Banfileword.com – Chuyên đề thi, tài liệu file word mới nhất, chất lượng cao, giá rẻ nhất thị trường.
Banfileword.com
BỘ ĐỀ 2018
MÔN TOÁN
ĐỀ THI THỬ THPT QG 2018
THPT KIM LIÊN- HÀ NỘI- LẦN 1
Thời gian làm bài: 90 phút;
(50 câu trắc nghiệm)
MA TRẬN
Mức độ kiến thức đánh giá
Tổng số
câu hỏi
STT
Các chủ đề
Nhận
biết
Thông
hiểu
Vận
dụng
Vận dụng
cao
1
Hàm số và các bài toán
liên quan
6
5
5
1
17
2
Mũ và Lôgarit
2
1
2
2
7
3
Nguyên hàm – Tích
phân và ứng dụng
Lớp 12
4
Số phức
(...%)
5
Thể tích khối đa diện
3
3
5
2
13
6
Khối tròn xoay
7
Phương pháp tọa độ
trong không gian
1
Hàm số lượng giác và
phương trình lượng
giác
2
Tổ hợp-Xác suất
3
Dãy số. Cấp số cộng.
Cấp số nhân
4
Giới hạn
Lớp 11
5
Đạo hàm
(...%)
6
Phép dời hình và phép
đồng dạng trong mặt
phẳng
1
Trang 1
1
1
3
1
4
2
2
4
1
Banfileword.com – Chuyên đề thi, tài liệu file word mới nhất, chất lượng cao, giá rẻ nhất thị trường.
7
Đường thẳng và mặt
phẳng trong không gian
Quan hệ song song
8
Vectơ trong không gian
Quan hệ vuông góc
trong không gian
Lớp 10
1
Bất đẳng thức
1
1
Khác
1
Bài toán thực tế
2
2
50
Tổng
Banfileword.com
Số câu
12
14
16
8
Tỷ lệ
24%
28%
32%
16%
ĐỀ THI THỬ THPT QG 2018
Trang 2
Banfileword.com – Chuyên đề thi, tài liệu file word mới nhất, chất lượng cao, giá rẻ nhất thị trường.
BỘ ĐỀ 2018
MÔN TOÁN
THPT KIM LIÊN- HÀ NỘI- LẦN 1
Thời gian làm bài: 90 phút;
(50 câu trắc nghiệm)
Câu 1: Cho hình chóp S.ABC có SA BC 2a. Gọi M, N lần lượt là trung điểm của AB và SC và
MN a 3. Tính số đo góc gữa hai đường thẳng SA và BC.
A. 30�
B. 150�
C. 60�
D. 120�
f x 1 và lim f x 1. Khẳng định nào sau đây là khẳng định
Câu 2: Cho hàm số y f x có xlim
��
x � �
đúng?
A. Đồ thị hàm số đã cho có hai tiệm cận ngang là x 1 và x 1
B. Đồ thị hàm số đã cho có đúng một tiệm cận ngang
C. Đồ thị hàm số đã cho không có tiệm cận ngang
D. Đồ thị hàm số đã cho có hai đường tiệm cận ngang là y 1 và y 1
2
x
Câu 3: Cho hàm số f x x 2x 2 e . Chọn mệnh đề sai?
A. Hàm số có 1 điểm cực trị.
B. Hàm số đồng biến trên �
C. Hàm số không có giá trị lớn nhất và giá trị nhỏ nhất
D. f 1
5
e
Câu 4: Đường cong ở hình bên là đồ thị hàm số y
ax 2
với a, b, c là các số thực. Mệnh đề nào sau
cx b
đây đúng?
A. a 2; b 2;c 1
B. a 1; b 2, c 1
C. a 1; b 2; c 1
D. a 1; b 1;c 1
Câu 5: Khối đa diện có mười hai mặt đều có số đỉnh, số cạnh, số mặt lần lượt là:
A. 30;20;12
B. 20;12;30
C. 12;30;20
D. 20;30;12
Câu 6: Cho hàm số y x 3 2x 2 có đồ thị C. Có bao nhiêu tiếp tuyến của đồ thị C song song với
đường thẳng y x
A. 2
B. 3
C. 1
Trang 3
D. 4
Banfileword.com – Chuyên đề thi, tài liệu file word mới nhất, chất lượng cao, giá rẻ nhất thị trường.
Câu 7: Cho hình chóp S.ABCD có đáy là hình vuông cạnh a; hình chiếu vuông góc của S lên mặt phẳng
. Tính theo a thể tích
(ABCD) trùng với trung điểm của cạnh AD; cạnh bên SB hợp với đáy một góc 60�
V của khối chóp S.ABCD.
a 3 15
A. V
2
a 3 15
B. V
6
a3 5
D. V
6 3
a3 5
C. V
4
3
2
Câu 8: Cho hàm số y x 2x ax b, a, b �� có đồ thị C. Biết đồ thị C có điểm cực trị là
A 1;3 Tính giá trị của P 4a b
A. P 3
B. P 2
C. P 4
D. P 1
2x 3
có đồ thị C và đường thẳng d : y 2x 3. Đường thẳng d cắt đồ thị
x3
C tại hai điểm A và B. Tìm tọa độ trung điểm I của đoạn thẳng AB.
