Tải bản đầy đủ (.pdf) (1,033 trang)

+DIgital signal processing principles algoristhms and applicatin 3rd by proakis

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (25.1 MB, 1,033 trang )

77un/ Edition

DIGITAL
SIGNAL
PROCESSING
Principles, Algorithms, m l Applications

J o h n G. Proakis
Dimitris G. M anolakis


Digital Signal
Processing
Principles, Algorithms, and Applications
Third E dition

John G. Proakis
Northeastern U niversity

Dimitris G. Manolakis
Boston C ollege

PRENTICE-HALL INTERNATIONAL, INC.


This edition may be sold only in those countries to which it is consigned by Prentice-Hall International.
It is not to be reexported and it is not for sale in the U .S.A ., Mexico, or Canada.
© 1996 by Prentice-Hall, Inc.
Simon & Schuster/A Viacom Company
U pper Saddle River, New Jersey 07458


All rights reserved. No part of this book may be
reproduced, in any form or by any means,
without permission in writing from the publisher.

The author and publisher of this book have used their best efforts in preparing this book. These
efforts include the development, research, and testing of the theories and programs to determine their
effectiveness. The author and publisher make no warranty of any kind, expressed or implied, with
regard to these programs or the documentation contained in this book. The author and publisher shall
not be liable in any event for incidental or consequential damages in connection with, or arising out
of. the furnishing, performance, or use of these programs.

Printed in the United States of America
10

9

8

7

6

5

ISBN 0-13-3TM33fl-cl

Prentice-Hall International (U K ) Limited. L ondon
Prentice-Hall of Australia Pty. Limited, Sydney
Prentice-Hall Canada, Inc., Toronto
Prentice-Hall Hispanoamericana. S.A., M exico

Prentice-Hall of India Private Limited, N ew D elhi
Prentice-Hall of Japan, Inc., T okyo
Simon & Schuster Asia Pie, Ltd., Singapore
Editora Prentice-Hall do Brasil, Ltda., R io de Janeiro
Prentice-Hall, Inc, Upper Saddle River, N ew Jersey


Contents

PREFACE

xiii
1

1 INTRODUCTION
1.1

S ignals, S ystem s, and S ignal P ro cessin g 2
1.1.1
Basic Elements of a Digital Signal Processing System. 4
1.1.2 A dvantages of Digital over Analog Signal Processing, 5

1.2

C lassificatio n o f Signals 6
1.2.1
Multichannel and Multidimensional Signals. 7
1.2.2 Continuous-Time Versus Discrete-Time Signals. 8
1.2.3 Continuous-Valued Versus Discrete-Valued Signals. 10
1.2.4 Determ inistic Versus Random Signals, 11


1.3

T h e C o n c e p t o f F re q u e n c y in C o n tin u o u s -T im e an d
D isc re te -T im e S ignals 14
1.3.1
Continuous-Time Sinusoidal Signals, 14
1.3.2 Discrete-Time Sinusoidal Signals. 16
1.3.3 Harmonically Related Complex Exponentials, 19

1.4

A n a lo g -to -D ig ita l an d D ig ita l-to -A n a lo g C o n v e rs io n 21
1.4.1
Sampling of Analog Signals, 23
1.4.2 The Sampling Theorem , 29
1.4.3 Q uantization of Continuous-Am plitude Signals, 33
1.4.4 Quantization of Sinusoidal Signals, 36
1.4.5 Coding of Quantized Samples, 38
1.4.6 Digital-to-Analog Conversion, 38
1.4.7 Analysis of Digital Signals and Systems Versus Discrete-Time
Signals and Systems, 39
S u m m a ry a n d R e fe re n c e s

Problems

39

40
iii



iv

2

Contents

DISCRETE-TIME SIGNALS AND SYSTEMS
2.1

D isc rete-T im e S ignals 43
2.1.1 Some Elem entary Discrete-Time Signals, 45
2.1.2 Classification of Discrete-Time Signals, 47
2.1.3 Simple Manipulations of Discrete-Time Signals, 52

2.2

D isc re te -T im e S ystem s 56
2.2.1
Input-O utput Description of Systems, 56
2.2.2 Block Diagram Representation of Discrete-Time Systems, 59
2.2.3 Classification of Discrete-Time Systems, 62
2.2.4 Interconnection of Discrete-Tim e Systems, 70

2.3

A n alysis o f D isc re te -T im e L in e a r T im e -In v a ria n t S ystem s 72
2.3.1 Techniques for the Analysis of Linear Systems, 72
2.3.2 Resolution of a Discrete-Time Signal into Impulses, 74

2.3.3 Response of LTI Systems to A rbitrary Inputs: The Convolution
Sum, 75
2.3.4 Properties of Convolution and the Interconnection of LTI
Systems, 82
2.3.5 Causal Linear Tim e-Invariant Systems. 86
2.3.6 Stability of Linear Tim e-Invariant Systems, 87
2.3.7 Systems with Fim te-D uration and Infinite-Duration Impulse
Response. 90

2.4

D isc rete-T im e System s D e s c rib e d by D iffe re n c e E q u a tio n s 91
2.4.1
Recursive and Nonrecursive Discrete-Tim e Systems, 92
2.4.2 Linear Time-Invariant Systems Characterized by
Constant-Coefficient Difference Equations, 95
2.4.3 Solution of Linear Constant-Coefficient Difference Equations. 100
2.4.4 The Impulse Response of a Linear Tim e-Invariant Recursive
System, 108

2.5

Im p le m e n ta tio n o f D isc re te -T im e S ystem s 111
2.5.1
Structures for the Realization of Linear Tim e-Invariant
Systems, 111
2.5.2 Recursive and Nonrecursive Realizations of FIR Systems, 116

2.6


C o rre la tio n of D isc re te -T im e S ignals 118
2.6.1
Crosscorrelation and A utocorrelation Sequences, 120
2.6.2 Properties of the A utocorrelation and Crosscorrelation
Sequences, 122
2.6.3 Correlation of Periodic Sequences, 124
2.6.4 Com putation of Correlation Sequences, 130
2.6.5 Input-O utput Correlation Sequences, 131

2.7

S u m m ary a n d R e fe re n c e s

Problems

135

134

43


Contents

3

THE Z-TRANSFORM AND ITS APPLICATION TO THE ANALYSIS
OF LTI SYSTEMS
3.1


T h e r-T ra n sfo rm
151
3.1.1
The Direct ^-Transform. 152
3.1.2 The inverse : -Transform, 160

3.2

P ro p e rtie s o f th e ; -T ra n sfo rm

3.3

R a tio n a l c-T ran sfo rm s 172
3.3.1
Poles and Zeros, 172
3.3.2 Pole Location and Time-Domain Behavior for Causal Signals. 178
3.3.3 The System Function of a Linear Tim e-Invariant System. 181

3.4

In v e rs io n o f th e ^ -T ra n sfo rm 184
3.4.1
The Inverse ; -Transform by Contour Integration. 184
3.4.2 The Inverse ;-Transform by Power Series Expansion. 186
3.4.3 The Inverse c-Transform by Partial-Fraction Expansion. 188
3.4.4
Decomposition of Rational c-Transforms. 195

3.5


T h e O n e -sid e d ^ -T ra n sfo rm
197
3.5.1
Definition and Properties, 197
3.5.2
Solution of Difference Equations. 201

3.6

A n aly sis o f L in e a r T im e -In v a ria n t S ystem s in th e --D o m a in
3.6.1
Response of Systems with Rational System Functions. 203
3.6.2 Response of P ole-Z ero Systems with Nonzero Initial
Conditions. 204
3.6.3 Transient and Steady-State Responses, 206
3.6.4 Causality and Stability. 208
3.6.5 P ole-Z ero Cancellations. 210
3.6.6 M ultiple-Order Poles and Stability. 211
3.6.7 The Schur-C ohn Stability Test, 213
3.6.8 Stability of Second-Order Systems. 215

3.7

S u m m ary an d R e fe re n c e s
P ro b le m s

4

151


161

203

219

220

FREQUENCY ANALYSIS OF SIGNALS AND SYSTEMS
4.1

F re q u e n c y A n aly sis o f C o n tin u o u s-T im e Signals 230
4.1.1 The Fourier Series for Continuous-Time Periodic Signals. 232
4.1.2 Power Density Spectrum of Periodic Signals. 235
4.1.3 The Fourier Transform for Continuous-Time Aperiodic
Signals, 240
4.1.4 Energy Density Spectrum of Aperiodic Signals. 243

4.2

F re q u e n c y A n aly sis o f D isc re te -T im e Signals 247
4.2.1 The Fourier Series for Discrete-Time Periodic Signals, 247

230


Contents

V)


4.2.2
4.2.3
4.2.4
4.2.5
4.2.6
4.2.7
4.2.8

Power Density Spectrum of Periodic Signals. 250
The Fourier Transform of Discrete-Time Aperiodic Signals. 253
Convergence of the Fourier Transform. 256
Energy Density Spectrum of Aperiodic Signals, 260
Relationship of the Fourier Transform to the i-Transform , 264
The Cepstrum, 265
The Fourier Transform of Signals with Poles on the Unit
Circle, 267
4.2.9 The Sampling Theorem Revisited, 269
4.2.10 Frequency-Domain Classification of Signals: The Concept of
Bandwidth, 279
4.2.11 The Frequency Ranges of Some N atural Signals. 282
4.2.12 Physical and M athematical Dualities. 282
4.3

P ro p e rtie s of th e F o u rie r T ra n s fo rm fo r D isc re te -T im e
S ignals 286
4.3.1
Symmetry Properties of the Fourier Transform, 287
4.3.2 Fourier Transform Theorems and Properties, 294

4.4


F re q u e n c y -D o m a in C h a ra c te ristic s of L in e a r T im e -In v a ria n t
S ystem s 305
4.4.1
Response to Complex Exponential and Sinusoidal Signals: The
Frequency Response Function. 306
44.2
Steady-State and Transient Response to Sinusoidal Input
Signals. 314
4.4.3 Steady-State Response to Periodic Input Signals, 315
4.4.4 Response to Aperiodic Input Signals. 316
4.4.5 Relationships Between the System Function and the Frequency
Response Function. 319
4.4.6 Com putation of the Frequency Response Function. 321
4.4.7
Input-O utput Correlation Functions and Spectra, 325
4.4.8 Correlation Functions and Power Spectra for Random Input
Signals. 327

4.5

L in e a r T im e -In v a ria n t S ystem s as F re q u e n c y -S e le c tiv e
F ilters 330
Ideal Filter Characteristics, 331
4.5.1
4.5.2 Lowpass, Highpass, and Bandpass Filters, 333
4,5.3 Digital Resonators, 340
4.5.4
Notch Filters, 343
4.5.5

Comb Filters. 345
4.5.6 All-Pass Filters. 350
4.5.7
Digital Sinusoidal Oscillators, 352

4.6

In v e rse S y stem s an d D e c o n v o lu tio n 355
4.6.1
Invertibility of Linear Tim e-Invariant Systems, 356
4.6.2 Minimum-Phase. Maximum-Phase, and Mixed-Phase Systems. 359
4.6.3 System Identification and Deconvolution, 363
4.6.4 Hom om orphic Deconvolution. 365


vii

Contents

4.7

S u m m ary a n d R e fe re n c e s
P ro b le m s

5

368

THE DISCRETE FOURIER TRANSFORM: ITS PROPERTIES AND
APPLICATIONS

5.1

F re q u e n c y D o m a in Sam pling: T h e D isc re te F o u rie r
T ra n s fo rm 394
5.1.1
Frequency-Dom ain Sampling and Reconstruction of
Discrete-Time Signals. 394
5.1.2 The Discrete Fourier Transform (DFT). 399
5.1.3 The D FT as a Linear Transform ation. 403
5.1.4 Relationship of the DFT to O ther Transforms, 407

