Tải bản đầy đủ (.doc) (10 trang)

8 ĐỀTUYỂN SINH THI THỬ VÀO 10 THPT 2009 MÔN TOÁN

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (135.31 KB, 10 trang )

TUYỂN SINH THI THỬ VÀO 10 THPT 2008 – 2009
KỲ THI THỬ VÒNG 1
TRƯỜNG THCS THÁI THỊNH – ĐỐNG ĐA - HÀ NỘI
Ngày thi 22-5-2008 Thời gian 120 phút
Bài 1 (2,5 điểm )
Cho



















+


+

+−


+
=
1x
x
2:
3x
2x
x2
3x
6x5x
2x
P
a) Rút gọn P
b) Tính giá trị của P biết
c) Tìm x để
Bài 2 ( 2 điểm ) Giải toán bằng cách lập phương trình:
Một bè nứa trôi tự do ( với vận tốc bằng vận tốc dòng nước ) và một ca nô cùng
rời bến A để xuôi dòng sông. Ca nô xuôi dòng đươc 144km thì quay trở về bên
A ngay. Trên đường ca nô trở về bến A, khi còn cách bến A 36km thì gặp bè
nứa nói trên. Tìm vận tốc riêng của ca nô biết vận tốc của dòng nước là 2km/h.
Bài 3 (1,5 điểm )
Cho Parabol (P):
2
x
4
1
y
=
và đường thẳng (d) qua 2 điểm A và B trên (P) có
hoành độ lần lượt là -2 và 4.

a) Viết phương trình đường (d).
b) Tìm vị trí của điểm M trên cung AB của (P) tương ứng hoành độ x [-2;4]
sao cho tam giác AMB có diện tích lớn nhất.
Bài 4 ( 3 điểm )
Cho tam giác ABC có góc A tù, đường tròn (O) đường kính AB cắt đường tròn
(O’) đường kính AC tại giao điểm thứ hai là H. Một đường thẳng (d) quay
quanh A cắt (O) và (O’) lần lượt tại M và N sao cho A nằm giữa M và N.
a) Chứng minh C, H, B thẳng hàng và tứ giác BCNM là hình thang vuông.
b) chứng minh
c) Gọi I là trung điểm của MN, K là trung điểm của BC. Chứng minh bốn điểm
A, H, K, I cùng thuộc một đường tròn cố định.
d) Xác định vị trí của đường thằng (d) để diện tích tam giác HMN lớn nhất.
Bài 5 ( 1 điểm )
Cho x, y, z > 0 và x+y+z=1. Tìm giá trị nhỏ nhất của biểu thức:
TUYỂN SINH THI THỬ VÀO 10 THPT 2008 – 2009 ( VÒNG 2)
KỲ THI THỬ VÒNG 2
TRƯỜNG THCS THÁI THỊNH – ĐỐNG ĐA - HÀ NỘI
Ngày thi 03-6-2008 Thời gian 120 phút
Bài 1 (2,5 điểm )
Cho