Câu 9: Cho hàm số y
�1 7�
; �
A. I �
� 4 2�
� 1 13 �
; �
B. I �
�4 4 �
� 1 13 �
; �
C. I �
�8 4 �
� 1 11 �
; �
D. I �
�4 4�
Câu 10: Cho hình lập phương ABCD.A’B’C’D’ có cạnh bằng a. Gọi O là tâm hình vuông ABCD và điểm
uuu
r uuur uuur uuur uuur uuuur uuuu
r uuuu
r uuuur
S sao cho OS=OA+OB OC OD OA ' OB' OC ' OD '. Tính độ dài đoạn OS theo a.
A. OS 6a
B. OS 4a
C. OS a
D. OS 2a
Câu 11: Trong các hình đa diện sau đây, hình đa diện nào không nội tiếp được một mặt cầu ?
A. Hình tứ diện
B. Hình hộp chữ nhật
C. Hình chóp ngũ giác đều.
D. Hình chóp có đáy là hình thang vuông.
Câu 12: Cho hàm số y
2x 1
. Mệnh đề nào sau đây đúng?
1 x
A. Hàm số nghịch biến trên �;1 và 1; �
B. Hàm số đồng biến trên �\ 1
C. Hàm số đồng biến trên �;1 và 1; �
D. Hàm số đồng biến trên �;1 � 1; �
x
x 1
x
Câu 13: Cho phương trình log 5 5 1 log 25 5 5 1. Khi đặt t log 5 5 1 , ta được phương trình
nào dưới đây
A. t 2 1 0
B. t 2 t 2 0
C. t 2 2 0
D. 2t 2 2t 1 0
Câu 14: Cho hàm số y f x xác định và liên tục trên (�; 0) và (0; �) có bảng biến thiên như hình
dưới đây
x
�
f ' x
f x
0
-
0
-
0
�Trang 4
2
�
�
3
+
�
2
Banfileword.com – Chuyên đề thi, tài liệu file word mới nhất, chất lượng cao, giá rẻ nhất thị trường.
Mệnh đề nào sau đây đúng?
A. f 3 f 2
B. Hàm số đồng biến trên khoảng 2; �
C. Đường thẳng x 2 là tiệm cận đứng của đồ thị hàm số.
D. Hàm số có giá trị nhỏ nhất bằng 2.
Câu 15: Gọi S là tổng các nghiệm thuộc khoảng (0; 2) của phương trình 3cos x 1 0. Tính S.
A. S 0
B. S 4
Câu 16: Cho 2 số thực dương a, b thỏa mãn
A. T
2
5
B. T
2
5
C. S 3
D. S 2
a �b, a �1, log a b 2. Tính T log
C. T
2
3
D. T
3
a
b
ba
2
3
Câu 17: Cho khối lăng trụ ABCD.A’B’C’D’ có thể tích bằng 36cm3 . Gọi M là điểm bất kì thuộc mặt
phẳng ABCD. Tính thể tích V của khối chóp M.A’B’C’D’
A. V 12cm 3
B. V 24cm3
C. V 16cm 3
D. V 18cm3
Câu 18: Cho tứ diện ABCD có AB 4a, CD 6a, các cạnh còn lại có độ dài bằng a 22. Tính bán kính
của mặt cầu ngoại tiếp tứ diện ABCD
A. R
a 79
3
B. R
5a
2
C. R
a 85
3
D. R 3a
6
1 �
�
Câu 19: Tìm số hạng không chứa x trong khai triển �
2x 2 �, x �0
x �
�
A. 15
B. 240
C. -240
D. -15
Câu 20: Tìm khoảng đồng biến của hàm số y x 3 3x 2 1
A. 0;3
B. 1;3
C. 2;0
D. 0; 2
1
Câu 21: Tìm tập xác định D của hàm số y 3x 2 1 3
1 � �1
�
�
A. D ��;
��� ; ��
3 � �3
�
�
1 � �1
�
�
�;
B. D �
��� ; ��
3� �3
�
�
Trang 5
Banfileword.com – Chuyên đề thi, tài liệu file word mới nhất, chất lượng cao, giá rẻ nhất thị trường.
� 1 �
� �
C. D �\ �
D. D �
� 3
Câu 22: Một lớp học có 30 bạn học sinh trong đó có 3 cán sự lớp. Hỏi có bao nhiêu cách cử 4 bạn học
sinh đi dự đại hội đoàn trường sao cho trong 4 học sinh đó có ít nhất 1 cán sự lớp?
A. 23345
B. 9585.
C. 12455.
D. 9855
Câu 23: Một hộp chứa 20 thẻ được đánh số từ 1 đến 20. Lấy ngẫu nhiên 1 thẻ từ hộp đó. Tính xác suất để
thẻ lấy được ghi số lẻ và chia hết cho 3.
A. 0,3
B. 0,5
C. 0,2
D. 0,15
x 2 3x 10
1�
Câu 24: Gọi S là tập hợp các nghiệm nguyên của bất phương trình �
��
�3 �
của S.
A. 11
B. 0
Câu 25: Cho 9 9
x
x
14,
A. P 10
C. 9
6 3 3x 3 x
23
x 1
1 x
3
B. P 10
32 x. Tìm số phần tử
D. 1
a a là phân số tối giản). Tính P ab
(
b b
C. P 45
D. P 45
Câu 26: Tìm tất cả các nghiệm của phương trình cos3x sin2x sin4x 0
A. x
2
k , k ��
6
3
B. x
k , k ��
6
3
5
k2, k �� D. x k , x k2, k ��
C. x k , x k2, x
3
6
6
6
3
6
4
2
Câu 27: Cho hàm số y m 1 x mx 3. Tìm tất cả các giá trị thực của tham số m để hàm số có ba
điểm cực trị.
A. m � �; 1 � 0; �
B. m � 1;0
C. m � �; 1 � 0; �
D. m � �; 1 � 0; �
Câu 28: Cho hình chóp S.ABCD có đáy ABCD là hình vuông. Biết hai mặt phẳng (SAB) và (SAD) cùng
vuông góc với mặt đáy. Hình chóp này có bao nhiêu mặt phẳng đối xứng
A. 4
B. 1
C. 0
D. 2
Câu 29: Hàm số y 2cos3x 3sin 3x 2 có tất cả bao nhiêu giá trị nguyên
A. 7
B. 3
C. 5
D. 6
Câu 30: Tìm tất cả các giá trị thực của tham số m để giá trị nhỏ nhất của hàm số y
đoạn [0;1] bằng 2.
Trang 6
x 2m 2 m
trên
x 3
Banfileword.com – Chuyên đề thi, tài liệu file word mới nhất, chất lượng cao, giá rẻ nhất thị trường.
m 1
m3
m 1
m2
�
�
�
�
�
�
�
�
A.
B.
C.
D.
1
5
3
3
�
�
�
�
m
m
m
m
�
2
�
2
� 2
�
2
2
Câu 31: Phương trình 2sin x 3cos
A. 1284.
2
x
2
4.3sin x có bao nhiêu nghiệm thuộc 2017; 2017
B. 4034
C. 1285.
D. 4035
Câu 32: Tính đạo hàm của hàm số y log 3 3x 1
A. y '
3
3x 1
B. y '
1
3x 1
C. y '
3
3x 1 ln 3
D. y '
1
3x 1 ln 3
Câu 33: Gọi x 0 là nghiệm dương nhỏ nhất của phương trình 3sin 2 x 2sin x cos x cos 2 x 0 Chọn
khẳng định đúng?
�3
�
A. x 0 �� ; 2 �
�2
�
� 3 �
; �
B. x 0 ��
� 2 �
� �
C. x 0 �� ; �
�2 �
� �
0; �
D. x 0 ��
� 2�
Câu 34: Ngân hàng BIDV Việt Nam đang áp dụng hình thức lãi kép với mức lãi suất: không kỳ hạn là
0,2%/ năm, kỳ hạn 3 tháng là 4,8%/ năm. Ông A đến ngân hàng BIDV để gửi tiết kiệm với số tiền ban
đầu là 300 triệu đồng. Nếu gửi không kỳ hạn mà ông A muốn thu về cả vốn và lãi bằng hoặc vượt quá
305 triệu đồng thì ông A phải gửi ít nhất n tháng n ��* . Hỏi nếu cùng số tiền ban đầu và cùng số tháng
đó, ông A gửi tiết kiệm có kỳ hạn 3 tháng thì ông A sẽ nhận được số tiền cả vốn lẫn lãi là bao nhiêu (giả
sử rằng trong suốt thời gian đó lãi suất ngân hàng không đổi và nếu chưa đến kỳ hạn mà rút tiền thì số
tháng dư so với kỳ hạn sẽ được tính theo lãi suất không kỳ hạn).
A. 444.785.421 đồng
B. 446.490.147 đồng
C. 444.711.302 đồng
D. 447.190.465 đồng.
2
� 45�
� 30�
Câu 35: Cho tam giác ABC có ABC
; ACB
, AB
. Quay tam giác ABC xung quanh cạnh
2
BC ta đuợc khối tròn xoay có thể tích V bằng:
A. V
3 1 3
2
B. V
1 3
24
C. V
1 3
8
D. V
1 3
3
Câu 36: Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a, SA vuông góc với mặt đáy. Gọi M là
trung điểm của BC. Mặt phẳng P đi qua A và vuông góc với SM cắt SB, SC lần lượt tại E, F. Biết
1
VS.AEF = VS.ABC . Tính thể tích V của khối chóp S.ABC
4
a3
A. V
2
a3
B. V
8
2a 3
C. V
5
a3
D. V
12
Câu 37: Cho một khối tứ diện có thể tích V. Gọi V ' là thể tích khối đa diện có các đỉnh là trung điểm các
V'
cạnh của khối tứ diện đã cho. Tính tỉ số
V
Trang 7
Banfileword.com – Chuyên đề thi, tài liệu file word mới nhất, chất lượng cao, giá rẻ nhất thị trường.
