Tải bản đầy đủ (.pdf) (22 trang)

Đề thi thptqg 2018 toán megabook đề số 3

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (919.37 KB, 22 trang )

Đặt mua trọn bộ file word soạn tin “Tôi muốn mua đề Toán 2018 file word” gửi đến
0982.563.365 hoặc vào link sau để đăng ký />ĐỀ 3
Câu 1: Một phòng học có 15 bộ bàn ghế, xếp chỗ ngồi cho 30 học sinh, mỗi bàn ghế 2 học
sinh. Tìm xác suất để hai học sinh A, B chỉ định trước ngồi cùng một bàn.
A.

1
90

B.

1
29

C.

96
270725

D.

13536
270725

Câu 2: Hệ số của x 5 trong khai triển x 1  2x   x 2 1  3x  là:
5

A. 61204

B. 3160


10

C. 3320

D. 61268

Câu 3: Có bao nhiêu phép tịnh tiến biến đồ thị của hàm số y  s inx thành chính nó?
A. 0

B. 1

C. 2

D. Vô số

Câu 4: Giá trị nhỏ nhất của hàm số y  ln  x 2  2x  1  x trên đoạn  2; 4  là:
A. 2ln 2  3

B. 2ln 2  4

D. 3

C. 2

Câu 5: Tìm giá trị lớn nhất của hàm số f  x   sin   sin x  .
A. 1

B.

1

4

C.

1
2

D. 0

Câu 6: Cho hàm số y  f  x  liên tục, đồng biến trên đoạn  a; b  . Khẳng định nào sau đây
đúng?
A. Hàm số đã cho có giá trị lớn nhất, giá trị nhỏ nhất trên khoảng  a; b 
B. Hàm số đã cho có cực trị trên đoạn  a; b 
C. Hàm số đã cho có giá trị lớn nhất, giá trị nhỏ nhất trên đoạn  a; b 
D. Phương trình f  x   0 có nghiệm duy nhất thuộc đoạn  a; b 
Câu 7: Trong một hình đa diện lồi, mỗi cạnh là cạnh chung của tất cả bao nhiêu mặt?
A. 5

B. 3

C. 4

D. 2

Câu 8: Cho hàm số y  f  x  có bảng biến thiên như hình vẽ bên. Khẳng định nào sau đây
đúng?



x

y'

0

2



0


3

y

Trang 1 – Website chuyên đề thi thử file word có lời giải


Đặt mua trọn bộ file word soạn tin “Tôi muốn mua đề Toán 2018 file word” gửi đến
0982.563.365 hoặc vào link sau để đăng ký />1



1

A. Hàm số có hai điểm cực trị

B. Hàm số nghịch biến trên mỗi khoảng xác định

C. Hàm số có một điểm cực trị


D. Giá trị lớn nhất của hàm số là 3

Câu 9: Tìm m để hàm số y  x 3  2x 2  mx  1 đồng biến trên
A. m  

4
3

B. m  

4
3

C. m  

.

4
3

D. m  

4
3



Câu 10: Cho tích phân I   x 2 cos xdx và u  x 2 ,dv  cos x dx . Khẳng định nào sau đây
0


đúng?


A. I  x 2 s inx 0  2 x sin xdx

B. I  x 2 s inx

0

C. I  x 2 s inx


0



  x sin xdx
0





  x sin xdx

D. I  x 2 s inx 0  2 x sin xdx

0


0

Câu 11: Tìm tất cả các đường tiệm cận của đồ thị hàm số y 
A. y  1 và x  3


0

x  x2  4

x 2  4x  3

B. y  0, y  1 và x  3 C. y  0, x  1 và x  3 D. y  0 và x  3

Câu 12: Cho hàm số y  f  x  thỏa mãn f '  x    x  1 e x và

 f  x  dx   a x  b  e

x

 c với

a, b, c là các hằng số. Khi đó:
A. a  b  0

B. a  b  3

C. a  b  2

D. a  b  1


Câu 13: Số giao điểm của đồ thị hàm số y  x 3  3x 2  3x  1 và y  x 2  x  1 là:
A. 3

B. 1

Câu 14: Cho hàm số y  f  x  

C. 0

D. 2

ax  b
có đồ thị như hình vẽ bên. Tất cả các giá trị của m để
cx  d

phương trình f  x   m có 2 nghiệm phân biệt là:

Trang 2 – Website chuyên đề thi thử file word có lời giải


Đặt mua trọn bộ file word soạn tin “Tôi muốn mua đề Toán 2018 file word” gửi đến
0982.563.365 hoặc vào link sau để đăng ký />
A. m  2 và m  1

B. 0  m  1 và m  1 C. m  2 và m  1

D. 0  m  1

Câu 15: Cho hàm số y  f  x  xác định, liên tục trên đoạn  1;3 và có đổ thị như hình vẽ

bên. Tiếp tuyến của đổ thị hàm số tại điểm x  2 có hệ số góc bằng?