5.2

P ro p e rtie s o f th e D F T 409
5.2.1
Periodicity. Linearity, and Symmetry Properties, 410
5.2.2
Multiplication of Two DFTs and Circular Convolution. 415
5.2.3
Additional DFT Properties, 421

5.3

L in e a r F ilte rin g M e th o d s B ased on th e D F T
5.3.1
Use of the DFT in Linear Filtering. 426
5.3.2 Filtering of Long Data Sequences. 430

5.4


F re q u e n c y A n aly sis o f S ignals U sing th e D F T

5.5

S u m m ary an d R e fe re n c e s
P ro b le m s

6

367

394

425

433

440

440

EFFICIENT COMPUTATION OF THE DFT: FAST FOURIER
TRANSFORM ALGORITHMS

448

6.1

E fficien t C o m p u ta tio n of th e D F T : F F T A lg o rith m s 448
6.1.1

Direct Com putation of the DFT, 449
6.1.2 D ivide-and-Conquer Approach to Com putation of the DFT. 450
6.1.3 Radix-2 FFT Algorithms. 456
6.1.4 Radix-4 FFT Algorithms. 465
6.1.5
Split-Radix FFT Algorithms, 470
6.1.6 Im plem entation of FFT Algorithms. 473

6.2

A p p lic a tio n s o f F F T A lg o rith m s 475
6.2.1
Efficient Com putation of the D FT of Two Real Sequences. 475
6.2.2 Efficient Com putation of the D FT of a Z N -Point Real
Sequence, 476
6.2.3 Use of the FFT Algorithm in Linear Filtering and Correlation, 477

6.3

A L in e a r F ilte rin g A p p ro a c h to C o m p u ta tio n o f th e D F T
6.3.1 The Goertzel Algorithm, 480
6.3.2 The Chirp-z Transform Algorithm, 482

479


viii

Contents


6.4

Q u a n tiz a tio n E ffects in the C o m p u ta tio n o f th e D F T 486
6.4.1
Quantization Errors in the Direct Com putation of the DFT. 487
6.4.2 Quantization Errors in FFT Algorithms. 489

6.5

S u m m ary an d R e fe re n c e s
P ro b le m s

493

494

500

7 IMPLEMENTATION OF DISCRETE-TIME SYSTEMS
7.1

S tru c tu res fo r th e R e a liz a tio n o f D isc re te -T im e S ystem s

7.2

S tru c tu res fo r F IR System s 502
7.2.1
Direcl-Form Structure, 503
7.2.2
Cascade-Form Structures. 504

7.2.3
Frequency-Sampling S tructures1. 506
7.2.4 Lattice Structure. 511

500

S tru c tu re s for IIR S ystem s 519
7.3.1
Direct-Form Structures. 519
7.3.2 Signal Flow Graphs and Transposed Structures. 521
7.3.3 Cascade-Form Structures, 526
7.3.4 Parallel-Form Structures. 529
7.3.5
Lattice and Lattice-Ladder Structures for IIR Systems, 531
S tate-S p a ce System A n aly sis a n d S tru c tu re s 539
7.4.1
State-Space Descriptions of Systems Characterized by Difference
Equations. 540
7.4.2 Solution of the State-Space Equations. 543
7.4.3 Relationships Between Input-O utput and State-Space
Descriptions, 545
7.4.4 State-Space Analysis in the z-Domain, 550
7.4.5 Additional State-Space Structures. 554
R e p re s e n ta tio n of N u m b e rs 556
7.5.1 Fixed-Point Representation of Numbers. 557
7.5.2 Binary Floating-Point R epresentation of Numbers. 561
7.5.3 E rrors Resulting from R ounding and Truncation. 564
Q u a n tiz a tio n of F ilte r C o e fficien ts 569
7.6.1
Analysis of Sensitivity to Quantization of Filter Coefficients. 569

7.6.2 Q uantization of Coefficients in FIR Filters. 578
7.7

R o u n d -O ff E ffects in D igital F ilte rs 582
7.7.1 Limit-Cycle Oscillations in Recursive Systems. 583
7.7.2 Scaling to Prevent Overflow, 588
7.7.3 Statistical Characterization of Q uantization Effects in Fixed-Point
Realizations of Digital Filters. 590

7.8

S u m m ary a n d R e fe re n c e s
P ro b le m s

600

598


ix

Contents

8

8.1

G e n e ra l C o n s id e ra tio n s 614
8.1.1
Causality and Its Implications. 615

8.1.2 Characteristics of Practical Frequency-Selective Filters. 619

8.2

D e sig n o f F IR F ilters 620
8.2.1
Symmetric and Antisym m eiric FIR Filters, 620
8.2.2 Design of Linear-Phase FIR Filters Using Windows, 623
8.2.3 Design of Linear-Phase FIR Filters by the Frequency-Sampling
M ethod, 630
8.2.4 Design of Optimum Equiripple Linear-Phase FIR Filters, 637
8.2.5 Design of FIR Differentiators, 652
8.2.6 Design of Hilbert Transformers, 657
8.2.7 Comparison of Design M ethods for Linear-Phase FIR Filters, 662

8.3

D esig n o f I I R F ilters F ro m A n a lo g F iiters 666
8.3.1
IIR Filter Design by Approxim ation of Derivatives. 667
8.3.2 IIR Filter Design by Impulse Invariance. 671
8.3.3 IIR Filter Design by the Bilinear Transform ation, 676
8.3.4 The M atched-; Transform ation, 681
8.3.5
Characteristics of Commonly Used Analog Filters. 681
8.3.6 Some Examples of Digital Filter Designs Based on the Bilinear
Transform ation. 692

8.4


F re q u e n c y T ra n s fo rm a tio n s 692
8.4.1
Frequency Transform ations in the Analog Dom ain, 693
8.4.2 Frequency Transform ations in the Digital Dom ain. 698

8.5

D esig n o f D ig ital F ilters B a sed on L e a st-S q u a re s M e th o d
8.5.1
Pade Approxim ation Method, 701
8.5.2 Least-Squares Design Methods, 706
8.5.3 FIR Least-Squares Inverse (W iener) Filters, 711
8.5.4 Design of IIR Filters in the Frequency Dom ain, 719

8.6

S u m m ary an d R e fe re n c e s
P ro b le m s

9

614

DESIGN OF DIGITAL FILTERS

701

724

726


SAMPLING AND RECONSTRUCTION OF SIGNALS
9.1

S am p lin g o f B a n d p a ss S ignals 738
9.1.1
R epresentation of Bandpass Signals, 738
9.1.2 Sampling of Bandpass Signals, 742
9.1.3 Discrete-Time Processing of Continuous-Time Signals, 746

9.2

A n a lo g -to -D ig ita l C o n v e rsio n 748
9.2.1 Sample-and-Hold. 748
9.2.2 Quantization and Coding, 750
9.2.3 Analysis of Q uantization Errors, 753
9.2.4 Oversampling A /D Converters, 756

738


Contents

X

9.3

D ig ita l-to -A n a lo g C o n v e rsio n 763
9.3.1
Sample and Hold, 765

9.3.2 First-Order Hold. 768
9.3.3 Linear Interpolation with Delay, 771
9.3.4
Oversampling D/A Converters, 774

9.4

S u m m ary an d R e fe re n c e s
P ro b le m s

774

775

10 MULTIRATE DIGITAL SIGNAL PROCESSING

782

10.1

In tro d u c tio n

10.2

D e c im a tio n by a F a c to r D

10.3

In te rp o la tio n by a F a c to r /


10.4

S am p lin g R a te C o n v e rsio n by a R a tio n a l F a c to r I ID

10.5

F iite r D esig n an d Im p le m e n ta tio n for S a m p lin g -R ate
C o n v e rsio n 792
10.5.1 Direct-Form FIR Filter Structures, 793
10.5.2 Polyphase Filter Structures, 794
10.5.3 Time-Variant Filter Structures. 800