V' 2
V' 1
V' 5
V' 1
A.
B.
C.
D.
V 3
V 4
V 8
V 2
Câu 38: Việt và Nam chơi cờ. Trong một ván cờ, xác suất Việt thắng Nam là 0,3 và Nam thắng Việt là
0,4. Hai bạn dừng chơi khi có người thắng, người thua. Tính xác suất để hai bạn dừng chơi sau 2 ván cờ.
A. 0,12
B. 0,7
C. 0,9
D. 0,21
Câu 39: Cho lăng trụ tam giác đều ABC.A’B’C’ có cạnh đáy bằng a và AB' BC '. Tính thể tích V của
khối lăng trụ đã cho
A. V
7a 3
8
B. V a 3 6
C. V
a3 6
8
D. V
a3 6
4
mx 2
, m là tham số thực. Gọi S là tập hợp tất cả các giá trị nguyên của m để
2x m
hàm số nghịch biến trên khoảng (0;1). Tìm số phần tử S
Câu 40: Cho hàm số y
A. 1
B. 5
Câu 41: Đồ thị hàm số y
A. 3
C. 2
D. 3
5x 1 x 1
có tất cả bao nhiêu đường tiệm cận
x 2 2x
B. 0
C. 1
D. 2
Câu 42: Trên bàn có một cốc nước hình trụ chứa đầy nước, có chiều cao bằng 3 lần
đường kính của đáy; một viên bi và một khối nón đều bằng thủy tinh. Biết viên bi là
một khối cầu có đường kính bằng đường kính của cốc nước. Người ta từ từ thả vào
cốc nước viên bi và khối nón đó (như hình vẽ) thì thấy nước trong cốc tràn ra ngoài.
Tính tỉ số thể tích của lượng nước còn lại trong cốc và lượng nước ban đầu (bỏ qua bề
dày của lớp vỏ thủy tinh).
A.
1
2
B.
4
9
C.
5
9
D.
2
3
3
2
Câu 43: Cho hàm số f x ax bx cx d a �0 , có bảng biến thiên như hình vẽ dưới
�
x
y'
0
+
y
0
�
1
-
0
+
�
1
�
0
Tìm tất cả các giá trị thực của tham số m để phương trình f x m có 4 nghiệm phân biệt thỏa mãn
điều kiện x1 x 2 x 3
A. 0 m 1
1
x4
2
B.
1
m 1
2
C. 0 m �1
Trang 8
D.
1
�m 1
2
Banfileword.com – Chuyên đề thi, tài liệu file word mới nhất, chất lượng cao, giá rẻ nhất thị trường.
4
2
Câu 44: Cho hàm số y ax bx c a �0 có đồ thị C. Biết rằng C
không cắt
trục Ox và đồ thị hàm số y f ' x cho bởi hình vẽ bên. Hàm số đã cho có
số nào trong các hàm số dưới đây ?
A. y 4x 4 x 2 1
B. y 2x 4 x 2 2
C. y x 4 x 2 2
D. y
thể là hàm
1 4
x x2 1
4
Câu 45: Cho hình lăng trụ đứng ABC.A’B’C’có đáy là tam giác vuông và AB BC a, AA ' =a 2 . Gọi
M là trung điểm của BC. Tính khoảng cách d của hai đường thẳng AM và B’C
A. d
a 2
2
B. d
a 6
6
C.
a 7
7
D.
a 3
3
Câu 46: Tìm số nguyên dương n thỏa mãn điều kiện dưới đây ? (với 0 �1)
log 2017
1
log
22
2017
A. n 2016
log 2017
1
1
1
log 4 2017 6 log 6 2017 ... 2n log 2n 2017 log 2017 2
4
2
2
2
22018
B. n 2018
C. n 2019
D. n 2017
Câu 47: Cho x, y là hai số thực thỏa mãn điều kiện x 2 y 2 xy 4 4y 3x. Tìm giá trị lớn nhất của
3
3
2
2
biểu thức P 3 x y 20x 2xy 5y 39x
A. 100
B. 66
C. 110
D. 90
1
AD a. Biết SA
2
vuông góc với mặt đáy, SA a 2. Tính theo a khoảng cách d từ B đến mặt phẳng SCD
Câu 48: Cho hình chóp S.ABCD có đáy là hình thang vuông tại A và B; AB BC
A. d
a
2
B. d
a
4
C. d a
D. d
a 2
2
3
2
Câu 49: Cho hàm số f x ax bx cx d a �0, b, c, d �� có đồ
hình vẽ bên. Mệnh đề nào sau đây là đúng
thị như
A. a 0, b 0, c 0, d 0
B. a 0, b 0, c 0, d 0
C. a 0, b 0, c 0, d 0
D. a 0, b 0, c 0, d 0
Câu 50: Tìm tất cả các giá trị thực của tham số m để phương trình 5x 2 12x 16 m x 2 x 2 2 có
hai nghiệm thực phân biệt thỏa mãn điều kiện 2017 2x
A. m � 2 6;3 3 �
�
x 1
20172
x 1
2 6;3 3 �
B. m ��
�
�
Trang 9
2018x �2018
Banfileword.com – Chuyên đề thi, tài liệu file word mới nhất, chất lượng cao, giá rẻ nhất thị trường.
11 �
11 �
�
�
3 3;
C. m ��
D. m ��2 6;
�� 2 6
�
3�
3�
�
�
--- HẾT ---
Trang 10
Banfileword.com – Chuyên đề thi, tài liệu file word mới nhất, chất lượng cao, giá rẻ nhất thị trường.
ĐỀ THI THỬ THPT QG 2018
THPT KIM LIÊN- HÀ NỘI- LẦN 1
Banfileword.com
BỘ ĐỀ 2018
MÔN TOÁN
Thời gian làm bài: 90 phút;
(50 câu trắc nghiệm)
BẢNG ĐÁP ÁN
1-C
2-D
3-A
4-B
5-D
6-C
7-B
8-D
9-A
10-B
11-D
12-C
13-B
14-A
15-D
16-D
17-A
18-C
19-B
20-D
21-B
22-D
23-D
24-C
25-C
26-B
27-D
28-B
29-A
30-C
31-C
32-C
33-D
34-A
35-B
36-B
37-D
38-D
39-C
40-C
41-D
42-C
43-B
44-D
45-C
46-B
47-A
48-A
49-B
50-A
Banfileword.com
ĐỀ THI THỬ THPT QG 2018
Trang 11
Banfileword.com – Chuyên đề thi, tài liệu file word mới nhất, chất lượng cao, giá rẻ nhất thị trường.
BỘ ĐỀ 2018
MÔN TOÁN
THPT KIM LIÊN- HÀ NỘI- LẦN 1
Thời gian làm bài: 90 phút;
(50 câu trắc nghiệm)
LỜI GIẢI CHI TIẾT
Câu 1: Đáp án C
Gọi P là trung điểm của SB. Ta có PM PN a
�
cosMPN
2a 2 a 3
2
2a
� SA; BC 60�
2
1
� 60�
� MPN
2
Câu 2: Đáp án D
Câu 3: Đáp án A
f ' x x 2 e x �0, x ��� Hàm số không có điểm cực trị.
Câu 4: Đáp án B
� 2� 2
0; �� 1 � b 2
Giáo điểm với trục tung �
� b� b
Tiệm cận ngang
a
1;
c
b
2 � c 1;a 1
c
Tiệm cận đứng
Câu 5: Đáp án D
Câu 6: Đáp án C
x 1� y 1
�
�
Ta có y ' 3x 4x 1 � 3x 4x 1 0 �
1
5
�
x �y
27
� 3
2
2
Với x 1 � y 1 � PTTT : y x loai
Với x
1
5
� 1� 5
�y
� PTTT : y �
x �
3
27
� 3 � 27
Do đó có 1 tiếp tuyến
Trang 12
Banfileword.com – Chuyên đề thi, tài liệu file word mới nhất, chất lượng cao, giá rẻ nhất thị trường.
Câu 7: Đáp án B
Gọi H là trung điểm của AD � AH ABCD
2
a� 2 a 5
a 5
a 15
Ta có BH �
;SH BH tan 60�
. 3
� � a
2
2
2
�2 �
1
1 a 15 2 a 3 15
VS.ABCD SH.SABCD
a
3
3 2
6
Câu 8: Đáp án D
y ' 3x 2 4x a � y ' 1 1 a 0 � a 1
y 1 1 a b b � b 3 � P 4a b 1
Câu 9: Đáp án A
�2x 3
2x 3 �
2x 2 x 12 0
1
�
��
� xA xB
Phương trình hoành độ giao điểm �x 3
2
�x �3
�
�x �3
1
1
7
�1 7�
� x1 � y I 3 � I �
; �
4
2
2
� 4 2�
Câu 10: Đáp án B
Trang 13
Banfileword.com – Chuyên đề thi, tài liệu file word mới nhất, chất lượng cao, giá rẻ nhất thị trường.