+


+

+






−+
+
+



=
1x
1x
1x
1x
x
1
x
xx
1xx
xx
1xx
A
a. Rút gọn A
b. So sánh A với 2

c. Tìm m để có x thỏa mãn A=2m
Bài 2 ( 1,5 điểm )
Cho Parabol (P):
a) Tìm m để đường thẳng (d) y = 2x – m +3 cắt (P) tại hai điểm phân biêt A và
B nằm về cùng một phía so với trục Oy.
b) Từ một điểm M nằm phía dưới đường thẳng
4
1
y
−=
người ta kẻ các đường
thẳng MP, MQ tiếp xúc với (P) tại các tiếp điểm tương ứng là P và Q. Chứng
minh rằng nhọn.
Bài 3 ( 2 điểm ) Giải bài toán bằng cách lập phương trình
Một phòng họp có 100 chỗ ngồi, nhưng số người đến họp tăng thêm 44 người.
Do đó người ta phải kê thêm 2 dãy ghế và mỗi dãy ghế phải xếp thêm 2 người
ngồi. Hỏi phòng họp lúc đầu có bao nhiêu dãy ghế.
Bài 4 ( 3 điểm )
Cho nửa đường tròn tâm O đường kính AB=2R. C là trung điểm của đoạn AO,
đường thẳng Cx vuông góc với AB, Cx cắt nửa đường tròn (O) tại I. K là một
điểm bất kỳ nằm trên đoạn CI (K khác C; K khác I), Tia Ax cắt nửa đường tròn
đã cho tại M. Tiếp tuyến với nửa đường tròn tại M cắt Cx tại N, tia BM cắt Cx
tại D.
a) Chứng minh bốn điểm A, C, M, D cùng thuộc một đường tròn.
b) Chứng minh tam giác MNK là tam giác cân.
c) Tính diện tích tam giác ABD khi K là trung điểm của đoạn thẳng CI.
d) Khi K di động trên đoạn CI thì tâm của đường tròn ngoại tiếp tam giác ADK
di chuyển trên đường nào?
Bài 5 ( 1 điểm )
Cho a, b, c > 0. chứng minh rằng:

TUYỂN SINH THI THỬ VÀO LỚP 10 THPT (2008-2009)
Thời gian 120 phút
Bài 1 ( 2 điểm ) Không dùng máy tính bỏ túi
a/ Tính
b/ Giải hệ phương trình:
Bài 2 ( 2,5 điểm )
Trong mặt phẳng tọa độ Oxy, cho parabol (P): và đường thẳng (d):
y=2x.
a/ vẽ đồ thị (P).
b/ Đường thẳng (d) đi qua gốc tọa độ O và cắt (P) tại điểm thứ hai A. Tính độ
dài đoạn thẳng OA.
Bài 3 ( 3,5 điểm )
Cho tam giác ABC, vẽ hai đường cao BF và CE ( F thuộc đường thẳng AC và
E thuộc đường thẳng AB). Gọi giao điểm của BF và CE là H.
a/ Chứng minh bốn điểm B, E, F và C cùng thuộc một đường tròn. Hãy xác
định tâm O của đường tròn đó.
b/ Chứng minh AH vuông góc BC.
c/ Kéo dài AH cắt BC tại K. Chứng minh KA là tia phân giác
d/ Giả sử của tam giác ABC là một góc tù. Trong trường hợp này hãy
chứng minh hệ thức
Bài 4 ( 2 điểm )
a/ Giải hệ phương trình:
b/ với giá trị nguyên nào của x thì biểu thức nhận giá trị
nguyên.
ĐỀ THI THỬ VÀO LỚP 10 THPT NĂM 2008 – 2009 (ĐỀ 4)
Thời gian thi 120 phút
Câu 1 ( 1 điểm): Giải các hệ phương trình và phương trình
a.
b.
Câu 2 ( 1,5 điểm )

cho hàm số
a. Tìm m biết đồ thị hàm số đi qua A(2; 4)
b. Với m tìm được ở câu a hàm số có đồ thị là (P) hãy:
b1. Chứng tỏ đường thẳng (d) y = 2x -1 tiếp xúc với Parabol (P) tìm tọa độ tiếp
điểm và vẽ (d), (P) trên cùng hệ trục tọa độ.
b2. Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số (P) trên đoạn [-4; 3].
Câu 3 (1,5 điểm )
Cho phương trình ( x là ẩn số )
a. Giải phương trình với m = 1; n = 4;
b. Cho m = 4 tìm giá trị của n để phương trình có hai nghiệm cùng dấu.
c. Cho m = 5 tìm n nguyên nhỏ nhất để phương trình có nghiệm dương.
Câu 4 ( 3 điểm )
Cho tam giác đều ABC nội tiếp đường tròn tâm (O). Trên cung nhỏ AB lấy
điểm M. Trên dây MC lấy điểm N sao cho MB = CN.
a. Chứng minh tam giác AMN đều
b. Kẻ đường kính BD đường tròn (O). Chứng minh MD là trung trực của AN.
c. Tiếp tuyến kể từ D với đường tròn (O) cắt tia BA và tia MC lần lượt tại I và
K tính tổng:
Câu 5 ( 2 điểm )

×