A. 1

B. 1

C. 0

D. 2

Câu 16: Ông B có một khu vườn giới hạn bởi một đường parabol và một đường thẳng. Nếu
đặt trong hệ tọa độ Oxỵ như hình vẽ bên thì parabol có phương trình y  x 2 và đường thẳng
là y  25 . Ông B dự định dùng một mảnh vườn nhỏ được chia từ khu vườn bởi một đường
thẳng đi qua O và điểm M trên parabol để trồng một loại hoa. Hãy giúp ông B xác định điểm
M bằng cách tính độ dài OM để diện tích mảnh vườn nhỏ bằng

A. OM  2 5

B. OM  15

C. OM  10

9
.
2

D. OM  3 10

Trang 3 – Website chuyên đề thi thử file word có lời giải



Đặt mua trọn bộ file word soạn tin “Tôi muốn mua đề Toán 2018 file word” gửi đến
0982.563.365 hoặc vào link sau để đăng ký />Câu 17: Cho hàm số y  f  x  có đổ thị như hình vẽ bên. Biết rằng f  x  là một trong bốn
hàm số được đưa ra trong các phương án A, B, C, D dưới đây. Tìm f  x 

A. f  x   e x

3
B. f  x    


x

C. f  x   ln x

e

D. f  x   x 

Câu 18: Cho hai số thực dương x, y bất kỳ. Khẳng định nào sau đây đúng?
A. log 2

x 2 2 log 2 x

y
log 2 y

B. log 2  x 2 y   2 log 2 x  log 2 y

C. log 2  x 2  y   2log 2 x.log 2 y


D. log 2  x 2 y   log 2 x  2 log 2 y

Câu 19: Nghiệm của bất phương trình log 2  x  1  log 1 x  1  0 là:
2

A. 1  x  0

B. 1  x  0

C. 1  x  1

D. x  0

Câu 20: Phương trình 1  a  a 2  ...  a x  1  a  1  a 2 1  a 4  với 0  a  1 có bao nhiêu
nghiệm? [§­îc ph¸t hµnh bëi Dethithpt.com]
A. 0

B. 1

C. 2

D. 3

Câu 21: Tất cả các giá trị của m để phương trình e x  m  x  1 có nghiệm duy nhất là:
A. m  1

B. m  0, m  1

Câu 22: Tính giá trị S  1  22 log

A. S  10082.2017 2

2

C. m  0, m  1

D. m  1

2  32 log 3 2 2  42 log 4 2 2  ...  2017 2 log 2017 2 2.

B. S  1007 2.2017 2

C. S  10092.2017 2

D. S  10102.2017 2

Câu 23: Cho tứ diện ABCD có AB  4a, CD  6a, các cạnh còn lại đều bằng a 22. Tính
bán kính của mặt cầu ngoại tiếp tứ diện ABCD .
A.

5a
2

B. 3a

C.

a 85
3


D.

a 79
3

Trang 4 – Website chuyên đề thi thử file word có lời giải


Đặt mua trọn bộ file word soạn tin “Tôi muốn mua đề Toán 2018 file word” gửi đến
0982.563.365 hoặc vào link sau để đăng ký />Câu 24: Một người thợ có một khối đá hình trụ. Kẻ hai đường kính MN, PQ của hai đáy sao
cho MN  PQ . Người thợ đó cắt khối đá theo các mặt cắt đi qua 3 trong 4 điểm M, N, P, Q
để thu được khối đá có hình tứ diện MNPQ . Biết rằng MN  60 cm và thể tích khối tứ diện
MNPQ bằng 30dm 3 . Tìm thể tích của lượng đá bị cắt bỏ (làm tròn kết quả đến 1 chữ số thập
phân).
A. 101,3dm3

B. 141,3dm3

C. 121,3dm3

D. 111, 4dm3

Câu 25: Cho hình nón đỉnh S. Xét hình chóp S.ABC có đáy ABC là tam giác ngoại tiếp
đường tròn đáy của hình nón và có AB  BC  10a, AC  12a góc tạo bởi hai mặt phẳng

 SAB  và  ABC  bằng
A. 9a 3

45 . Tính thể tích khối nón đã cho.


B. 27 a 3

C. 3a 3

D. 12a 3

Câu 26: Cho z là một số phức tùy ý khác 0. Khẳng định nào sau đây sai?
A.

z
là số ảo
z

B. z  z là số ảo

C. z.z là số thực

Câu 27: Biết rằng phương trình z 2  bz  c  0  b, c 

D. z  z là số thực

 có một nghiệm phức là

z1  1  2i .

Khi đó:
A. b  c  2

B. b  c  3


C. b  c  0

D. b  c  7

Câu 28: Gọi M và N lấn lượt là điểm biểu diễn của các số phức z1 , z 2 như hình vẽ bên. Khi
đó khẳng định nào sau đây sai?

A. z1  z 2  MN

B. z1  OM

C. z 2  ON

Câu 29: Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1 :

D. z1  z 2  MN
x 1 y  2 z  3


1
2
1

 x  1  kt

. Tìm giá trị của k để d1 cắt d 2 .
và d 2 :  y  t
 z  1  2t



A. k  0

B. k  1

C. k  1

D. k  

1
2

Trang 5 – Website chuyên đề thi thử file word có lời giải


Đặt mua trọn bộ file word soạn tin “Tôi muốn mua đề Toán 2018 file word” gửi đến
0982.563.365 hoặc vào link sau để đăng ký />
Câu 30: Trong không gian vỏi hệ tọa độ Oxỵz, cho đường thẳng  :

x 1 y  2 z

 . Tìm
2
1
2

tọa độ điểm H là hình chiếu vuông góc của điểm A  2; 3;1 lên 
A. H  3; 1; 2 

B. H  1; 2;0 


C. H  3; 4; 4 

D. H 1; 3; 2 

Câu 31: Trong không gian với hệ tọa độ Oxyz, tìm tất cả các giá trị của tham số m để
phương trình x 2  y2  z 2  4x  2my  6z  13  0 là phương trình của mặt cầu.
A. m  0

B. m  0

C. m 

D. m  0

Câu 32: Trong không gian với hệ tọa độ Oxỵz, cho hai mặt phẳng  P  : 2x  ay  3z  5  0
và  Q  : 4x  y   a  4  z  l  0. Tìm a để  P  và  Q  vuông góc với nhau.
A. a  1

