Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (58.21 KB, 2 trang )
ĐỀ THI THỬ VÀO 10 THPT 2008-2009 [ĐỀ 8]
Bài 1 ( 2 điểm )
a/ Tính giá trị của biểu thức:
b/ Chứng minh ( với a > 0; b > 0 )
Bài 2 ( 3 điểm )
Cho Parabol (P) và đường thẳng (d) có phương trình:
(P): ; (d): ( m là tham số )
1/ Tìm m để đường thẳng (d) và Parabol (P) cùng đi qua điểm có hoành độ bằng 4.
2/ Chứng minh rằng với mọi giá trị của m đường thẳng (d) luôn cắt Parabol (P) tại hai
điểm phân biệt.
3/ Giả sử ( ) và ( ) là tọa độ các giao điểm của (d) và (P). Chứng minh rằng:
Bài 3 ( 4 điểm )
Cho BC là dây cung cố định của đường tròn (O; R) ( 0 < BC <2R). A là một điểm di động
trên cung lớn BC sao cho tam giác ABC nhọn. Các đường cao AD, BE, CF cắt nhau tại H (
D BC; E CA; F AB)
1/ Chứng minh: Tứ giác BCEF nội tiếp. Từ đó suy ra AE.AC=AF.AB
2/ Gọi A’ là trung điểm của BC. Chứng minh rằng: AH = 2OA’.
3/ Kẻ đường thẳng d tiếp xúc với đường tròn (O) tại A. Đặt S là diện tích tam giác ABC,
2p là chu vi tam giác DEF. Chứng minh:
a/ d // EF
b/ S = p. R
Bài 4 ( 1 điểm )
Giải phương trình: