TẢI 400 ĐỀ THI THỬ THPT QUỐC GIA NĂM 2018 MÔN TOÁN FILE WORD
CÓ LỜI GIẢI Ở LINK SAU :
Đăng ký bộ đề 2018 tại link sau : />SỞ GD & ĐT BẮC NINH
ĐỀ THI THỬ THPT QUỐC GIA KHỐI 12 – LẦN 1
TRƯỜNG THPT HÀN THUYÊN
NĂM HỌC 2017 – 2018
Môn: TOÁN
Thời gian làm bài: 90 phút; không kể thời gian phát đề
(50 câu trắc nghiệm)
Câu 1: Số các hoán vị của một tập hợp có 6 phần tử là:
A. 46656.
B. 6.
C. 120.
D. 720.
Câu 2: Trong các khẳng định sau, khẳng định nào sai?
A. Một dãy số là một hàm số.
n 1
�1�
B. Dãy số un �
� là dãy số không tăng cũng không giảm dưới.
� 2�
C. Mỗi dãy số tăng là một dãy số bị chặn
D. Một hàm số là một dãy số.
1
Câu 3: Cho đồ thị hàm số C : y ; điểm M có hoành độ xM 2 3 thuộc (C). Biết tiếp tuyến
x
của (C) tại M lần lượt cắt Ox, Oy tại A, B. Tính diện tích tam giác OAB.
A. S OAB 1.
B. S OAB 4.
Câu 4: Tính I xlim
��
1
A. I .
2
C. S OAB 2.
D. S OAB 2 3.
C. I 0.
3
D. I .
4
4 x2 3x 1 2 x ?
B. I �.
Câu 5: Bảng biến thiên sau đây là của hàm số nào?
x
1
�
y'
y
+
+
�
x 1
.
2x 1
B. y
2x 1
.
x 1
2
�
2
A. y
�
C. y
2x 3
.
x 1
D. y
2x 1
.
x 1
Câu 6: Tìm mệnh đề đúng trong các mệnh đề sau:
Trang 1 – Website chuyên đề thi thử file word có lời giải
A. Nếu hai mặt phẳng phân biệt và song song với nhau thì mọi đường thẳng nằm trong
đều song song với .
B. Nếu hai mặt phẳng phân biệt và song song với nhau thì một đường thẳng bất kì nằm
trong sẽ song song với mọi đường thẳng nằm trong .
C. Nếu hai đường thẳng song song với nhau lần lượt nằm trong hai mặt phẳng phân biệt và
thì và song song với nhau.
D. Qua một điểm nằm ngoài một mặt phẳng cho trước ta vẽ được một và chỉ một đường thẳng song
song với mặt phẳng cho trước đó.
Câu 7: Tập xác định D của hàm số y
tan x 1
là:
sin x
�
�
A. D �\ � k | k ���.
�2
B. D �\ k | k �� .
C. D �\ 0 .
�k
�
D. D �\ � | k ���.
�2
Câu 8: Cho hình vuông ABCD. Gọi Q là phép quay tâm A biến B thành D, Q ' là phép quay tâm C
biến D thành B. Khi đó, hợp thành của hai phép biến hình Q và Q ' (tức là thực hiện phép quay Q
trước sau đó tiếp tục thực hiện phép quay Q ' ) là:
A. Phép quay tâm B góc quay 90�
B. Phép đối xứng tâm B.
C. Phép tịnh tiến theo
D. Phép đối xứng trục BC.
4
2
Câu 9: Cho đồ thị hàm số C : y x 2 x . Trong các đường thẳng sau dây, đường thẳng nào cắt
(C) tại hai điểm phân biệt?
A. y 0.
3
C. y .
2
B. y 1.
1
D. y .
2
Câu 10: Trong mặt phẳng Oxy, cho đường thẳng d có phương trình 2 x y 3 0. Ảnh của đường
thẳng d qua phép đối xung trục Ox có phương trình là:
A. 2 x y 3 0.
B. 2 x y 3 0.
C. 2 x y 3 0.
D. 2 x y 3 0.
2
2
Câu 11: Cho hàm số y x 6 x . Khẳng đinh nào sau đây là đúng?
B. Đồ thị hàm số nghịch biến trên 3;0 � 3; �
A. Đồ thị hàm số đồng biến trên �; 3 và 0; 3 .
C. Đồ thị hàm số đồng biến trên �; 3 và 0;3 .
D. Đồ thị hàm số đồng biến trên �;9 .
Trang 2 – Website chuyên đề thi thử file word có lời giải
Câu 12: Tìm tất cả các giá trị thực của m để hàm số y
A. m �1.
B. m 1.
Câu 13: Cho đồ thị hàm số C : y
cos x 1
đồng biến trên
cos x m
C. 1 �m �1.
1 2x
x2 1
��
0; �
.
�
� 2�
D. m 1.
. Trong các khẳng định sau, khẳng định nào đúng?
A. Đồ thị hàm số có một tiệm cận ngang.
B. Đồ thị hàm số không có tiệm cận.
C. Đồ thị hàm số có hai tiệm cận ngang.
D. Đồ thị hàm số có tiệm cận đứng.
Câu 14: Một sợi dây không dãn dài 1 mét được cắt thành hai đoạn. Đoạn thứ nhất được cuốn thành
đường tròn, đoạn thứ hai được cuốn thành hình vuông. Tính tỉ só độ dài đoạn thứ nhất trên độ dài
đoạn thứ hai khi tổng diện tích của hình tròn và hình vuông là nhỏ nhất.
A.
.
4
B.
4
.
C. 1.
D.
.
4
Câu 15: Cho hình chóp S.ABCD có đáy là hình bình hành. Hỏi có tất cả bao nhiêu mặt phẳng cách
đều 5 điểm S, A, B, C, D ?
A. 2 mặt phẳng.
B. 5 mặt phẳng.
C. 1 mặt phẳng.
D. 4 mặt phẳng.
Câu 16: Cho tập hợp A 0;1;2;3; 4;5;6;7 . Hỏi từ tập A có thể lập được bao nhiêu chữ số tự nhiên
gồm 5 chữ số đôi một khác nhau sao cho một trong 3 chữ số đầu tiên phải bằng 1.
