Tải bản đầy đủ (.doc) (2 trang)

Đề và đáp án toán 6 2008 - 2009

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (133.89 KB, 2 trang )

PHÒNG GD&ĐT THANH CHƯƠNG
HƯỚNG DẪN CHẤM ĐỀ THI KIỂM ĐỊNH CHẤT LƯỢNG MŨI NHỌN. NĂM HỌC 2008-2009
MÔN THI: TOÁN 8 (Thời gian làm bài 120 phút)
Câu Ý Nội dung cần đạt Điểm
1
HS Biết cách phân tích và đi đến kết quả:
a (x + 3)(x – 4)
b (x + 2)(x + 2y – 2)
2
a
Giải và tìm được: P xác định khi:
1x
≠±

b
4 2 2 2 2
3
4 1 2 1 2 1 1
.
( 1)( 1) 1
x x x x x x x x x x
P
x x x
+ − + − + − + + + + − −
=
− + −
4 2 2
2 2
1 1
1 ( 1)( 1)
x x x


x x x x
+ + −
= ×
− − + +
=
4 2 2 2 2 2
2 2
( 2 1) ( 1)
( 1)( 1) ( 1)( 1)
x x x x x
x x x x x x
+ + − + −
=
− + + − + +
=
2 2 2
2
( 1)( 1) 1
( 1)( 1) 1
x x x x x x
x x x x
+ + − + − +
=
− + + −
c
Với các giá trị:
1x ≠ ±
ta có
( 1) 1 1
1 1

x x
P x
x x
− +
= = +
− −
Để P nhận giá trị nguyên
x⇔
nguyên và x – 1 là ước của 1
1 1 0; 2x x x⇔ − = ± ⇔ = =
(thoả mãn điều kiện của x)
3
Ta có
2 2
( 12 27)( 12 35) 2014Q x x x x= + + + + +
Đặt
2
12 32t x x= + +
tao có
( 5)( 3) 2014Q t t= − + +
a Lập luận để tìm số dư: chính là số dư trong phép chia :
2
( 5)( 3) 2014 2 1999Q t t t t= − + + = − +
cho t.

dư 1999
b
Ta có:
2 2
2a b ab+ ≥

với mọi a,b

2 2 2
2 4 ( ) 4a b ab ab a b ab+ + ≥ ⇔ + ≥
(1)
Vì a,b dương


0; . 0a b a b+ > >
nên từ (1) suy ra:
4
.
a b
a b a b
+

+
hay
1 1 4
a b a b
+ ≥
+

Dấu “=” xẩy ra

a = b
2 2
1 3 3
( )
2 2

M
xy xy x y
= + +
+

Do x; y dương và x + y =1

1 =
2
( ) 4x y xy+ ≥
( được suy ra từ (x – y)
2


0)
1 1
2 2
2 2
xy
xy
⇔ ≤ ⇔ ≥
Dấu “=” xẩy ra

x = y =
1
2
(1)
Mặt khác áp dụng bất đẳng thức trên:
2 2 2 2 2
3 3 4 4

( ) 3 3 12
2 2 ( )xy x y xy x y x y
+ ≥ × = × =
+ + + +
(2)
N
P
M
H
C
B
E
A
D
K
y
x
m
n
n
m
D
C
F
E
O
P
Dấu “=” xẩy ra

2 2

1
2
2
xy x y x y= + ⇔ = =
Vậy từ (1) và (2) ta có :
2 12 14M ≥ + =
.
Giá trị bé nhất Min
M
= 14 đạt được khi x = y =
1
2
4
a
BKE∆
:
BAD∆
(hai tam giác vuông có
chung góc nhọn)
(1)
BK BA
BE BD
⇒ =
Từ đó HS c/m được :
( . . )AKB DEB c g c∆ ∆:
· ·
0
135AKB DEB⇒ = =
( vì


AHK vuông
cân tại H)
·
0
45AED⇒ =
( Kề bù với góc
DEB).
Vậy

ADE vuông cân, suy ra : AD = AE mà AB = 2CB=2AD nên E là trung điểm AB
b Theo câu a

AM là trung tuyến

AM là phân giác góc DAB. Theo tính chất phân giác
trong tam giác DAB ta có :
1
2
DN AD
NB AB
= =

1 1
3 6
ADN ADB ABCD
S S S
∆ ∆
⇒ = =
(2)
Mặt khác :


ADP vuông cân, lập luận tính được
1
4
ADP ABCD
S S

=
(3)
Từ (2) và (3) tao có :
1
2
6
1
3
4
ADN
ADP
S
S


= =
5
Cách dựng :
- Dựng cung tròn tâm P bán kính n cắt
Oy tại E.
- Trên tia đối của tia PE dựng
điểm F sao cho PF = m.
- Từ F dựng đườn thẳng // Oy cắt Ox tại C.

- Nối CP cắt Oy tại D ta có CD là đoạn cần dựng.
( Nếu bán kính n không đủ để (P ;n) cắt Oy thì ta có
thể dựng (P ; 2n) và lấy PF = 2m
1,0
Chứng minh : Theo cách dựng ta có : PE = n ; PF = m và FC// DE theo định lý Ta-let :
PC PF m
PD PE n
= =
0,5
Học sinh giải theo nhiều cách khác nhau nhưng thoả mãn yêu cầu của đề và chương trình Toán 8 thì vẫn đạt điểm tối
đa. Phần hình học phải có hình vẽ.

×