B. a  0

C. a  1

D. a 

1
3

Câu 33: Trong không gian với hệ tọa độ Oxyz, cho điểm A  1; 2; 3 và mặt
phẳng  P  : 2x  2y  z  9  0 . Đường thẳng d đi qua A và có véctơ chỉ phương u   3; 4; 4 
cắt  P  tại B. Điểm M thay đổi trong  P  sao cho M luôn nhìn đoạn AB dưới góc 90 . Khi

độ dài MB lớn nhất, đường thẳng MB đi qua điểm nào trong các điểm sau?
A. H  2; 1;3

B. I  1; 2;3

C. K  3; 0;15 

D. J  3; 2;7 

Câu 34: Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng  P  : 2x  2y  z  6  0. Tìm
tọa độ điểm M thuộc tia Oz sao cho khoảng cách từ M đến  P  bằng 3 .
A. M  0;0; 21

B. M  0; 0;3

C. M  0;0;3 , M  0;0; 15 

D. M  0; 0; 15 

Câu 35: Cho hình chóp S.ABC có SC  2a và SC   ABC  . Đáy ABC là tam giác vuông
cân tại B và có AB  a l2. Mặt phẳng    đi qua C và vuông góc với SA,    cắt SA, SB
lẩn lượt tại D, E. Tính thể tích khối chóp S.CDE. [§­îc ph¸t hµnh bëi Dethithpt.com]

4a 3
A.
9

2a 3
B.
3


2a 3
C.
9

a3
D.
3

Trang 6 – Website chuyên đề thi thử file word có lời giải


Đặt mua trọn bộ file word soạn tin “Tôi muốn mua đề Toán 2018 file word” gửi đến
0982.563.365 hoặc vào link sau để đăng ký />Câu 36: Cho hình lăng trụ tam giác đều ABC.A’B’C’ có A A '  a 3. Gọi I là giao điểm của
AB’ và A’B. Cho biết khoảng cách từ I đến mặt phẳng  BCC ' B '  bằng

a 3
. Tính thể tích
2

khối lăng trụ ABC.A’B’C’ .
A. 3a 3

B. a 3

C.

3a 3
4


D.

a3
4

2

Câu 37: Cho I   x 4  x 2 dx và t  4  x 2 .Khẳng định nào sau đây sai?
1

t2
B. I 
2

A. I  3

3

3

C. I 

t3
D. I 
3

 t dt
2

0


0

3

0

Câu 38: Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, mặt bên SAD là tam giác
đểu cạnh 2a và nằm trong mặt phẳng vuông góc với mặt phẳng đáy. Tính thể tích khối chóp

S.ABCD biết rằng mặt phẳng  SBC  tạo với mặt phảng đáy một góc 30 .
A.

3a 3
2

B. 2 3a 3

C.

2 3a 3
3

Câu 39: Trong không gian với hệ tọa độ Oxyz , cho đường thẳng d :

D.

4 3a 3
3


x 1 y z  2
và hai


2
1
1

điểm A  1;3;1 , B  0; 2; 1 . Tìm tọa độ điểm C thuộc d sao cho diện tích của tam giác ABC
nhỏ nhất. [§­îc ph¸t hµnh bëi Dethithpt.com]
A. C  1; 0; 2 

B. C 1;1;1

C. C  3; 1;3

D. C  5; 2; 4 

Câu 40: Khẳng định nào sau đây là đúng?
A.

 tan xdx   ln cos x  C

x
x
C.  sin dx  2cos  C
2
2

B.  cot xdx   ln sin x  C

x
x
D.  cos dx  2sin  C
2
2

Câu 41: Cho các số thực x, y thỏa mãn x 2  2xy  3y2  4. Giá trị lớn nhất của biểu thức
P  log 2  x  y  là:
2

A. max P  3log 2 2

B. max P  log 2 12

C. max P  12

D. max P  16

Câu 42: Bạn A có một cốc thủy tinh hình trụ, đường kính trong lòng đáy cốc là 6cm , chiểu
cao trong lòng cốc là 10 cm đang đựng một lượng nước. Bạn A nghiêng cốc nước, vừa lúc khi
Trang 7 – Website chuyên đề thi thử file word có lời giải


Đặt mua trọn bộ file word soạn tin “Tôi muốn mua đề Toán 2018 file word” gửi đến
0982.563.365 hoặc vào link sau để đăng ký />nước chạm miệng cốc thì ở đáy mực nước trùng với đường kính đáy. Tính thể tích lượng
nước trong cốc. [§­îc ph¸t hµnh bëi Dethithpt.com]

B. 15 cm3

A. 60cm3


D. 60 cm3

C. 70cm3

Câu 43: Thể tích khối tròn xoay thu được khi quay hình phẳng giới hạn bởi các đường

y  2  x, y  x, y  0 xung quanh trục Ox được tính theo công thức nào sau đây?
1

2

0

1

A. V    2  x  dx   x 2dx
1

2

0

1

2

B. V    2  x  dx
0


C. V   xdx   2  xdx

1

2

0

1

D. V   x 2dx    2  x  dx

Câu 44: Cho đồ thị hàm số y  f  x  có đồ thị đạo hàm như hình vẽ. Số điểm cực trị của đồ
thị hàm số y  f  x 3  là:

A. 0

B. 1

C. 2

D. 3

Câu 45: Phương trình sin 2 3xcos2x+sin 2 x  0 có bao nhiêu nghiệm thuộc  0; 2017  .
A. 2016