A. 2802.
B. 65.
C. 2520.
D. 2280.
Câu 17: Hình chóp S.ABCD có đáy là hình vuông, hai mặt bên (SAB) và (SAD) vuông góc với
mặt đáy. AH, AK lần lượt là đường cao của tam giác SAB, tam giác SAD. Mệnh đề nào sau đây là
sai?
A. HK SC .
B. SA AC.
C. BC AH .
D. AK BD.
12
�x 3 �
Câu 18: Tìm hệ số của số hạng chứa x trong khai triển � � (với x �0 )?
�3 x �
4
A.
55
.
9
B. 40095.
C.
1
.
81
D. 924.
Câu 19: Hằng ngày, mực nước của một con kênh lên xuống theo thủy triều. Độ sâu h (mét) của
mực nước trong kênh tính theo thời gian t (giờ) trong một ngày 0 �t 24 cho bởi công thức
�
�
� t �
� t �
h 2sin �
3 �
1 4sin 2 � �
�
� 12. Hỏi trong một ngày có bao nhiêu lần mực nước trong kênh đạt
14 �
� 14 �
�
�
�
độ sâu 13m.
A. 5 lần.
B. 7 lần.
C. 11 lần.
D. 9 lần.
Câu 20: Cho k ��, n ��. Trong các công thức về số các chỉnh hợp và số các tổ hợp sau, công thức
nào là công thức đúng?
Trang 3 – Website chuyên đề thi thử file word có lời giải
k
A. Cn
n!
0 �k �n ).
n k ! (với
k
B. An
k
k
k 1
C. Cn 1 Cn Cn (với 1 �k �n ).
n!
(với 0 �k �n ).
k ! n k !
k
k 1
D. Cn 1 Cn (với 0 �k �n 1 ).
Câu 21: Chọn khẳng định đúng trong các khẳng định sau.
A. Khối chóp tứ giác S.ABCD được phân chia thành hai khối tứ diện S.ABD và S.ACD.
B. Khối chóp tứ giác S.ABCD được phân chia thành ba khối tứ diện S.ABC, S.ABD và S.ACD.
C. Khối chóp tứ giác S.ABCD được phân chia thành hai khối tứ diện C.SAB và C.SAD.
D. Khối chóp tứ giác S.ABCD không thể phân chia thành các khối tứ diện.
Câu 22: Có bao nhiêu phép dời hình trong số bốn phép biến hình sau:
(I): Phép tịnh tiến.
(II): Phép đối xứng trục
(III): Phép vị tự với tỉ số 1 .
(IV): Phép quay với góc quay 90�.
A. 3.
B. 2.
C. 4.
D. 1.
Câu 23: Giá trị nhỏ nhất ymin của hàm số y cos 2 x 8cos x 9 là:
A. ymin 9.
B. ymin 1.
C. ymin 16.
D. ymin 0.
Câu 24: Tổng số mặt, số cạnh và số đỉnh của một hình lập phương là:
A. 26.
B. 24.
C. 30.
D. 22.
2
Câu 25: Số các giá trị nguyên của m để phương trình cos x 1 4 cos 2 x m cos x m sin x có
� 2 �
0;
đúng 2 nghiệm x ��
là:
� 3 �
�
A. 3.
B. 0.
Câu 26: Cho đồ thị hàm số C : y
C. 2.
D. 1.
1 3
x 3x 2 5 x 1. Khẳng định nào sau đây là khẳng định
3
đúng?
A. (C) cắt trục Ox tại 3 điểm phân biệt.
B. (C) có hai điểm cực trị thuộc hai phía của trục tung.
C. (C) tiếp xúc với trục Ox.
D. (C) đi qua điểm A 1;0 .
Câu 27: Tập nghiệm của phương trình cos 2 x
1
là:
2
A. x � k , k �� .
6
B. x
k , k �� .
6
C. x � k , k �� .
6
D. x � k 2 , k �� .
3
Trang 4 – Website chuyên đề thi thử file word có lời giải
Câu 28: Có bao nhiêu giá trị dương của n thỏa mãn Cn 1 Cn 1
4
A. 6.
B. 4.
3
5 2
An 2 0?
4
C. 7.
D. 5.
Câu 29: Cho khối lập phương ABCD. A ' B ' C ' D '. Người ta dùng 12 mặt phẳng
phân biệt (trong đó, 4 mặt song song với (ABCD), 4 mặt song song với
AA ' B ' B và 4 mặt song song với AA ' D ' D ), chia khối lập phương nhỏ rời
nhau và bằng nhau. Biết rằng tổng diện tích tất cả các khối lập phương nhỏ
bằng 480. Tính độ dài a của khối lập phương ABCD. A ' B ' C ' D '.
A. a 2.
B. a 2 3.
C. a 2 5.
D. a 4.
Câu 30: Kết quả b; c của việc gieo con súc sắc cân đối và đồng chất hai lần (trong đó b là số
chấm xuất hiện trong lần gieo đầu, c là số chấm xuất hiện ở lần gieo thứ hai) được thay vào phương
x 2 bx c
trình
0 * . Xác suất để phương trình (*) vô nghiệm là :
x 1
A.
17
.
36
B.
1
.
2
C.
1
.
6
D.
19
.
36
Câu 31: Đường cong ở hình bên là đồ thị của hàm số nào dưới đây ?
A. y x 1
2
2 x .
B. y 1 2 x 2 x 4 .
C. y x 3 3x 2.
D. y x x 3 .
Câu 32: Trong mặt phẳng Oxy cho điểm M 2;5 , phép vị tự tâm O tỉ số 2 biến M thành điểm nào
sau đây :
� 5�
1; �
.
A. D �
� 2�
B. D 4;10
C. D 4; 10
� 5�
1; �
.
D. D �
� 2�
Câu 33: Cho khối đa diện có mỗi đỉnh là đỉnh chung của đúng ba cạnh. Khi đó số đỉnh của khối đa
diện là :
A. Số tự nhiên lớn hơn 3.
B. Số lẻ.
C. Số tự nhiên chia hết cho 3.
D. Số chẵn.
Câu 34: Có bao nhiêu giá trị thực của tham số m để đồ thị hàm số y x 4 2mx 2 2m 2 m có ba
điểm cực trị là ba đỉnh của một tam giác vuông cân?
A. Không có.
B. 1.
C. Vô số.
D. 2.
Trang 5 – Website chuyên đề thi thử file word có lời giải
Câu 35: Có bao nhiêu giá trị thực của tham số m để đồ thị hàm số C : y mx x 2 2 x 2 có
tiệm cận ngang?
A. 2.
B. 3.
C. 1.
D. 4.
Câu 36: Cho hình chóp S.ABC có SA, SB, SC tạo với mặt đáy các góc bằng nhau và bằng 60�. Biết
BC a, BAC 45�
. Tính h d S ABC .
A. h
a 6
.
3
B. h a 6.
Câu 37: Đồ thị hàm số y
A. 1 điểm.
C. h
a 6
.
2
D. h
a
.
6
x 1
có bao nhiêu điểm mà tọa độ của nó đều là các số nguyên?
x 1
B. 3 điểm.
C. 4 điểm.
D. 2 điểm.
Câu 38: Hình tứ diện đều có bao nhiêu mặt phẳng đối xứng?
A. 1.
B. 4.
C. 3.
D. 6.
4
2
Câu 39: Cho đồ thị hàm số C : y x 4 x 2017 và đường thẳng d : y
1
x 1. Có bao nhiêu
4
tiếp tuyến của (C) vuông góc với đường thẳng d?
A. 2 tiếp tuyến.
B. 1 tiếp tuyến.
C. Không có tiếp tuyến nào
D. 3 tiếp tuyến.
Câu 40: Cho khối lăng trụ tam giác ABC. A ' B ' C. M là trung điểm của AA '. Cắt khối lăng trụ trên
bằng hai mặt phẳng (MBC) và MB ' C ' ta được:
A. Ba khối tứ diện.
B. Ba khối chóp
C. Bốn khối chóp.
D. Bốn khối tứ diện.
Câu 41: Trong các hàm số sau đây, hàm số nào là hàm số tuần hoàn?
A. y sin 2 x.
C. y
x 1
.
x 1
2
B. y 2 sin x cos x x x sin 2 x
D. y x 3 3 x 2.
Câu 42: Cho khối đa diện đều giới hạn bởi hình đa diện (H), khẳng định nào sau đây là sai?
A. Các mặt của (H) là những đa giác đều có cùng số cạnh.
B. Mỗi cạnh của một đa giác của (H) là cạnh chung của nhiều hơn hai đa giác.
C. Khối da diện đều (H) là một khối đa diện lồi.
D. Mỗi đỉnh của (H) là đỉnh chung của cùng một số cạnh.
Câu 43: Cho 3 khối hình 1, hình 2, hình 3. Khẳng định nào sau đây là khẳng định đúng?
Trang 6 – Website chuyên đề thi thử file word có lời giải
A. Hình 2 không phải là khối đa diện, hình 3 không phải là khối da diện lồi.
B. Hình 1 và hình 3 là các khối đa diện lồi.
C. Hình 3 là khối đa diện lồi, hình 1 không phải là khối đa diện lồi.
D. Cả 3 hình là các khối đa diện.
Câu 44: Trong bốn khẳng định sau, có bao nhiêu khẳng định luôn đúng với mọi hàm số f x ?
(I): f x đạt cực trị tại x0 thì f ' x0 0.
(II): f x có cực đại, cực tiểu thì giá trị cực đại luôn lớn hơn giá trị cực tiểu.
(III): f x có cực đại thì có cực tiểu.
(IV): f x đạt cực trị tại x0 thì f x xác định tại x0 .
A. 2.
B. 4.
C. 3.
D. 1.
Câu 45: Khối bát diện đều là một khối đa diện lồi loại:
A. 5;3 .
B. 4;3 .
C. 3; 4 .
D. 3;5 .
3
2
Câu 46: Tìm m để tâm đối xứng của đồ thị hàm số C : y x m 3 x 1 m trùng với tâm đối
xứng của đồ thị hàm số H : y
A. m 2.
14 x 1
.
x2
B. m 1.
C. m 3.
D. m 0.
Câu 47: Cho hàm số f x x 2 x . Tập nghiệm S của bất phương trình f ' x �f x là:
�
�
2 2
; ��
A. S �;0 ��
�
� 2
�
B. S �;0 � 1; �
� 2 2� �
�
2 2
�
;
�
;
�
C. S �
�
�
�
�
�
2 � � 2
�
�
� 2 2�
�;
D. S �
�� 1; �
�
2 �
�
Câu 48: Cho hai đường thẳng song song d1 , d 2 . Trên d1 có 6 điểm phân biệt được tô màu đỏ, trên
d 2 có 4 điểm phân biệt được tô màu xanh. Xét tất cả các tam giác được tạo thành khi nối các điểm
đó với nhau. Chọn ngẫu nhiên một tam giác, khi đó xác suất để thu được tam giác có hai đỉnh màu
đỏ là:
A.
5
.
32
B.
5
.
8
C.
5
.
9
D.
5
.
7
Trang 7 – Website chuyên đề thi thử file word có lời giải
Câu 49: Cho dãy hình vuông H1 ; H 2 ;....; H n ;.... Với mỗi số nguyên dương n, gọi un , Pn và S n lần
lượt là độ dài cạnh, chu vi và diện tích của hình vuông H n . Trong các khẳng định sau, khẳng định
nào sai?
A. Nếu u n là cấp số cộng với công sai khác vuông thì Pn cũng là cấp số cộng.
B. Nếu u n là cấp số nhân với công bội dương thì Pn cũng là cấp số nhân.
C. Nếu u n là cấp số cộng với công sai khác không thì S n cũng là cấp số cộng.
D. Nếu u n là cấp số nhân với công bội dương thì S n cũng là cấp số nhân.
Câu 50: Xét các tam giác ABC cân tại A, ngoại tiếp đường tròn có bán kính r = 1. Tìm giác trị nhỏ
nhất S min của diện tích tam giác ABC?
A. S min 2 .
B. S min 3 3.
C. S min 3 2.
D. S min 4.
Trang 8 – Website chuyên đề thi thử file word có lời giải
Tổ Toán – Tin
MA TRẬN TỔNG QUÁT ĐỀ THI THPT QUỐC GIA MÔN TOÁN 2018
Mức độ kiến thức đánh giá
Tổng số
câu hỏi
STT
Các chủ đề
Nhận
biết
Thông
hiểu
Vận dụng
Vận dụng
cao
1
Hàm số và các bài toán
liên quan
4
5
5
4
18
2
Mũ và Lôgarit
0
0
0
0
0
3
Nguyên hàm – Tích
phân và ứng dụng
0
0
0
0
0
Lớp 12
4
Số phức
0
0
0
0
0
(...%)
5
Thể tích khối đa diện
6
3
2
2
13
6
Khối tròn xoay
0
0
0
0
0
7
Phương pháp tọa độ
trong không gian
0
0
0
0
0
1
Hàm số lượng giác và
phương trình lượng
giác
0
1
0
1
2
2
Tổ hợp-Xác suất
2
2
1
2
7
3
Dãy số. Cấp số cộng.
Cấp số nhân
1
0
0
1
2
4
Giới hạn
0
0
1
0
1
Trang 9 – Website chuyên đề thi thử file word có lời giải
Lớp 11
5
Đạo hàm
0
0
0
0
0
(...%)
6
Phép dời hình và phép
đồng dạng trong mặt
phẳng
1
2
1
0
4
7
Đường thẳng và mặt
phẳng trong không gian
Quan hệ song song
0
0
1
0
1
8
Vectơ trong không gian
Quan hệ vuông góc
trong không gian
0
0
0
0
0
1
Bài toán thực tế
0
1
1
0
2
Số câu
14
14
12
10
50
Tỷ lệ
28%
28%
24%
20%
Tổng
Trang 10 – Website chuyên đề thi thử file word có lời giải
Đáp án
1-D
11-A
21-C
31-A
41-A
2-D
12-B
22-C
32-B
42-B
3-C
13-C
23-C
33-D
43-C
4-D
14-D
24-A
34-B
44-D
5-B
6-A
7-D
15-B
16-D
17-D
25-C
26-A
27-A
35-A
36-C
37-C
45-C
46-C
47-A
LỜI GIẢI CHI TIẾT
8-B
18-A
28-A
38-D
48-B
9-B
19-D
29-D
39-D
49-C
10-A
20-C
30-B
40-B
50-B
Câu 1: Đáp án D
Phương pháp: Số hoán vị của một tập hợp gồm phần tử là Pn n !.
Cách giải: Số các hoán vị của một tập hợp có phần tử là: P6 6! 720.
Câu 2: Đáp án D
Phương pháp:
Dùng các định nghĩa dãy số, dãy tăng, dãy giảm,… để kiểm tra tính đúng, sai của các đáp án.
Cách giải:
Đáp án A: Định nghĩa dãy số: Dãy số là một hàm số xác định trên tập hợp số nguyên dương � A
đúng.
n 1
1
1
1
�1�
Đáp án B: Dãy số un �
� có u1 1; u2 ; u3 ; u4 ... nên dãy này không tăng cũng
2
4
8
� 2�
không giảm � B đúng.
Đáp án C: Mỗi dãy số tăng đều bị chặn dưới bởi u1 vì u1 u2 u3 ... � C đúng.
Câu 3: Đáp án C
Phương pháp:
- Viết phương trình tiếp tuyến với C tại M.
+ Phương trình tiếp tuyến với đồ thị hàm số y f x tại điểm M x 0 ; f x 0 :y=f ' x o x-x o +f x o .
- Tìm tọa độ hai giao điểm A,B của tiếp tuyến với các trục tọa độ Ox, Oy.
1
- Diện tích tam giác OAB là: S OAB OA.OB.
2
Cách giải:
Trang 11 – Website chuyên đề thi thử file word có lời giải
y
1
1
1
2 3 � M 2- 3; 2 3.
� y ' 2 . Ta có: xM 2 3 � yM
2 3
x
x
Phương trình tiếp tuyến với C tại M 2- 3; 2 3 là:
d : y y ' x M x-x M yM
1
2
2 3
2
x 2 3 2 3 2 3 x 4 2 3.
Cho x 0 � y 4 2 3 � B 0;4+2 3
Cho y 0 � x
42 3
2
4 2 3 � A 4 2 3;0
2 3 2 3
1
1
Vậy SOAB OA.OB 4 2 3 4 2 3 2 .
2
2
Câu 4: Đáp án D
Phương pháp: Khử dạng vô định: � �
2
- Trục căn thức f x 4 x 3x 1 2 x
3x 1
4 x 3x 1 2 x
2
- Chia cả tử và mẫu của f x cho x rồi cho x � �
Cách giải:
lim 4 x 2 3 x 1 2 x lim
x � �
lim
4 x 2 3x 1 2 x
x � �
4 x 3x 1 2 x
2
x ��
4 x 2 3x 1 2 x 4 x 2 3x 1 2 x
2
4 x 3x 1 2 x
2
lim
x ��
3x 1
4 x 3x 1 2 x
2
lim
x ��
1
3
3
x
3 1
42 4
4 2 2
x x
3
Câu 5: Đáp án B
Phương pháp:
- Quan sát bảng biến thiên.
- Khảo sát các hàm số của từng đáp án A, B, C, D.
Cách giải:
x
1
�
y'
y
+
�
+
�
2
2
�
- Quan sát bảng biến thiên ta thấy:
y 2 nên đồ thị hàm số có tiệm cận đứng x 1.
+) xlim
���
Trang 12 – Website chuyên đề thi thử file word có lời giải
y �; lim y �nên đồ thị hàm số có tiệm cận ngang y 2.
+) xlim
�1
x � 1
+ Hàm số đồng biến trên các khoảng và �; 1 và
1; � .
Đáp án A: Đồ thị hàm số y
x 1
1
có tiệm cận đứng x � loại.
2x 1
2
Đáp án B: Đồ thị hàm số y
2x 1
có tiệm cận ngang y 2 và tiệm cận đứng x 1.
x 1
Lại có y '
và
2 x 1 2 x 1
x 1
2
3
x 1
2
0, x �1 nên hàm số đồng biến trên các khoảng �; 1
1; � � thỏa mãn.
Đáp án C: y '
�; 1
và
2 x 1 2 x 3
x 1
2
1
x 1
2
0, x �1 nên hàm số nghịch biến trên các khoảng
1; � � loại.
Đáp án D: Đồ thị hàm số y
2x 1
có tiệm cận đứng x 1 � loại.
x 1
Câu 6: Đáp án A
Phương pháp: Nhớ lại các quan hệ song song của đường thẳng mặt phẳng.
Cách giải:
Đáp án B: / / , d1 � ; d 2 � thì d1 / / d 2 hoặc d1 chéo d 2 . Loại B.
Đáp án C: / / , d1 � ; d 2 � ; d1 / / d 2 thì có thể xảy ra trường hợp cắt (trong TH này thì
d1 / / d 2 / / với là giao tuyến của hai mặt phẳng). Loại C.
Đáp án D: Qua một điểm nằm ngoài một mặt phẳng ta vẽ được duy nhất một mặt phẳng song song
với mặt phẳng đã cho nên mọi đường thẳng nằm trong mặt phẳng vẽ được sẽ đều song song song
với mặt phẳng dã cho. Vậy có vô số đường thẳng � loại D.
Câu 7: Đáp án D
Phương pháp: Tìm điều kiện xác định của hàm số:
-
Px
xác định nếu Qx �0.
Qx
Px xác định nếu Px �0.
- tan ux xác định nếu u x �k , cot ux , xác định nếu x � k
2
�x �k
cos x �0
�
tan x 1
�
�۹�
Cách giải: Hàm số y
xác định khi: �
sin x �0
x � k
sin x
�
�
� 2
x
k
.
2
Trang 13 – Website chuyên đề thi thử file word có lời giải
�k
�
Vậy TXĐ của hàm số là D �\ � , k ���.
�2
Câu 8: Đáp án B
Phương pháp:
- Chọn một điểm đặc biệt rồi thực hiện liên liếp các phép quay tìm ảnh.
- Đối chiếu các đáp án, đáp án nào có ảnh trùng với ảnh vừa tìm thì
nhận.
Cách giải:
Q là phép quay tâm A góc quay 90�, Q’là phép quay tâm C góc quay 270�.
Gọi M là trung điểm của AB. Phép quay Q biến M thành M’là trung điểm của AD.
Dựng d CM ' và d cắt AB tại M”. Khi đó Q’biến M’thành M” .
Khi đó B là trung điểm của MM” nên đó chính là phép đối xứng qua tâm B.
Câu 9: Đáp án B
Phương pháp:
- Khảo sát hàm số, tìm điều kiện để đường thẳng cứt đồ thị hàm số tại hai điểm phân biệt.
- Kiểm tra các đáp án thỏa điều kiện.
Cách giải:
y ' 4 x 3 4 x 0 � x 0; x �1.
Bảng biến thiên
x
�
y'
y
1
0
+
0
0
0
1
1
0
�
+
1
Do đó để đường thẳng y m cắt C tại 2 điểm phân biệt thì m 0.
Trong các đáp án chỉ có y 1 thỏa mãn
Câu 10: Đáp án A
Phương pháp:
Lấy hai điểm bất kì thuộc d và cho đối xứng qua Oxta được hai điểm mới.
Viết phương trình đường thẳng đi qua hai điểm này ta được phương trình cần tìm.
�3 �
�d .
Cách giải: Xét hai điểm A 0;3 , B � ;0 �
�2 �
�3 �
;0 �.
Ảnh của A, B qua phép đối xứng trục Ox là A ' 0; 3 , B ' �
�2 �
Trang 14 – Website chuyên đề thi thử file word có lời giải
uuuuu
r �3 �
r
A' B ' �
;3 �nên d’ nhận n 2;1 làm véc tơ pháp tuyến.
�2 �
Phương trình d ' : 2 x 0 1 y 3 0 � 2 x y 3 0.
Câu 11: Đáp án A
Phương pháp: Khảo sát hàm số, tìm khoảng đồng biến, nghịch biến.
Cách giải: y ' 2 x 6 x 2 2 x.x 2 2 x6 2 x 2 0 � x 0; x � 3.
x
�
y'
y
+
3
0
0
0
3
+
0
�
�
�
Vậy hàm số đồng biến trên �; 3 và 0; 3 .
Câu 12: Đáp án B
Phương pháp: Đặt ẩn phụ, tìm điều kiện của ẩn phụ, xét hàm.
Cách giải:
Khi m 1 ta có: y 1 là hàm hằng nên m 1 không thỏa mãn.
��
0; �nên t � 0;1
Khi m �1 . Đặt t cos x . Vì x ��
� 2�
Xét hàm y
t 1
t m t 1 1 m
. .
có y '
t m
t m2
t m2
t 1
��
0; �thì hàm số y
Để hàm số đã cho đồng biến trên �
nghịch biến trên 0;1
t m
� 2�
1 m 0
m 1
�
�
�
�
� ��
1 1 m � ��
m 0 � m 1.
�
��
�
1 m 0
m 1
��
��
Câu 13: Đáp án C
Phương pháp: Khảo sát hàm số tìm các tiệm cận:
�lim f x y0
x � �
y y0 là tiệm cận ngang của đồ thị hàm số y f x nếu �
�lim f x y0
x � �
�
Trang 15 – Website chuyên đề thi thử file word có lời giải
�
lim
x � x0
�
�
lim
x � x0
�
x x0 là tiệm cận đứng của đồ thị hàm số y f x nếu thỏa mãn ít nhất �
lim
�
x � x0
�
lim
�
x � x0
�
f x �
f x �
f x �
f x �
� 1�
x �
2 �
1 2x
x�
�
y lim
lim
2 nên y 2 là một tiệm cận ngang của đồ
Cách giải: +) xlim
2
� �
x ��
x � �
1
x 1
x 1 2
x
thị hàm số.
� 1�
x �
2 �
1 2x
x�
�
y lim
lim
2 nên y 2 là một tiệm cận ngang của đồ thị hàm số.
+) xlim
2
��
x ��
x 1 x �� x 1 1
x2
+) x 2 1 0 vô nghiệm nên đồ thị hàm số không có tiệm cận đứng.
Câu 14: Đáp án D
Phương pháp:
- Công thức tính diện tích và chu vi hình tròn: S R 2 , C 2 R.
- Công thức tính diện tích và chu vi hình vuông: S a 2 , C 4a.
Cách giải: Gọi chiều dài đoạn uốn thành hình vuông là x mét thì chiều dài đoạn uốn thành hình
tròn là 1 x mét.
Cạnh hình vuông là
x
x2
nên diện tích hình vuông là
.
4
16
2
1 x
1 x � 1 x2
�
Bán kính hình tròn là
nên diện tích hình tròn là . � �
.
2
�2 � 4
Xét hàm f x
x x 1
4
x2 1 x2
0� x
.
có f ' x
8 2
4
16
4
Do đó f x đạt GTNN tại x
4
4
�1 x 1
.
4
4 4
Vậy tỉ số đoạn thứ nhất và đoạn thứ hai là
4
:
.
4 4 4
Câu 15: Đáp án B
Mặt phẳng cách đều 5 điểm là mặt phẳng mà khoảng cách từ 5 điểm đó đến mặt phẳng là bằng
nhau.
Cách giải:
Có 5 mặt phẳng thỏa mãn là:
Trang 16 – Website chuyên đề thi thử file word có lời giải
+ Mặt phẳng đi qua trung điểm của AB,CD và song song với SBC .
+ Mặt phẳng đi qua trung điểm của AB,CD và song song với SAD .
+ Mặt phẳng đi qua trung điểm của AD,BC và song song với SAB .
+ Mặt phẳng đi qua trung điểm của AD,BC và song song với SCD .
+ Mặt phẳng đi qua trung điểm của SA,SB,SC,SD.
Câu 16: Đáp án D
Phương pháp: Xét từng trường hợp: chữ số đầu tiên bằng 1, chữ số thứ hai bằng 1, chữ số thứ ba
bằng 1.
uuuuuu
r
Cách giải: Gọi số đó là abcde
- TH1: a 1
+ b có 7 cách chọn.
+ c có 6 cách chọn.
+ d có 5 cách chọn.
+ e có 4 cách chọn.
Nên có: 7.6.5.4 840 số
- TH2: b 1
+ a �b, a �0 nên có 6 cách chọn.
+ c có 6 cách chọn.
+ d có 5 cách chọn.
+ e có 4 cách chọn.
Nên có: 6.6.5.4 720 số.
- TH3: c 1 .
+ a �c, a �0 nên có 6 cách chọn.
+ b có 6 cách chọn.
+ d có 5 cách chọn.
+ e có 4 cách chọn.
Nên có 6.6.5.4 720 số.
Vậy có tất cả 840 720 720 2280 số.
Câu 17: Đáp án D
Sử dụng mối quan hệ vuông góc giữa đường thẳng với đường thẳng, đường thẳng với mặt phẳng.
- Hai mặt phẳng cùng vuông góc với đường thẳng thứ ba thì giao tuyến của chúng vuông góc với
mặt phẳng đó.
- Một đường thẳng vuông góc với hai đường thẳng cắt nhau thì nó vuông góc với mặt phẳng chứa
hai đường thẳng đó.
Trang 17 – Website chuyên đề thi thử file word có lời giải
- Một đường thẳng vuông góc với một mặt phẳng thì nó vuông góc với mọi đường thẳng nằm trong
mặt phẳng đó.
�SAB ABCD
�
Cách giải: Vì �SAD ABCD � SA ABCD � SA BC
�SAB �SAD SA
�
�SA BC
� BC SAB � BC AH �SAB
�
�AB BC
Mà AH SB nên AH SBC � AH SC.
Tương tự ta có AK SCD � AH SC .
Do đó SC AHK � SC HK � A đúng.
SA ABCD � SA AC � B đúng.
BC AH cmt � C đúng.
Câu 18: Đáp án A
Phương pháp: Công thức khai triển nhị thức New-ton: a b
12
12 k
k
n
n
�Cnk a k b n k .
k 0
k
12 k
12
1�
12 k �
�x 3 � 12
�x �� 3 �
�1 �
Cách giải: Ta có: � � �C12k � ��
� �C12k � �x k 3
��
�3 x � k 0
�3 �� x �
�3 �
�x �
k 0
Số hạng chứa x 4 nên ta tìm k sao cho x k : x12 k x4 � x 2 k 12 x4 � 2k 12 4 � k 8.
8
C 8 55
�1 �
Vậy hệ số của số hạng chứa x là: C . � �. 312 8 124
3
9
�3 �
4
8
12
Câu 19: Đáp án D
Cách giải:
Đặt
t
� 12 �
2
u � u ��
0;
�khi đó ta có h 2sin 3u 1 4sin u 12
14
� 7 �
� h 2 3sin u 4sin 3 u 1 4sin 2 u 12
3
2
Đặt v sin u � h v 2 3t 4t 1 4t 12
6t 24t 3 8t 3 32t 5 12
32t 5 32t 3 6t 12
��
0;
� v � 0;1
Xét u ��
� 2�
�
Dùng [MODE] [7] ta có
: trong khoảng
0, 2;0,3
có 1 lần hàm số đạt giá trị
bằng 13.
Trang 18 – Website chuyên đề thi thử file word có lời giải
trong khoảng
trong khoảng
0,3;0, 4
0,9;1
có 1 lần hàm số đạt giá trị bằng 13.
có 1 lần hàm số đạt giá trị bằng 13.
Vậy v � 0;1 thì có 3 lần f v 13.
�
�
Xét u �� ; �� v � 0;1 . Tương tự như trên ta có 3 lần f v 13.
�2 �
� 3 �
;
� v � 1;0 có 2 lần f v 13.
Xét u ��
� 2 �
�
3 12 �
12
�
�
�
v
�
1;sin
Xét u �� ;
�
7
�2 7 �
�
�
�
�� có 1 lần f v 13.
�
Vậy có tất cả 9 lần mực nước trong kênh đạt độ sâu 13m.
Câu 20: Đáp án C
Phương pháp:
k
Công thức tính số chỉnh hợp chập k của n: An
k
Công thức tính số tổ hợp chập k của n : Cn
n!
.
n k!
n!
.
k !n k !
Hai tính chất cơ bản của tổ hợp:
Cnk Cnn k
Cnk1 Cnk Cnk 1
Cách giải: Quan sát các đáp án đã cho ta thấy đáp án C đúng.
Câu 21: Đáp án C
Phương pháp: Vẽ hình và quan sát, chọn đáp án.
Cách giải:
Quan sát hình vẽ bên ta thấy khối chóp S . ABCD được chia thành hai khối tứ
diện S . ABC và S . ADC hay hai khối tứ diện C.SAB và C.SAD .
Câu 22: Đáp án C
Phương pháp: Phép dời hình là phép biến hình bảo toàn khoảng cách giữa hai điểm.
Cách giải:
- Phép tịnh tiến là một phép dời hình.
- Phép đối xứng trục là một phép dời hình.
- Phép vị tự với tỉ số 1 là một phép dời hình.
Trang 19 – Website chuyên đề thi thử file word có lời giải
- Phép quay là một phép dời hình.
Vậy có 4 phép dời hình.
