Câu 1
Cho phương trình : x
2
– mx + m – 1 = 0 .
1) Gọi hai nghiệm của phương trình là x
1
, x
2
. Tính giá trị của biểu thức .
2
212
2
1
2
2
2
1
1
xxxx
xx
M
+
−+
=
. Từ đó tìm m để M > 0 .
2) Tìm giá trị của m để biểu thức P =
1
2
2
2
1
−+
xx
đạt giá trị nhỏ nhất .
Câu 2
Tìm điều kiện của tham số m để hai phương trình sau có nghiệm chung .
x
2
+ (3m + 2 )x – 4 = 0 và x
2
+ (2m + 3 )x +2 =0 .
Câu 3
Cho phương trình (m
2
+ m + 1 )x
2
- ( m
2
+ 8m + 3 )x – 1 = 0
a) Chứng minh x
1
x
2
< 0 .
b) Gọi hai nghiệm của phương trình là x
1
, x
2
. Tìm giá trị lớn nhất , nhỏ nhất của biểu thức :
S = x
1
+ x
2
.
Câu 4
Tìm m để phương trình ( x
2
+ x + m) ( x
2
+ mx + 1 ) = 0 có 4 nghiệm phân biệt .
Câu 5
Cho phương trình : x
2
– ( m+2)x + m
2
– 1 = 0 (1)
a) Gọi x
1
, x
2
là hai nghiệm của phương trình .Tìm m thoả mãn x
1
– x
2
= 2 .
b) Tìm giá trị nguyên nhỏ nhất của m để phương trình có hai nghiệm khác nhau .
Câu 6
Giả sử x
1
và x
2
là hai nghiệm của phương trình :
x
2
–(m+1)x +m
2
– 2m +2 = 0 (1)
a) Tìm các giá trị của m để phương trình có nghiệm kép , hai nghiệm phân biệt .
b) Tìm m để
2
2
2
1
xx
+
đạt giá trị bé nhất , lớn nhất .
Câu 7
1) Giải và biện luận phương trình :
(m
2
+ m +1)x
2
– 3m = ( m +2)x +3
2) Cho phương trình x
2
– x – 1 = 0 có hai nghiệm là x
1
, x
2
. Hãy lập phương trình bậc hai có hai
nghiệm là :
2
2
2
1
1
;
1 x
x
x
x
−−
Câu 8
Cho phương trình : x
2
– 4x + q = 0
a) Với giá trị nào của q thì phương trình có nghiệm .
b) Tìm q để tổng bình phương các nghiệm của phương trình là 16 .
Câu 9
Cho phương trình : 2x
2
+ ( 2m - 1)x + m - 1 = 0
1) Tìm m để phương trình có hai nghiệm x
1
, x
2
thoả mãn 3x
1
- 4x
2
= 11 .
2) Tìm đẳng thức liên hệ giữa x
1
và x
2
không phụ thuộc vào m .
3) Với giá trị nào của m thì x
1
và x
2
cùng dơng .
Câu 10 Cho phương trình : x
2
- ( m + 4)x + 3m + 3 = 0 ( m là tham số )
a) Xác định m để phương trình có một nghiệm bằng 2 . Tìm nghiệm còn lại .
b) Xác định m để phương trình có hai nghiệm x
1
; x
2
thoả mãn
3 3
1 2
0x x
+ ≥
Câu 11 Gọi x
1
; x
2
là hai nghiệm của phương trình x
2
- 2( m - 1)x - 4 = 0 ( m là tham số )
Tìm m để :
1 2
5x x
+ =
Câu 12
Cho phương trình x
2
– 2 (m + 1 )x + m
2
- 2m + 3 = 0 (1).
a) Giải phương trình với m = 1 .
b) Xác định giá trị của m để (1) có hai nghiệm trái dấu .
1
c) Tìm m để (1) có một nghiệm bằng 3 . Tìm nghiệm kia .
Câu 13
Cho phương trình : x
2
– 2 ( m + n)x + 4mn = 0 .
a) Giải phương trình khi m = 1 ; n = 3 .
b) Chứng minh rằng phương trình luôn có nghiệm với mọi m ,n .
c) Gọi x
1
, x
2
, là hai nghiệm của phương trình . Tính
2
2
2
1
xx
+
theo m ,n .
Câu 14
Cho phương trình : x
2
+ 2x – 4 = 0 . gọi x
1
, x
2
, là nghiệm của phương trình .
Tính giá trị của biểu thức :
2
2
1
2
21
21
2
2
2
1
322
xxxx
xxxx
A
+
−+
=
Câu 15
Cho phương trình x
2
– ( m+1)x + m
2
– 2m + 2 = 0 (1)
a) Giải phương trình với m = 2 .
b) Xác định giá trị của m để phương trình có nghiệm kép . Tìm nghiệm kép đó .
c) Với giá trị nào của m thì
2
2
2
1
xx
+
đạt giá trị bé nhất , lớn nhất .