B. 1003

C. 1284


Câu 46: Cho hàm số f  n   a n  1  b n  2  c n  3  n 

D. 1283
*

 với a, b, c là hằng số thỏa

mãn a  b  c  0. Khẳng định nào sau đây đúng?
A. lim f  n   1
x 

B. lim f  n   1
x 

C. lim f  n   0
x 

D. lim f  n   2
x 

Trang 8 – Website chuyên đề thi thử file word có lời giải


Đặt mua trọn bộ file word soạn tin “Tôi muốn mua đề Toán 2018 file word” gửi đến
0982.563.365 hoặc vào link sau để đăng ký />Câu 47: Cho tam giác ABC có độ dài các cạnh là a, b, c theo thứ tự lập thành một cấp số
cộng. Biết tan

A
C x
tan   x, y 

2
2 y

A. 4

 , giá trị

x  y là:

B. 1

C. 2

D. 3

Câu 48: Cho các số phức z, w khác 0 và thỏa mãn z  w  2 z  w . Phẩn thực của số phức
u

z
là:
w
1
4

A. a 

C. a 

B. a  1


1
8

D. a  

1
8

Câu 49: Từ các chữ số 0, 1, 2, 3, 4, 5, 6 có thể lập được bao nhiêu số tự nhiên có 5 chữ số
khác nhau và chia hết cho 15. [§­îc ph¸t hµnh bëi Dethithpt.com]
A. 222

B. 240

C. 200

D. 120

 x  1

Câu 50: Tổng các nghiệm của phương trình 1  log 2
dạng

a c
 b b  a, b, c 
b

A. 9

 . Giá trị


3

 log 2   x 3  3x 2  3x  có

a  b  c là:

B. 10

C. 11

D. 12

Đáp án
1-B

2-C

3-D

4-C

5-A

6-C

7-D

8-C


9-B

10-A

11-D

12-A

13-D

14-B

15-C

16-D

17-A

18-B

19-A

20-B

21-C

22-C

23-C


24-D

25-A

26-A

27-B

28-D

29-A

30-D

31-B

32-C

33-B

34-B

35-C

36-A

37-B

38-B


39-B

40-A

41-B

42-A

43-D

44-C

45-D

46-C

47-A

48-C

49-A

50-D

LỜI GIẢI CHI TIẾT
Câu 1: Đáp án B
Số phẩn tử không gian mẫu là   30!
Gọi A là biến cố “Hai học sinh A, B ngồi cạnh nhau”.
Chọn 1 bàn để xếp hai học sinh A, B có 15 cách.
Xếp A, B ngổi vào bàn được chọn có 2! cách.

Xếp 28 học sinh còn lại có 28! cách.
Trang 9 – Website chuyên đề thi thử file word có lời giải


Đặt mua trọn bộ file word soạn tin “Tôi muốn mua đề Toán 2018 file word” gửi đến
0982.563.365 hoặc vào link sau để đăng ký />
Vậy A  15.2.28!. Do đó P  A  

15.2.28! 1
 .
30!
29

Câu 2: Đáp án C
Hệ số của x 5 trong khai triển x 1  2x  là  2  .C54
5

4

Hệ số của x 5 trong khai triển x 2 1  3x 

10

3
là 33.C10

3
Vậy hệ số của x 5 trong khai triển x 1  2x   x 2 1  3x  là  2  .C54  33.C10
 3320
5


10

4

Câu 3: Đáp án D
Có vô số phép tịnh tiến theo véc tơ k2 với k  .
Câu 4: Đáp án C
y  ln  x 2  2x  1  x xác định và liên tục trên đoạn  2; 4  .

x
y' 

2

 2x  1 '

x  2x  1
2

1 

2  x  1

 x  1

2

1 


2  x 1 3  x

x 1
x 1

Ta có: y '  0  x  3, y  2   2, y  4   ln 9  4, y  3   ln 4  3  min y  2
 2;4

Chú ý: Có thể sử dụng chức năng table của MTCT.
Câu 5: Đáp án A
TXĐ: D 
Ta có: f  x  2   f  x  với mọi x 

nên hàm số này tuần hoàn.


Đặt t   s inx suy ra t   0;  do đó max f  x   max sin  t   sin    1
0  t 
2
x

Câu 6: Đáp án C
Hàm số đồng biến trên đoạn  a; b  thì max f  x   f  b  , min f  x   f  a 
xa;b 

x a;b 

Câu 7: Đáp án D
Trong một hình đa diện lồi, mỗi cạnh là cạnh chung của hai mặt.
Câu 8: Đáp án C

A sai vì hàm số chỉ đạt cực trị tại x  2 .
B sai vì trên  0; 2  hàm số đồng biến.
C đúng vì hàm số chỉ đạt cực trị tại x  2
D sai vì lim   nên hàm số không có giá trị lớn nhất.
x 

Trang 10 – Website chuyên đề thi thử file word có lời giải


Đặt mua trọn bộ file word soạn tin “Tôi muốn mua đề Toán 2018 file word” gửi đến
0982.563.365 hoặc vào link sau để đăng ký />Câu 9: Đáp án B
Ta có: y '  3x 2  4x  m.
 y '  0, x 

Hàm số đồng biến trên

4
  'y'  0  4  3m  0  m   .
3

Câu 10: Đáp án A
Ta có: u  x 2  du  2xdx,dv  cos xdx  v  sinx


Suy ra: I  x s inx  2 x sin xdx.
2


0


0

Câu 11: Đáp án D
TXĐ: D   ; 2    2;3   3;  
x  1
Xét pt x 2  4x  3  0  
.
x  3
x  x2  4
lim 2
   x  3 là tiệm cận đứng.
x 3 x  4x  3
4
1 1 2
x  x2  4
x
lim
 lim
0
x  x 2  4x  3
x 
 4 3 
x 1   2 
 x x 

x  x2  4
4
 lim
0
2

x  x  4x  3
x 
2
2
 x  4x  3 x  x  4
lim





 y  0 là tiệm cận ngang.

Câu 12: Đáp án A
Ta sử dụng kết quả  g  x  .de x  g  x  .e x   e x .d  g  x    g  x  .e x   e x .g '  x  dx
   g '  x   g  x   e x dx  g  x  e x .

Do đó ta có f  x    f '  x  dx    x  1 e x dx  x.e x .
a  1
  f  x  dx    x  1  1 e x dx   x  1 e x  
.
b  1

Do đó a  b  0.
Câu 13: Đáp án D
Ta có phương trình hoành độ giao điểm:
Trang 11 – Website chuyên đề thi thử file word có lời giải


Đặt mua trọn bộ file word soạn tin “Tôi muốn mua đề Toán 2018 file word” gửi đến

0982.563.365 hoặc vào link sau để đăng ký />x  0
2
x 3  3x 2  3x  1  x 2  x  1  x 3  4x 2  4x  0  x  x  2   0  
.
x  2

Câu 14: Đáp án B
Đồ thị hàm số y  f  x  có được bằng cách giữ nguyên đồ thị hàm số
y  f  x  ở trên trục hoành và lấy phần phía dưới trục hoành đối xứng qua

trục hoành. Đồ thị có được như hình vẽ bên. Số nghiệm của phương trình
f  x   m là số giao điểm của đồ thị hàm số y  f  x  và đường thẳng
y  m . [§­îc ph¸t hµnh bëi Dethithpt.com]

Khi đó, phương trình f  x   m có 2 nghiệm phân biệt khi và chỉ khi 0  m  1 và m  1 .
Câu 15: Đáp án C
Tại x  2 là điểm cực trị nên tiếp tuyến song song với trục hoành do đó hệ
số góc bằng 0 .
Câu 16: Đáp án D
OM là đường thẳng qua gốc tọa độ

 0;0  nên

có dạng

y  ax  a  0  .

Diện tích mảnh vườn cần tính là:
a


 a x 2 x3 
a3
a3 9
S    a x  x  dx  
   
  a  3.
2
3
6
6
2


0
0
a

2

Suy ra tọa độ điểm M  3;9  nên OM  32  92  3 10 .
Câu 17: Đáp án A
e

Với f  x   ln x và f  x   x  thì điều kiện x  0 nên loại C và D.
x

3
Với f  x     thì f  x  là hàm nghịch biến nên loại B.

Câu 18: Đáp án B

Ta có: log 2  x 2 y   log 2 x 2  log 2 y  2log 2 x  log 2 y.
Câu 19: Đáp án A
Điều kiện: x  1  0  x  1.
Trang 12 – Website chuyên đề thi thử file word có lời giải


Đặt mua trọn bộ file word soạn tin “Tôi muốn mua đề Toán 2018 file word” gửi đến
0982.563.365 hoặc vào link sau để đăng ký />
log 2  x  1  log 1 x  1  0  log 2  x  1  log 2 x  1  0  log 2
2

x 1
0
x 1

 log 2 x  1  0  x  1  1  x  1  1  x  0

Kết hợp với điều kiện suy ra 1  x  0.
Câu 20: Đáp án B

1  a x 1
Phương trình biến đổi thành
 1  a  1  a 2 1  a 4   1  a x 1  1  a 8  x  7.
1 a
Câu 21: Đáp án C
Điều kiện: m  x  1  0
Với x  1 phương trình tương đương e 1  0 vô lí nên x  1 không là nghiệm.
Với x  1. Ta có: ex  m  x  1 
Xét hàm số: f  x  


ex
 m  f  x   g  m
x 1

x  1 e x  e x

xe x
ex
Ta
có:
f ' x  

.
2
2
x 1
 x  1
 x  1

Cho f '  x   0  x  0.
Bảng biến thiên:

x



f ' x 
f x

1


-

-

+



0



0





1

Dựa vào bảng biến thiên để phương trình có nghiệm duy nhất khi hàm số g  m  cắt f  x  tại
đúng một điểm  m  0  m  1.
Câu 22: Đáp án C
Ta có: Sn  13  23  33  ...  n3 .
2
121 2 n  n 1
Cho n  10 thấy S  1  2  3  ...  10  3025 
.10 
4

2
3

3

3

2

3

Trang 13 – Website chuyên đề thi thử file word có lời giải


Đặt mua trọn bộ file word soạn tin “Tôi muốn mua đề Toán 2018 file word” gửi đến
0982.563.365 hoặc vào link sau để đăng ký />Với n  2007 ta thấy đáp án C đúng. [§­îc ph¸t hµnh bëi Dethithpt.com]
Câu 23: Đáp án C
Gọi M, N lần lượt là trung điểm của AB và CD.
Ta có: AB  MD, AB  MC  AB   MCD 
Tương tự: CD  BN, CD  AN  CD   ANB
  MCD  ,  NAB  là mặt phẳng trung trực của AB và CD.

Gọi I là điểm thuộc MN.
Do I  MN  I   MCD   IA  IB
Do I  MN  I   NAB   IC  ID
Nếu I là tâm mặt cầu ngoại tiếp tứ diện ABCD thì ID  IB
Xét AMN vuông tại M: MD  AD2  AM2  3 2a
Xét MND vuông tại M: MN  MD 2  ND 2  3a
Đặt MI  x, NI  3a  x  0  x  3a 
Ta có: R 2  BI 2  x 2  4a 2

Mà R 2  ID2   3a  x   9a 2
2

 x 2  4a 2   3a  x   9a 2  x 
2

7a
a 85
R
3
3

Câu 24: Đáp án D
Ta dễ dàng chứng minh được  O ' MN  vuông góc với PQ.
1
1
Do đó thể tích khối tứ diện MNPQ là: VMNPQ  .SMNO .PQ  .O O '.MN.PQ
3
6
1
Trong đó d  MN, PQ   O O '  h  .602.h.1  30.103  h  50 cm.
6

Vậy

thể

tích

của


lượng

đá

bị

cắt

bỏ

bằng: [§­îc ph¸t hµnh bëi Dethithpt.com]

  60 
 R .h  30  3 .   .50  30  111, 4dm3.
10  2 
2

V  Vt  VMNPQ

2

Câu 25: Đáp án A
Trang 14 – Website chuyên đề thi thử file word có lời giải


Đặt mua trọn bộ file word soạn tin “Tôi muốn mua đề Toán 2018 file word” gửi đến
0982.563.365 hoặc vào link sau để đăng ký />
Nửa chu vi tam giác ABC:


10a  10a  12a
 16a
2

Diện tích tam giác ABC là:

S  p  p  a  p  b  p  c 
 16a 16a  10a 16a  10a 16a 12a   48a 2
Mà SABC  pr  r 

SABC 48a 2

 3a, với r là bán kính của đường
p
16a

tròn đáy nội tiếp tam giác ABC.
Lại có tan SIO 

SO
 SO  IO.tan 45  IO  3a
IO

1
1
2
Thể tích khối nón là: Vnon  SO..r 2  .3a.  3a   9a 3
3
3


Câu 26: Đáp án A
Đặt z   a  bi   a 2  b 2  0   z  a  bi.
z a  bi  a  bi 
a 2  b2
2ab
z
Ta có: 
 2

 2
i. Suy ra không là số ảo.
2
2
2
2
a b a b
z
z a  bi a  b
2

Câu 27: Đáp án B
Phương trình z 2  bz  c  0 có một nghiệm phức là z1  1  2i
3  b  c  0
b  2
2
 1  2i   b 1  2i   c  0  3  4i  b  2bi  c  0  

4  2b  0
c  5
 b  c  3.


Câu 28: Đáp án D
Ta có: z1  z 2  MN là khẳng định sai.
Vì giả sử: z1  a  bi, z 2  c  di;a, b, c, d 
 M  a; b  ; N  c, d   MN 

c  a   d  b 
2

Và z1  z 2   a  c    b  d  i  z1  z 2 

2

a  c  b  d 
2

2

 MN

Câu 29: Đáp án A
M  d1  M 1  m; 2  2m : 3  m 
Giả sử M  d1  d 2  
M  d 2 *

Trang 15 – Website chuyên đề thi thử file word có lời giải


Đặt mua trọn bộ file word soạn tin “Tôi muốn mua đề Toán 2018 file word” gửi đến
0982.563.365 hoặc vào link sau để đăng ký />1  m  1  kt 1


Mà M  d 2 *  2  2m  t  2 
.

3  m  1  2t  3

m  0
Từ (2) và (3)  
thay vào (1) được k  0 .
t  2

Câu 30: Đáp án D
Ta có H   nên H  1  2t; 2  t; 2t  .
Vì H là hình chiếu vuông góc của A lên đường thẳng  nên AH.u   0.
Vì AH   3  2t;1  t; 2t  1 , u    2; 1; 2  nên 2  2t  3  t  1  2  2t  1  0  t  1
Vậy H 1; 3;2 .
Câu 31: Đáp án B
Để phương trình x 2  y2  z 2  4x  2my  6z  13  0 là phương trình của mặt cầu thì
4  m 2  32  13  0  m 2  0  m  0 .

Câu 32: Đáp án C
Ta có: n  P    2;a;3 , n  Q   4; 1;0  a  4   .
Để  P  và  Q  vuông góc với nhau thì n P .n  Q  0  8  a  3a  12  0  a  1
Câu 33: Đáp án B

 x  1  3t

Phương trình đường thẳng d là:  y  2  4t , t 
 z  3  4t


B  d  B 1  3t; 2  4t; 3  4t 

Mà B   P   18t  18  0  t  1  B  2; 2;1
Trang 16 – Website chuyên đề thi thử file word có lời giải


Đặt mua trọn bộ file word soạn tin “Tôi muốn mua đề Toán 2018 file word” gửi đến
0982.563.365 hoặc vào link sau để đăng ký />
Do MAB vuông tại M  MB  AB2  MA2
Để MB lớn nhất =>MA nhỏ nhất [§­îc ph¸t hµnh bëi Dethithpt.com]
Gọi H là hình chiếu vuông góc của A lên mặt phẳng (P)
Xét AHM vuông tại H  AM  AH [§­îc ph¸t hµnh bëi Dethithpt.com]
Để MA nhỏ nhất  M  H  MB là giao tuyến của mặt phẳng  P  với mặt phẳng   
(    là mặt phẳng chứa d và vuông góc với mặt phẳng  P  )

n   n P , u d    4;5;2   u MB  n P , u    9 1;0;2 
 x  2  t

Vậy phương trình đường thẳng MB:  y  2
.Thấy ngay điểm I  1; 2;3 thỏa mãn.
z  1  2t