uuur uuur uuur uuur uuur uuur
uuur uuur r
OA+OB OC OD OA OC + OB OD 0
uuuur uuuu
r uuuu
r uuuur uuuur uuuu
r
uuuu
r uuuur
uuuur
OA ' OB' OC ' OD ' OA ' OC ' OB ' OD ' 4OO '
uuu
r uuuur
OS= 4OO ' � OS 4a
Câu 11: Đáp án D
Câu 12: Đáp án C
Hàm số có tập xác đinh D �\ 1
y'
3
1 x
2
0, x �D � Hàm số đồng biến trên �;1 và 1; �
Câu 13: Đáp án B
PT � log 5 5x 1
t log 5 5x 1
1
x
�
� 1 �����
1
log
5
1
�t 1 t 2 � t2 t 2 0
5
�
�
2
Câu 14: Đáp án A
Câu 15: Đáp án D
PT � cos x
1
1
� x �arc cos k2 �0,39 k2 k ��
3
3
0 0,39 k2 2
0,195 k 0,805 �
k0
�
�
��
��
Vì x �(0; 2) nên �
0 0,39 k2 2
0,195 k 1,195
k 1
�
�
�
x 0,39
�
� S 2
Suy ra �
x 0,39 2
�
Câu 16: Đáp án D
T log
1
3
3
a
b
1
1
1
ba log a b log
3
3
b
a
b
a
1
1
1
1
3 log b a 1 3 log a a 1 log a b
1
1
1 1
1 1
2
1
1
1
1
3
1 3 log a b 3 1 3 2
2 log b a
2
4
2
Câu 17: Đáp án A
Gọi h là chiều cao của khối lăng trụ
1
1
VM.A’B’C’D’ h.SA 'B' C'D ' 36 12 cm3
3
3
Trang 14
Banfileword.com – Chuyên đề thi, tài liệu file word mới nhất, chất lượng cao, giá rẻ nhất thị trường.
Câu 18: Đáp án C
Gọi M, N lần lượt là trung điểm AB và CD, ta có DAC DBC � AN BN suy ra NM là trung trực
của AB, tương tự MN là trung trực của DC
Khi đó I �MN sao cho ID IA
Lại có AN AD 2 DN 2 a 13 � MN AN 2 AM 2 3a
Mặt khác IM IN R 2 AM 2 R 2 DN 2
R 2 4a 2 R 2 9a 2 3a � R
a 85
3
Câu 19: Đáp án B
6
6
1 � 6 k
6k
k
�
2 k
2x
C
2x
x
C 6k 1 2 6 k x 63k
�
�
2 � � 6
x � k 0
�
k 0
Số hạng không chứa x � 6 3k 0 � k 2 � a 2 C62 1 2 4 240
2
Câu 20: Đáp án D
y ' 3x 2 6x 3x x 2 � y ' 0 � 0 x 2 � hàm số đồng biến trên 0; 2
Câu 21: Đáp án B
1
�
x
�
1 � �1
�
�
3
2
�D �
�;
�� ; ��
Hàm số xác định � y 3x 1 0 � �
�
3� �3
� 1
�
�
x
�
3
�
Câu 22: Đáp án D
Có các TH sau:
1 3
+) 1 cán sự, 3 học sinh thường, suy ra có C3C27 8775 cách
2 2
+) 2 cán sự, 2 học sinh thường, suy ra có C3 C 27 1053 cách
3 1
+) 3 cán sự,1 học sinh thường, suy ra có C3C 27 27 cách
Trang 15
Banfileword.com – Chuyên đề thi, tài liệu file word mới nhất, chất lượng cao, giá rẻ nhất thị trường.
Suy ra có tất cả 9885 cách
Câu 23: Đáp án D
Các trường hợp thẻ lấy thỏa mãn đề bài là 3, 9, 15
3
0,15
20
Suy ra xác suất lấy được thẻ đó là
Câu 24: Đáp án C
��
x �5
��
x �5
2
�
,x 2 0
��
�x �5
�
�x 3x 10 �0
�
x �2
x �2
BPT � �
� ��
� ��
��
2
�x 14 vậy S
� x 3x 10 x 2
� 2
�2
2
x
3x
10
x
4x
4
x
3x
10
x
2
�
�
5 x 14
có 9 phần tử
Câu 25: Đáp án C
9 x 9 x 3x 3 x 2 14 � 3x 3 x 4
2
�
6 3 3x 3 x
x 1
23
1 x
3
6 3 3 x 3 x
2 3 3 3
x
x
6 3.4
9
� P ab 45
2 3.4
5
Câu 26: Đáp án B
�
3x
k
�
2
cos3x 0 �
�
�
PT � cos3x 2cos3xsinx 0 � �
� �x k2 � x k , k ��
1
�
6
3
sinx
� 6
�
2
� 5
�x 6 k 2
�
Câu 27: Đáp án D
y ' 4 m 1 x 3 2mx 2x �
2 m 1 x 2 m �
�
�
Để hàm số có 3 cực trị � y ' 0 có 3 nghiệm phân biệt
2
2
Suy ra 2 m 1 x m 0 � x
m
có 2 nghiệm phân biệt x �0
2 m 1
m0
�
m
0
�
�
Suy ra 2 m 1
m 1
�
Câu 28: Đáp án B
Có duy nhất mặt phẳng SAC
Câu 29: Đáp án a
Trang 16
Banfileword.com – Chuyên đề thi, tài liệu file word mới nhất, chất lượng cao, giá rẻ nhất thị trường.
3
�
cos
�
3
�2
�
13
�
y 13 � cos3x
sin 3x � 2 13 sin 3x với �
2
13
� 13
�
�
sin
�
13
�
Có 1 �sin 3x �1 � 13 2 � 13 sin 2x 2 � 13 2 � 5, 6 �y �1, 6
Câu 30: Đáp án C
Ta có y '
2m 2 m 3
x 3
2
0, x �D
m 1
�
2m 2 m 1
�
Hàm số nghịch biến trên đoạn 0;1 � min y y 1
�
3
�
0;1
m
2
� 2
Câu 31: Đáp án C
PT � 2sin
2
x
2
4.3sin x 3cos
2
x
2
�6
3 4.9
sin 2 x
sin 2 x
3
sin 2 x
sin x
sin 2 x
3
2
4.3sin x
�2 �
�1 �
� � � 3. � � 4
�3 �
�9 �
t
t
�2 � �1 �
Xét hàm số f t � � 3. � �là hàm số nghịch biến trên �
�3 � �9 �
2
Do đó f t f 0 � t 0 � sin x 0 � x k
Giải 201 �k �2017 � 642 �k �642
Do đó phương trình có 1285 nghiệm
Câu 32: Đáp án C
y'
3
3x 1 ln 3
Câu 33: Đáp án D
sin x 3cos x
tan x 3
�
�
PT � sin x 3cos x sin x cos x 0 � �
��
sin x cos x
tan x 1
�
�
x arctan 3 k
�
� �
�
�
� x 0 arctan 3 ��
0; �
�
x k
� 2�
�
4
Câu 34: Đáp án A
n
Th1: Gửi với lãi suất không kì hạn ta có 300 1 0, 2% 12 �305 � n min 100 tháng
Trang 17
Banfileword.com – Chuyên đề thi, tài liệu file word mới nhất, chất lượng cao, giá rẻ nhất thị trường.
Th2: Nếu cùng số tiền ban đầu và cùng số tháng đó, ông A gửi tiết kiệm có kỳ hạn 3 tháng thì ông A sẽ
nhận được số tiền cả vốn lẫn lãi là
33
1
� 4,8% � � 0, 2% �
T 300 �
1
1
��
� 444.785.421 đồng
4 � � 12 �
�
Câu 35: Đáp án B
Quay tam giác ABC xung quanh cạnh BC ta đuợc 2 khối nón chung đáy AH và có đường cao lần lượt là
HB và HC
Ta có
1
HB
2
3
HC AH cot C
2
AH ABsin B
1
1 1 1 3
Khối tròn xoay có thể tích V bằng V AH 2 HB HC
3
3 4 2
Do đó V
1 3
24
Câu 36: Đáp án B
Dựng AH SM, dựng đường thẳng qua H song song với BC cắt SB, SC
lượt tại E, F
Khi đó EF / /BC SM � AEF SM
lại có VS.AEF
1
SE SF SH 1
VS.ABC �
4
SB SC SM 2
Do đó SAM là tam giác vuông cân tại A suy ra SA AM
VS.ABC
1
a3
SA.SABC
3
8
Câu 37: Đáp án D
Trang 18
a 3
2
lần
Banfileword.com – Chuyên đề thi, tài liệu file word mới nhất, chất lượng cao, giá rẻ nhất thị trường.
VAMNS 1
V
� VAMNS
VABCD 8
8
VDNPS' VCSPQ VBNQS'
� V' V 4
V
8
V V
8 2
Câu 38: Đáp án D
Xác suất 2 bạn hòa nhau 1 0,3 0, 4 0,3
để hai bạn dừng chơi sau 2 ván cờ thì ván 1 hòa, ván 2 không hòa
vậy xác suất là 0,3.0, 7 0, 21
Câu 39: Đáp án C
uuuu
r uuuu
r uuuu
r uuuu
r uuuu
r uuuu
r
AB' BC ' � AB'.BC' AB' BB' . BC ' CC' 0
uuuu
r uuuu
r uuuu
r uuuu
r uuuu
r
�
AB'.BC
۰' �BB'
AB' BC '
Lại có SABC
uuuu
r2
BB'
0
a 2cos120
h2
0
h
a
2
a2 3
a3 6
� V SABC .h
4
8
Câu 40: Đáp án C
2
� m�
TXD : D �\ �
�. Ta có y ' m 4
� 2
2x m
�m 2 4 0
�
m
�
��
�1
�
(
0;1
)
�
Hàm số nghịch biến trên khoảng
�
2
m��
���
� m 1; m 0
��
m
�
�
�0
��2
Câu 41: Đáp án D
lim y lim
x � �
Và y
x ��
5x 1 x 1
0 � y 0 là TCN của đồ thị hàm số
x 2 2x
5x 1 x 1
25x 9
� lim y �� x 2 là TCĐ của đồ thị hàm số
2
x 2x
x 2 5x 1 x 1 x �2
Vậy hàm số có 2 đường tiệm cận
Câu 42: Đáp án C
Gọi R là bán kính đáy của hình trụ
Suy ra chiều cao hình trụ là h 6R
Trang 19
Banfileword.com – Chuyên đề thi, tài liệu file word mới nhất, chất lượng cao, giá rẻ nhất thị trường.