Câu 16
Cho phương trình x
2
– ( 2m + 1 )x + m
2
+ m – 1 =0.
a) Chứng minh rằng phương trình luôn có nghiệm với mọi m .
b) Gọi x
1
, x
2
, là hai nghiệm của phương trình . Tìm m sao cho : ( 2x
1
– x
2
)( 2x
2
– x
1
) đạt giá trị
nhỏ nhất và tính giá trị nhỏ nhất ấy .
c) Hãy tìm một hệ thức liên hệ giữa x
1
và x
2
mà không phụ thuộc vào m .
Câu 17 Cho phương trình mx
2
– 2x – 4m – 1 = 0 (1)
a) Tìm m để phương trình (1) nhận x =
5
là nghiệm, hãy tìm nghiệm còn lại.
b) Với m ≠ 0
Chứng minh rằng phương trình (1) luôn có hai nghiệm x
1
, x
2
phân biệt.
Gọi A, B lần lượt là các điểm biểu diễn của các nghiệm x
1
, x
2
trên trục số. Chứng minh rằng
độ dài đoạn thẳng AB không đổi
Câu 18 Xét phương trình ẩn x :
2 2
2 4 5 2 1 1 0( )( )( )x x a x x a x a− + + − + − − − =
a) Giải phương trình ứng với a = -1.
b) Tìm a để phương trình trên có đúng ba nghiệm phân biệt.
Câu 19
Cho phương trình x
2
– 2 (m + 1 )x + m
2
- 2m + 3 = 0 (1).
a) Giải phương trình với m = 1 .
b) Xác định giá trị của m để (1) có hai nghiệm trái dấu .
c) Tìm m để (1) có một nghiệm bằng 3 . Tìm nghiệm kia .
Câu 20
Cho phương trình x
2
– ( m+1)x + m
2
– 2m + 2 = 0 (1)
a) Giải phương trình với m = 2 .
b) Xác định giá trị của m để phương trình có nghiệm kép . Tìm nghiệm kép đó .
c) Với giá trị nào của m thì
2
2
2
1
xx
+
đạt giá trị bé nhất , lớn nhất .
Câu 21
Cho phương trình : 2x
2
– ( m+ 1 )x +m – 1 = 0
a) Giải phương trình khi m = 1 .
b) Tìm các giá trị của m để hiệu hai nghiệm bằng tích của chúng .
Cõu 22 Cho phương trỡnh x
2
– 2x – 3m
2
= 0 (1).
a) Giải phương trỡnh khi m = 0.
b) Tỡm m để phương trỡnh cú hai nghiệm trỏi dấu.
2
c) Chứng minh phương trỡnh 3m
2
x
2
+ 2x – 1 = 0 (m ≠ 0) luôn có hai nghiệm phân biệt và mỗi
nghiệm của nó là nghịch đảo của một nghiệm của phương trỡnh (1).
Cõu 23 Cho phương trỡnh mx
2
– 2(m-1)x + m = 0 (1)
a) Giải phương trỡnh khi m = - 1.
b) Tỡm m để phương trỡnh (1) cú 2 nghiệm phõn biệt.
c) Gọi hai nghiệm của (1) là x
1
, x
2
. Hóy lập phương trỡnh nhận
1 2
2 1
x x
;
x x
làm nghiệm.
Cõu 24Cho hai phương trỡnh ẩn x sau:
( )
2 2
x x 2 0 (1); x 3b 2a x 6a 0 (2)
+ − = + − − =
a) Giải phương trỡnh (1).
b) Tỡm a và b để hai phương trỡnh đó tương đương.
c) Với b = 0. Tỡm a để phương trỡnh (2) cú nghiệm x
1
, x
2
thỏa món x
1
2
+ x
2
2
= 7
Cõu 25 Xác định giá trị của a để tổng bỡnh phương các nghiệm của phương trỡnh:
x
2
– (2a – 1)x + 2(a – 1) = 0, đạt giá trị nhỏ nhất.
Cõu 26
1.Cho phương trỡnh x
2
– ax + a + 1 = 0.
a) Giải phương trỡnh khi a = - 1.
b) Xác định giá trị của a, biết rằng phương trỡnh cú một nghiệm là
1
3
x
2
=
. Với giỏ trị tỡm được
của a, hóy tớnh nghiệm thứ hai của phương trỡnh.
2.Chứng minh rằng nếu
a b 2+ ≥
thỡ ớt nhất một trong hai phương trỡnh sau đây có nghiệm: x
2
+ 2ax + b = 0; x
2
+ 2bx + a = 0.
Cõu 27
1.Cho phương trỡnh (m + 2)x
2
– 2(m – 1) + 1 = 0 (1)
a) Giải phương trỡnh khi m = 1.
b) Tỡm m để phương trỡnh (1) cú nghiệm kộp.
c) Tỡm m để (1) có hai nghiệm phân biệt, tỡm hệ thức liờn hệ giữa cỏc nghiẹm khụng phụ thuộc
vào m.
Câu 28
Cho phương trình: x
2
- (m-1)x-m=0 (1)
1. Giả sử phương trình (1) có 2 nghiệm là x
1
, x
2
. Lập phương trình bậc hai có 2 nghiệm là t
1
=1-x
1
và
t
2
=1-x
2
.
2. Tìm các giá trị của m để phương trình (1) có 2 nghiệm x
1
, x
2
thoả mãn điều kiện: x
1
<1<x
2
.
3