Câu 34: Đáp án B
Vì M thuộc tia Oz nên M  0; 0; z M  với z M  0 .
Vì khoảng cách từ M đến mặt phẳng  P  bằng 3 nên ta có

zM  6
3


z  3
3  M
.
 z M  15

Vì z M  0 nên M  0; 0;3 .
Câu 35: Đáp án
Ta có:

VS.CDE SD SE
SD SE

.
 VS.CDE 
. .VS.CAB
VS.CAB SA SB
SA SB

VS.CAB

1
1
1
1 2 2a 3
 .SC. .BA.BC  .2a. .2a 
3
2
3
2
3


Xét SAC ta có:

SC2  SD.SA 

SD SC2
4a 2
1



2
2
2
SA SA
4a  4a
2

Ta có: AB   SBC   AB  CE  CE   SAB   CE  SB
Tương tự xét SBC ta có:

SC2  SE.SB 

SE SC2
4a 2
2
 2  2

2
SB SB

4a  2a
3

1 2 2a 3 2a 3
Vậy suy ra VS.CE F  . .

2 3 3
9
Trang 17 – Website chuyên đề thi thử file word có lời giải


Đặt mua trọn bộ file word soạn tin “Tôi muốn mua đề Toán 2018 file word” gửi đến
0982.563.365 hoặc vào link sau để đăng ký />Câu 36: Đáp án A
Gọi E là trung điểm BC, M là trung điểm của BE, M là trung điểm của AB.
Ta có IM / /  BCC ' B '  nên:
d  I,  BCC ' B'    d  M,  BCC ' B'    MN 

a 3
2

Gọi b là cạnh của tam giác đều ABC .Ta có: EA  2MN  a 3
Mà AE 

b 3
 a 3  b  2a
2

Diện tích mặt đáy là: SABC

 2a 



2

3

4

 a2 3

Thể tích hình lăng trụ là: V  SABC .A A '  a 2 3.a 3  3a 2 .
Câu 37: Đáp án B
Đặt t  4  x 2  t 2  4  x 2  2tdt  2xdx hay tdt   xdx.
Đổi cận: khi x  1  t  3; x  2  t  0.
0

3

3

t3
Khi đó I   t.   t  dt   t dt 
3
0
3



2


0

3 3
 3.
3

Câu 38: Đáp án B
Gọi I, J lần lượt là trung điểm của AD, BC  SI 

2a 3
 a 3 (SI là đường cao của tam
2

giác đều SAD) [§­îc ph¸t hµnh bëi Dethithpt.com]
 SAD    ABCD 
 SI   ABCD 
Ta có: 
SI  AD,SI   SAD 

=> JI là hình chiếu vuông góc của JC lên  ABCD 
Khi đó

SBC ,  ABCD   JS, JI  SJI  30

SJI vuông tại I
tan SJI 

SI
SI
a 3

 IJ 

 3a
IJ
tan SJI tan 30

1
1
1
VS.ABCD  .SABCD .SI  .AD.I J.SI  .2a.3a.a 3  2a 3 3 (đơn vị thể tích).
3
3
3

Trang 18 – Website chuyên đề thi thử file word có lời giải


Đặt mua trọn bộ file word soạn tin “Tôi muốn mua đề Toán 2018 file word” gửi đến
0982.563.365 hoặc vào link sau để đăng ký />
Câu 39: Đáp án B
Ta có: C  d  C  1  2t;  t; 2  t 
AB  1; 1; 2  , AC   2t;  t  3; t  1
 AB, AC    3t  7;3t  1; 3t  3


1
1
1
2
2

2
SABC   AB, AC  
 3t  7    3t  1   3t  3  27t 2  54t  59
2
2
2

Ta có: SABC 

1
27t 2  54t  59  2 2  27t 2  54t  59  0  t  1  C 1;1;1
2

Câu 40: Đáp án A
Ta kiểm tra lần lượt từng đáp án, nếu gặp đáp án đúng thì dừng.
s inx

1

 tan xdx   cos x dx   cos x d  cos x    ln cos x  C => đáp án A đúng.
cos x

1

 cotxdx   s inx dx   s inx d s inx   ln sin x  C => đáp án B sai.
x

x x

x


x x

x

 sin 2 dx  2 sin 2 d  2   2cos 2  C => đáp án C sai.
x

 cos 2 dx  2 cos 2 d  2   2sin 2  C => đáp án D sai.
Câu 41: Đáp án B
Từ x 2  2xy  3y2  4. Suy ra:
Nếu y  0 thì x  2  P  2
Nếu y  0. Ta có:
2

P  log 2  x  y   4.  x  y 
2

Đặt t 

x
,t
y

 2P 

2

x 
4   1

2
P
4  x  y
4.2
y 
 4.2P 
 2

2
2
4
x  2xy  3y
x
x
 y 2 y 3
 

4t 2  8t  4
 2P  t 2  2t  3  4t 2  8t  4
2
t  2t  3

  2P  4  t 2   2P  8 t  3.2P  4  0 . ( Xét P  4 )

Để phương trình có nghiệm:  '  0   2P  4   2P  4 3.2p  4  0
2

Trang 19 – Website chuyên đề thi thử file word có lời giải



Đặt mua trọn bộ file word soạn tin “Tôi muốn mua đề Toán 2018 file word” gửi đến
0982.563.365 hoặc vào link sau để đăng ký />
 2.  2P   24.2P  0  0  2P  12  P  log 2 12.
2

Vậy giá trị lớn nhất của P là log 2 12.
Câu 42: Đáp án A
Xét thiết diện cắt cốc thủy tinh vuông góc với đường kính tại vị trí bất kì
có (tam giác màu đen): [§­îc ph¸t hµnh bëi Dethithpt.com]
S x  