Câu 23: Đáp án C
Phương pháp: Tìm GTNN của hàm số y f x trong a, b :
- Tính y ' f ' x và cho y ' 0 tìm x1 , x2 ,..., x n �a, b. .
- Tính f a , f b , f x1 , f x2 ,..., f xn và so sánh các kết quả.
Cách giải: y cos 2 x 8cos x 9 2 cos 2 x 1 8cos x 9 2 cos 2 x 8cos x 10.
2
Đặt t cos x t � 1;1 thì y f t 2t 8t 10 t � 1;1
f ' t 4t 8 t 2 � 1;1
f 1 2. 12 8. 1 10 0, f 1 2.12 8.1 10 16.
Do f 1 f 1 nên ymin 16 khi cos x 1 � x k .
Câu 24: Đáp án A
Phương pháp: Hình lập phương là hình có 6 mặt đều là các hình vuông.
Cách giải:
Hình lập phương có 6 mặt, 8 đỉnh và 12 cạnh nên tổng số cạnh, mặt đỉnh là: 6 8 12 26.
Câu 25: Đáp án C
Phương pháp: Biến đổi, đưa phương trình trên về dạng phương trình tích, sử dụng công thức nhân
đôi của cos.
Cô lập m đưa phương trình về dạng f x m. Số nghiệm của phương trình chính là số giao điểm
của đồ thị hàm số y f x và đường thẳng y m song song với trục hoành.
2
Cách giải: cos x 1 4 cos 2 x m cos x m sin x
� cos x 1 4.cos 2 x m cos x m 1 cos 2 x
� cos x 1 4.cos 2 x m cos x m 1 cos x 1 cos x
� cos x 1 4.cos 2 x m cos x m 1 cos x 0
x k 2
�
cos x 1 0
�
� cos x 1 4.cos 2 x m 0 � �
��
m
�
4 cos 2 x m 0
cos 2 x *
�
�
4
� 2 �
0;
k ��
Xét nghiệm x k 2 k �� ��
� 3 �
�
Trang 20 – Website chuyên đề thi thử file word có lời giải
� 2 �
0;
Để phương trình ban đầu có đúng 2 nghiệm thuộc �
thì phương trình (*)có 2 nghiệm phân
� 3 �
�
� 2 �
0;
biệt thuộc �
.
� 3 �
�
� 2 �
0;
Xét hàm số y cos 2 x trên �
ta có:
� 3 �
�
y ' 2sin 2 x 0 � sin 2 x 0 � 2 x k � x
k
k ��
2
� 2 �
0; �� x
Mà x ��
2
� 3 �
BBT:
x
y'
y
0
2
2
3
+
1
1
2
1
Để phương trình có 2 nghiệm phân biệt thì 1
m
1
� � 4 m �2
4
2
Mà m ��� m � 3; 2
Câu 26: Đáp án A
3
2
Phương pháp: Hàm đa thức bậc ba y ax bx cx d a �0 C có 2 cực trị thuộc về hai phía
của trục tung khi và chỉ khi phương trình y ' 0 có 2 nghiệm phân biệt trái dấu.
Số giao điểm của đồ thị hàm số (C) và trục Ox là nghiệm của phương trình ax 3 bx 2 cx d 0
Cách giải
Xét phương trình hoành độ giao điểm
1 3
x 3 x 2 5 x 1 0 ta thấy phương trình có 3 nghiệm phân
3
biệt nên đáp án A đúng. Do đó C sai.
Dễ thấy điểm A 1;0 không thuộc đồ thị hàm số vì
1
10
3 5 1 �0 . Do đó D sai.
3
3
x5
�
2
Ta có: y ' x 6 x 5 0 � �
có 2 nghiệm phân biệt cùng dấu dương nên hai cực trị cùng
x0
�
nằm và bên phải trục tung. Do đó B sai.
Câu 27: Đáp án A
Trang 21 – Website chuyên đề thi thử file word có lời giải
k 2 k ��
Phương pháp: Giải phương trình lượng giác cơ bản cos x cos � x �
Cách giải: cos 2 x
1
� 2 x � k 2 � x � k k ��
2
3
6
Câu 28: Đáp án A
k
Phương pháp: Áp dụng các công thức chỉnh hợp và tổ hợp: An
n!
n!
;Ckn
để giải
k ! n k !
nk!
k
bất phương trình. Lưu ý điều kiện của Cn là 0 �k �n; k , n ��.
�n 1 �4
�
1 3
Cách giải:mĐK: �n �۳
�n 2 �2
�
Cn41 Cn31
n 5
n 1 ! n 1 ! 5 n 2 ! 0
5 2
An 2 0 �
4! n 5 ! 3! n 4 ! 4! n 4 !
4
�
n 2 ! �n 1 n 1 5 � 0
�
�
�
n 5 ! �
�24 6 n 4 4 n 4 �
�
n 1 n 4 4 n 1 5.6 0
24 n 4
�
n 1
n 1
5
0
24 6 n 4 4 n 4
� n 2 5n 4 4n 4 30 0 � n 2 9n 22 0 � n � 2;11
Kết hợp điều kiện ta có n � 5;11
Mà n là số nguyên dương nên n � 5;6;7;8;9;10 .
Câu 29: Đáp án D
2
Phương pháp: Diện tích toàn phần của hình lập phương cạnh a là Stp 6a .
Cách giải:
Khi dùng các mặt phẳng như đề bài cho để chia khối lập phương ABCD.A’B’C’D’ ta được 125 khối
lập phương nhỏ bằng nhau.
Do đó diện tích toàn phần của 1 khối lập phương nhỏ là
480 96
125 25
Gọi cạnh hình lập phương ABCD.A’B’C’D’ bằng a thì độ dài cạnh hình lập phương nhỏ bằng
2
�a � 96
Suy ra diện tích toàn phần của 1 hình lập phương nhỏ là: 6 � �
�a4
�5 � 25
Câu 30: Đáp án B
Trang 22 – Website chuyên đề thi thử file word có lời giải
a
.
5
Phương pháp: Xác suất của biến cố A là
nA
trong đó nA là số khả năng mà biến cố A có thể xảy ra,
n
n là tất cả các khả năng có thể xảy ra.
Cách giải:
x 2 bx c
0 *
x 1
2
Để phương trình (*) vô nghiệm thì phương trình x bx c 0 ** có 2 trường hợp xảy ra:
TH1: PT (**) có 1 nghiệm x 1.
�
�
b 2 4c 0
b 2 4c
��
��
� b 2 4b 4 � b 2 4b 4 0 � b 2 � c 1
1 b c 0
c b 1
�
�
� b; c 2;1
TH2: PT (**) vô nghiệm � b 2 4c 0 � b 2 4c � b 2 c
Vì c là số chấm xuất hiện ở lần gieo thứ 2 nên c ��
6 b 2 6
4,9 .
Mà b là số chấm xuất hiện ở lần giao đầu nên b � 1; 2;3; 4
Với b 1 ta có: c
1
� c � 1; 2;3; 4;5;6 � có 6 cách chọn c.
4
Với b 2 ta có: c 1 � c � 2;3; 4;5;6 � có 5 cách chọn c.
Với b 3 ta có: c
9
� c � 3; 4;5;6 � có 4 cách chọn c.
4
Với b 4 ta có: c 4 � c � 5;6 � có 2 cách chọn c.
Do đó có 6 5 4 2 17 cách chọn b; c để phương trình (**) vô nghiệm.
Gieo con súc sắc 2 lần nên số phần tử của không gian mẫu n 6.6 36
Vậy xác suất đề phương trình (*) vô nghiệm là
1 17 1
.
36
2
Câu 31: Đáp án A
Phương pháp: Dựa vào đồ thị hàm số đề suy ra hàm số cần tìm.
Cách giải: Nhìn vào đồ thị hàm số ta thấy đây là hình dạng của hàm đa thức bậc ba. Suy ra loại B.
y �� a 0 � loại C.
Vì xlim
� �
Ta có: Đồ thị hàm số đi qua điểm 0; 2 suy ra loại D.
Chọn A.
Câu 32: Đáp án B
uuur
uuur
Phương pháp: Phép vị tự tâm I tỉ số k biến điểm M thành M’ � IM k IM
Cách giải: Gọi M ' x; y là ảnh của M qua V 0;2 ta có:
Trang 23 – Website chuyên đề thi thử file word có lời giải
uuuuu
r
uuuu
r
V 0;2 M M ' � OM ' 2OM
�x 4
� x; y 2 2;5 � �
� M ' 4;10 �A
�y 10
Câu 33: Đáp án D
Phương pháp: Đối với mỗi khối đa diện ta kí hiệu Đ là số đỉnh, C là số cạnh, M là số mặt và đa
diện đều đó thuộc loại n; p (khối đa diện lồi có các mặt là n – giác đều và mỗi đỉnh là đỉnh chung
của p cạnh) thì pĐ 2C nM .
Cách giải
Gọi khối đa diện thuộc loại n; p (khối đa diện lồi có các mặt là n – giác đều và mỗi đỉnh là đỉnh
chung của p cạnh)
Theo đề bài ta có: p 3 .
Khi đó áp dụng công thức pĐ 2C nM . Trong đó Đ, C, M lần lượt là số đỉnh, số cạnh và số mặt
của khối đa diện.
3Đ 2C � Đ
2C
. Do đó Đ là số chẵn.
3
Câu 34: Đáp án B
Phương pháp: Để hàm số bậc bốn y x 4 bx 2 c có 3 cực trị thì phương trình y ' 0 có 3 nghiệm
phân biệt. Và khi hàm số trên có ba cực trị thì ba cực trị đó luôn tạo thành một tam giác cân.
x0
�
3
Cách giải: Ta có: y ' 4 x 4mx 0 � �2
x m
�
Để phương trình y ' 0 có 3 nghiệm phân biệt � m 0
�
x 0 � y 2m 2 m � A 0; 2m 2 m
�
� y' 0 � �
x m � y m2 m � B m; m2 m
�
�
x m � y m2 m � C m ; m2 m
�
�
Ta có tam giác ABC luôn là tam giác cân tại A nên để ABC là tam giác vuông cân thì ta cần thêm
uuur uuur
điều kiện tam giác ABC vuông tại A � AB. AC 0
uuur
uuur
AB m ; m 2 ; AC m ; m 2
�
m 0 ktm
� m m 4 0 � m m3 1 0 � �
m 1 tm
�
Vậy m 1.
Câu 35: Đáp án A
Trang 24 – Website chuyên đề thi thử file word có lời giải
Phương pháp: Đường thẳng y y0 được gọi là đường tiệm cận ngang (gọi tắt là tiệm cận ngang)
f x y0 hoặc lim f x y0
của đồ thị hàm số y f x nếu xlim
� �
x � �
Cách giải: y mx x 2 x 2
2
m2 x 2 x 2 2 x 2
mx x 2 2 x 2
m
2
1 x 2 2 x 2
mx x 2 2 x 2
Để hàm phân thức có tiệm cận ngang thì bậc tử phải nhỏ hơn hoặc bằng bậc mẫu
m 1
�
� m2 1 0 � �
m 1
�
Vậy có 2 giá trị của m thỏa mãn yêu cầu bài toán.
Câu 36: Đáp án C
Phương pháp: Gọi A’ là hình chiếu của A trên mặt phẳng (P). Khi đó d A; P AA ' .
Sử dụng các công thức tính diện tích tam giác ABC
1
1
1
S bc sin A ac sin B ab sin C
2
2
2
S
abc
4R
Trong đó a, b, c là độ dài các cạnh của tam giác, R là bán kính đường tròn ngoại tiếp tam giác.
Cách giải
Gọi H là hình chiếu đỉnh S lên mp (ABC) khi đó ta có góc tạo bởi SA, SB, AC
với đáy lần lượt là SAH ; SBH ; SCH và SAH SBH SCH 60�
Dễ dàng chứng minh được SAH SBH SCH � HA HB HC � H
là tâm đường tròn ngoại tiếp tam giác ABC.
Đặt SH h.
Xét tam giác vuông SAH có AH SH .cot 60�
Xét tam giác ABC có:
Mà S ABC
S ABC
h
R.
3
AB. AC.BC AB. AC.a
3a
AB. AC
h
4R
4h
4
3
3a
2
3a a 6
1
1 2
2
�h
.
AB. AC.sin BAC
AB. AC
AB. AC �
4h
4
2
2
2
2 2
4
Câu 37: Đáp án C
Phương pháp:
f x
c
h x
g x �0 với c là hằng số
g x
g x
Trang 25 – Website chuyên đề thi thử file word có lời giải