4 3
Theo bài ra khối cầu có thể tích V1 R
3
1 2
4 3
Khối nón có bán kính đáy r R; chiều cao h 0 h 2R 4R � V2 r h 0 R
3
3
8 3
Do đó thể tích nước tràn ra ngoài cốc là V0 V1 V2 R
3
Vậy tỉ số cần tìm
V V0 � 3 8 3 �
5
�
6R R �: 6R 3
V
3
9
�
�
Câu 43: Đáp án B
3
2
Dựa vào BBT suy ra hàm số đã cho là y f x 2x 3x 1
Đồ thị hàm số y f x như hình vẽ
Dựa vào hình vẽ, để phương trình f x m có có 4 nghiệm phân biệt thỏa mãn điều kiện
x1 x 2 x 3
1
1
x4 � m 1
2
2
Câu 44: Đáp án D
y ax 4 bx 2 c a �0 ��
� f ' x 4ax 3 2bx � f '' x 12ax 2 2b, x ��
�lim f ' x �
�x ��
y
f
'
x
�a 0
Dựa vào hình vẽ thấy
là hàm số đồng biến trên � và �
lim
f
'
x
�
�
�x ��
Khi đó f '' x �
0,�
x �
b 0
Và C không cắt Ox � a, b, c 0
Câu 45: Đáp án C
Gọi N là trung điểm của BB’ � B'C / / AMN
Suy ra d AM; B 'C d B '; AMN d B; AMN
Mà B.AMN là tam giác vuông �
1
1
1
1
2
2
d B; AMN BA BM BN 2
2
Trang 20
Banfileword.com – Chuyên đề thi, tài liệu file word mới nhất, chất lượng cao, giá rẻ nhất thị trường.
a 7
Vậy d AM; B 'C d B; AMN
7
Câu 46: Đáp án B
1
log
22
1
1
2
1
n
2017 log 2017; 4 log 4 2017 3 log 2017; 2n log 2 n 2017 2n 1 log 2017
2
2
2
2
2
n �
� 1 2 3 4
� VT �
1 1 3 5 7 ... 2n 1 �
.log 2017
2
� 2 2 2 2
�
1 �
�
2 2018 �
log 2017
Mà VP �
� 2 �
n �
1 �
� 1 2 3 4
�
1 1 3 5 7 ... 2n 1 �
.log 2017 �
2 2018 �
log 2017 � n 2018
Khi đó �
2
� 2 2 2 2
�
� 2 �
Câu 47: Đáp án A
4
�
0 �x �
2
2
�
�
x
y
3
x
y
4y
4
0
�
0
�x
�
�
3
��
Từ giả thiết ta có � 2
có nghiệm � �
2
y �0
7
�y x 4 y x 3x 4 0
�
�
1 �y �
�
3
Và xy 3x 4y x 2 y 2 4
Suy ra
3
P 3x
18x22 445x
8 3y3 3y 2 8y
1 444
4 43
1 4 4 2 4 43
f x
g y
� 4�
�4 � 820
3
2
0; �suy ra max f x f � �
Xét hàm số f x 3x 18x 45x 8 trên �
� 3�
�3 � 9
�7 � 80
�7�
3
2
g y f � �
1; �suy ra max
Xét hàm số g x 3y 3y 8y trên �
�7�
�3 � 9
1; �
�3�
�
�3�
Vậy P �max f x max g y 100
Dấu “=” xảy ra khi x y
4
3
Câu 48: Đáp án A
Vì AB VC
AD
� ACD vuông tại C
2
1
AH
, AH SC H �HC
Và d B; SCD d A; SCD
2
2
Tam giác SAC vuông tại A, có
Vậy d B; SBD
1
1
1
� AH 2 a
2
2
2
AH
SA
AC
a
2
Trang 21
Banfileword.com – Chuyên đề thi, tài liệu file word mới nhất, chất lượng cao, giá rẻ nhất thị trường.
Câu 49: Đáp án B
Dựa vào hình vẽ, ta có
lim f x �; lim f x �� hệ số a 0 (loại C)
x � �
x � �
Đồ thị hàm số cắt Oy tại điểm có tung độ âm � d 0
2b
�
x1 x 2
0
�
b0
�
�
3a
��
Hàm số có 2 cực trị x1 0, x 2 0 � �
c0
�
�x .x c 0
1 2
�
3a
Câu 50: Đáp án A
2x
Giả thiết � 2017
x 1
1004 2x x 1 �20182
x 1
1004 2 x 1 *
t
Hàm số f t 2017 1004t đồng biến trên �
nên * � 2x x 1 �2 x 1 � x � 1;1
Ta có
5x 2 12x 16 m x 2 x 2 2 � 3 x 2 2 x 2 2 m x 2 x 2 2
2
2
�x2 �
x2
x2
� 3�
2m
� 3a 2 2 ma � a
�
2
x2 2
x2 2
� x 2 �
�3
�
2
2
Với x � 1;1 � a �� ; 3 �khi đó 3a 2 ma � m g a 3a I
a
�3
�
�3
�
2
Xét hàm số g a 3a trên � ; 3 �� II có 2 nghiệm phân biệt � m � 2 6;3 3 �
�
a
�3
�
----- HẾT -----
Trang 22