [20]; rhodamine-B [19]; amoxicillin và 2, 4diclorophenol [39]; methylene blue [76]. Ngoài ra, khả năng cải thiện tính diệt khuẩn
trên các loại vi khuẩn gam âm và gam dƣơng cũng đã đƣợc nghiên cứu [45, 48, 75].
Các nghiên cứu mới nhất đang tập trung theo hƣớng kết hợp bán dẫn nano TiO2 và bạc
để tạo ra vật liệu tổ hợp dị thể nhằm ứng dụng trong việc xử lý nƣớc cũng nhƣ môi
trƣờng.

Luận văn Thạc sĩ


4

CHƢƠNG 1 - TỔNG QUAN
1.1

Vật liệu ống nano TiO2 (TNTs)


1.1.1 Vật liệu TiO2
Oxit titan còn đƣợc gọi là titan (IV) oxit hoặc titania là một hợp chất tự nhiên cấu
tạo từ titan và oxy, có công thức hóa học là TiO2 [24]. Oxit titan thƣờng đƣợc tìm thấy
trong tự nhiên gồm có 3 loại khoáng phổ biến là rutile, anatase và brookite, và 2 loại
chỉ tồn tại ở áp lực cao dƣới thù hình đơn tà dạng baddeleyite và orthorhombic. TiO2
tự nhiên đƣợc khai thác từ quặng Ilmenite, là loại khoáng phổ biến nhất chứa TiO2.
Rutile là thù hình phổ biến nhất, chiếm 98% hàm lƣợng quặng . Hai loại thù hình bán
bền vững anatase và brookite có thể chuyển đổi sang pha cân bằng rutile khi đƣợc
nung lên 600-800oC [24, 70].

Hình 1. 1. Các dạng thù hình của oxit titan
Oxit titan đƣợc sử dụng rộng rãi nhất nhƣ chất tạo màu trắng trong sơn, giấy,
thảm vinyl, và tổng hợp các loại sợi [70]. Tuy nhiên, TiO2 có nhiều đặc tính đặc biệt
không chỉ trong ứng dụng phẩm màu mà còn trong các ứng dụng khác với đặc tính
quang xúc tác mạnh để phá vỡ cấu trúc hữu cơ. Từ đặc tính này, oxit titan đƣợc sử
dụng nhằm ngăn sự bám bẩn trên kính phƣơng tiện giao thông, cửa sổ, quạt thông gió
và đặc biệt là sử dụng nhằm không khí ô nhiễm nhƣ khói thuốc, nitơ oxit [10, 15, 33].

Luận văn Thạc sĩ


5

Bảng 1. 2 Một số tính chất vật lý pha anatase và pha rutile TiO2. [22]
Tính chất
Hệ tinh thể
Số nguyên tử trong một ô cơ

Anatase


Rutile

Tetragonal

Tetragonal

4

2

3,2 eV

3,0 eV

3,89 g/cm3

4,25g/cm3

2,53

2,71

5,5 ~6,0

6,0 ~7,0

31

114


Chuyển sang pha Rutile ở

1858 oC

sở
Độ rộng vùng cấm
Khối lƣợng riêng
Độ khúc xạ
Độ cứng (thang Moh)
Hằng số điện môi
Nhiệt độ nóng chảy

nhiệt độ cao (600 oC ~
800 oC)
Nhiệt độ sôi
Hệ số khúc xạ
Khả năng hòa tan trong HF
Khả năng hòa tan trong H2O

-

2975 oC

2,488

2,583

Hòa tan


Không tan

Không tan

Không tan

Anatase và rutile là hai dạng thù hình phổ biến của TiO2, cấu trúc tinh thể của
hai dạng này đều thuộc hệ tứ phƣơng (hình 1.2). Mỗi nguyên tử đƣợc bao quanh bởi 6
nguyên tử oxi ở trên các đỉnh của một bát diện. Tuy nhiên trong tinh thể anatase các đa
diện phối trí 8 mặt bị biến dạng mạnh hơn so với rutile, khoảng cách Ti-Ti ngắn hơn
và khoảng cách Ti-O dài hơn. Điều này ảnh hƣởng đến cấu trúc điện tử của hai dạng
tinh thể, kéo theo sự khác nhau về các tính chất vật lý và hóa học. Dạng nhiệt động lực
học bền nhất của TiO2 là rutile, do rutile có pha tinh thể chặt hơn anatase và brookite.
Tuy nhiên trong cả 2 dạng thù hình trên của TiO2 thì chỉ có dạng anatase thể hiệntính
hoạt động nhất dƣới sự có mặt của ánh sáng mặt trời. Đó là do sự khác biệt về cấu trúc
vùng năng lƣợng của anatase so với rutile, dẫn đến một số tính chất đặc biệt của
anatase. Trong bảng 1.2 cho ta các thông số vật lý của hai dạng thù hình này.

Luận văn Thạc sĩ


6

1.1.2 Sự hình thành và chuyển pha của vật liệu TiO2
Trong quá trình tổng hợp TiO2 bằng các phƣơng pháp khác nhau, pha tinh thể
ban đầu của TiO2 thƣờng là anatase. Từ quan điểm nhiệt động, pha tinh thể anatase kết
tinh nhanh vì có năng lƣợng tự do bề mặt thấp hơn rutile, mặc dù rutile có năng lƣợng
tự do Gibbs thấp hơn. Đáng chú ý rằng, pha rutile có thể tổng hợp tại điều kiện xấp xỉ
nhiệt độ phòng. Phƣơng pháp thủy nhiệt có để tổng hợp tinh thể TiO2 trực tiếp từ dung
dịch và kiểm soát pha kết tinh.

Quá trình chuyển pha của TiO2 phụ thuộc chủ yếu vào nhiệt độ. Trong đó,
anatase sẽ chuyển sang brookite, brookite chuyển sang rutile theo chiều nhiệt độ tăng
dần. Ta có thể điều khiển sự chuyển pha bằng cách sử dụng nhiệt trực tiếp trong quá
trình chế tạo hoặc thông qua quá trình ủ nhiệt sau đó. Việc chuyển pha từ anatase sang
rutile theo một chiều, không thể chuyển ngƣợc lại từ pha rutile sang pha anatase [4].
1.1.3 Hiện tƣợng quang xúc trên bề mặt vật liệu nano TiO2
Quang xúc tác đã phát triển mạnh và tập trung sự chú ý trong những năm gần đây
bởi những ứng dụng sâu rộng trong nhiều lĩnh vực chủ chốt nhƣ công nghiệp, môi
trƣờng, năng lƣợng [18, 24]. Kể từ phát hiện về khả năng phân tách nƣớc đƣợc báo cáo
trong nghiên cứu của Fujishima và Honda năm 1972 [24], những tính chất quang xúc
tác của loại vật liệu phù hợp đã đƣợc dùng để chuyển đổi năng lƣợng mặt trời thành
năng lƣợng hóa học nhằm oxi hóa hoặc khử các chất thành các thành phần hữu dụng
nhƣ khí hydro [46], hydrocarbon [59, 74] và loại bỏ vi khuẩn [5, 8], chất ô nhiễm trên
bề mặt vật liệu hoặc hấp phụ kim loại nặng khi kết hợp với khoan sét [16, 19], không
khí và nƣớc. Trong các vật liệu quang xúc tác phổ biến, TiO2 là vật liệu đƣợc nghiên
cứu nhiều nhất và ứng dụng rộng rãi vì đặc tính oxi hóa mạnh nhằm phân hủy chất ô
nhiễm hữu cơ, tính kỵ nƣớc, độ bền hóa học, bền vững lâu dài, không độc hại, giá
thành thấp và trong suốt đối với ánh sáng khả kiến [5, 20, 33].

Luận văn Thạc sĩ


7

Hình 1. 2 Giản đồ sự hình thành cặp điện tử – lỗ trống dƣới tác dụng tia tử ngoại trên
TiO2.
Các đặc tính quang xúc tác của TiO2 có đƣợc do sự hình thành cặp điện tử - lỗ
trống khi hấp thụ ánh sáng cực tím có năng lƣợng lớn hơn độ rộng vùng cấm vật liệu
[10] (Hình 1.2). Các lỗ trống hình thành trong vùng cấm khuếch tán lên bề mặt TiO2
và phản ứng với phân tử nƣớc hấp thụ trên bề mặt, hình thành các gốc hydroxyl (•OH)

(Hình 1.3). Những lỗ trống quang sinh và các gốc hydroxyl oxi hóa những phân tử hữu
cơ trên bề mặt TiO2. Trong khi đó, các điện tử trong vùng dẫn tham gia qua trình khử,
chúng phản ứng với phân tử oxy trong không khí để tạo ra gốc superoxide (O2 •−)
[10].

Hình 1. 3 Các quá trình xảy ra trên TiO2 dƣới ảnh hƣởng bức xạ cực tím
Ngoài ra, bề mặt TiO2 trở nên siêu kỵ nƣớc với góc tiếp xúc nhỏ hơn 5o dƣới ảnh
hƣởng bức xạ UV [24]. Đặc tính siêu kỵ nƣớc có đƣợc từ sự thay đổi cấu tạo hóa học
Luận văn Thạc sĩ


×