1
1
R 2  x 2 . R 2  x 2 .tan   S  x    R 2  x 2  tan 
2
2
R

1
2
Thể tích hình cái nêm là: V  2. tan    R 2  x 2  dx  R 3 tan 
2
3
0
Thể tích khối nước tạo thành khi ngyên cốc có hình dạng cái nêm nên
Vkn 

2 3
2
h

R tan   Vkn  R 3 .  60 cm3 .
3
3
R

Câu 43: Đáp án D
Gọi H1 là hình phẳng giới hạn bởi các đường y  x, y  0, x  1  Thể tích
1

khi quay hình H1 quanh trục Ox là: V1   x 2dx
0

Gọi H 2 là hình phẳng giới hạn bởi các đường y  2  x, y  0, x  1  Thể
2

tích khi quay hình H 2 quanh trục Ox là: V2    2  x  dx
1

1

2

V  V1  V2   x dx    2  x  dx
2

0

1

Câu 44: Đáp án C

x  0

Ta có: y '  3x 2 f '  x 3   0   x  1 .
x  3 4


x3  4
x  3 4
Dựa vào đồ thị đạo hàm ta thấy f '  x 3   0   3

.
x

0
x

0







Do đó khi vẽ bảng biến thiên của y  f  x 3  chỉ có 2 điểm x  0, x  3 4 làm đạo hàm của
nó đổi dấu nên có 2 điểm cực trị.
Câu 45: Đáp án D
Trang 20 – Website chuyên đề thi thử file word có lời giải



Đặt mua trọn bộ file word soạn tin “Tôi muốn mua đề Toán 2018 file word” gửi đến
0982.563.365 hoặc vào link sau để đăng ký />Ta có: sin 3x  3sin x  4sin 3 x   3  4sin 2 x  s inx  1  2cos2x  s inx do đó phương trình
 1  2cos2x  sin 2 xcos2x+sin 2 x  0  sin 2 x 1  2cos2x  cos2x  1  0


2

2

  4cos3 2x  4cos 2 2x  cos2x  1 sin 2 x  0

sin x  0

 1  cos2x  1  4cos 2 x  sin 2 x  0  
xk
2
cos2x  1





2
2.2017
k   0; 2017   0  k  2017   k 
 0.636  k  1284
2
2




do

1283 nghiệm.
Câu 46: Đáp án C
Ta có: a  b  c  0  a  b  c suy ra

f n  b



 

n  2  n 1  c



n 3  n 2 

b
2c

.
n  2  n 1
n  3  n 1

b
2c



Do đó: lim f  n   lim 

0
n  3  n 1 
 n  2  n 1

Câu 47: Đáp án A
Ta có:

a  c  2b  sin A  sin C  2sin B
AC
AC
B
B
AC
AC
cos
 4sin .cos  4sin
.cos
2
2
2
2
2
2
AC
AC
A
C
A

C
A
C
A
C
 cos
 2cos
 cos cos  sin sin  2cos cos  2sin sin
2
2
2
2
2
2
2
2
2
2
A
C
A
C
A
C
A
C 1
 3sin sin  cos cos  3 tan tan  1  tan tan 
2
2
2

2
2
2
2
2 3
 2sin

Câu 48: Đáp án C

 z 1
1

w 2

u 
Ta có: z  w  2 z  w  
2  *

 z  w  1  u 1  1

 w
1
 2
2
a  b  4
Giả sử u  a  bi,  a, b   . Khi đó *  
** .
2
2
 a  1  b  1



Từ **  2a  1  1 

1
1
a .
4
8

Trang 21 – Website chuyên đề thi thử file word có lời giải

đó




Đặt mua trọn bộ file word soạn tin “Tôi muốn mua đề Toán 2018 file word” gửi đến
0982.563.365 hoặc vào link sau để đăng ký />Câu 49: Đáp án A
Gọi số cần tìm là abcde . Số mà chia hết cho 15 thì phải chia hết cho 3 và 5 .
Trường hợp 1. Số cần tìm có dạng abcd0 , để chia hết cho 3 thì a, b, c, d phải thuộc các tập
sau A1  1, 2,3, 6 , A 2  1, 2, 4,5 A 3  1,3,5, 6 A 4  2,3, 4, 6 , A 5  3, 4,5, 6 . Do đó trong
trường hợp này có 5.4!  120 số. [§­îc ph¸t hµnh bëi Dethithpt.com]
Trường hợp 2. Số cần tìm có dạng abcd5 , để chia hết 3 thì a, b, c, d , e phải thuộc các tập
sau B1  0,1, 2, 4,5  , B2  0,1,3,5, 6 , B3  0,3, 4,5, 6 , B 4  1, 2,3, 4,5 , B5  1, 2, 4,5, 6
Nếu a, b, c,d thuộc B1 , B2 , B3 , thì có 3.3.3.2  54 số
a, b, c, d thuộc B4 , B5 thì có 2.4!  48 .
Tổng lại có 120  54  48  222 số.
Câu 50: Đáp án D
Phương trình biến đổi thành:

2

 x  1

3

  x 3  3x 2  3x  4  x 3  3x 2  3x  1  x 6  9x 4  9x 2  6x 5  6x 4  18x 3

 x 6  6x 5  3x 4  14x 3  3x 2  12x  4  0
2

2


1
5 
1
5
 x  2  2 2 x  2  2 2  x  
  x  
  0
2
2
2
2

 









x  2  2 2

1
5

x  2  2 2
x   2  2

(thử lại)  

1
5
1
5
x 



2 2
x  2  2

 x  2  2 2

Trang 22 – Website chuyên đề thi thử file word có lời giải




×