10.6

M u ltistag e Im p le m e n ta tio n o f S a m p lin g -R a te C o n v e rs io n

10.7

S a m p lin g -R a te C o n v e rsio n o f B a n d p a ss S ignals 810
10.7.1 Decim ation and Interpolation by Frequency Conversion, 812
10.7.2 M odulation-Free Method for Decimation and Interpolation. 814

10.8

S a m p lin g -R a te C o n v e rsio n by an A rb itra ry F a c to r 815
10.8.1 First-O rder Approxim ation, 816
10.8.2 Second-Order Approximation (Linear Interpolation). 819

10.9


A p p lic a tio n s o f M u ltira te Signal P ro c essin g 821
10.9.1 Design of Phase Shifters. 821
10.9.2 Interfacing of Digital Systems with Different Sampling Rates, 823
10.9.3 Im plem entation of Narrowband Lowpass Filters, 824
10.9.4 Im plem entation of Digital Filter Banks. 825
10.9.5 Subband Coding of Speech Signals, 831
10.9.6 Q uadrature M irror Filters. 833
10.9.7 Transmultiplexers. 841
10.9.8 Oversampling A/D and D /A Conversion, 843

10.10

S u m m ary an d R e fe re n c e s
P ro b le m s

846

783
784
787

844

790

806


xi


Contents

11 LINEAR PREDICTION AND OPTIMUM LINEAR FILTERS
11.1

In n o v a tio n s R e p re s e n ta tio n o f a S ta tio n a ry R a n d o m
P ro c e ss 852
11.1.1 Rational Power Spectra. 854
11.1.2 Relationships Between the Filter Param eters and the
Autocorrelation Sequence, 855

11.2

F o rw a rd an d B a ck w ard L in e a r P re d ictio n 857
11.2.1 Forw ard Linear Prediction, 857
11.2.2 Backward Linear Prediction, 860
11.2.3 The Optimum Reflection Coefficients for the Lattice Forward and
Backward Predictors, 863
11.2.4 Relationship of an A R Process to Linear Prediction. 864

11.3

S o lu tio n o f th e N o rm al E q u a tio n s 864
11.3.1 The Levinson-Durbin Algorithm. 865
11.3.2 The Schiir Algorithm. 868

11.4

P ro p e rtie s o f th e L in e a r P re d ic tio n -E rro r F ilte rs


11.5

A R L attice an d A R M A L a ttic e -L a d d e r F ilters 876
11.5.1 AR LaLtice Structure. 877
11.5.2 A RM A Processes and Lattice-Ladder Filters. 878

11.6

W ie n e r F ilters fo r F ilterin g a n d P re d ictio n 880
11.6.1 FIR W iener Filter, 881
11.6.2 Orthogonality Principle in Linear M ean-Square Estimation, 884
11.6.3 IIR W iener Filter. 885
11.6.4 Noncausal Wiener Filter. 889

11.7

S u m m ary an d R e fe re n c e s
P ro b le m s

852

873

890

892

12 POWER SPECTRUM ESTIMATION
12.1


E stim a tio n o f S p e c tra from F in ite -D u ra tio n O b s e rv a tio n s o f
Signals 896
12.1.1 Com putation of the Energy Density Spectrum. 897
12.1.2 Estim ation of the Autocorrelation and Power Spectrum of
Random Signals: The Periodogram. 902
12.1.3 The Use of the DFT in Power Spectrum Estim ation, 906

12.2

N o n p a ra m e tric M e th o d s fo r P o w er S p ectru m E s tim a tio n 908
12.2.1 The B artlett Method: Averaging Periodograms, 910
12.2.2 The Welch Method: Averaging Modified Periodogram s, 911
12.2.3 The Blackman and Tukey Method: Smoothing the
Periodogram, 913
12.2.4 Perform ance Characteristics of N onparam etric Power Spectrum
Estim ators, 916

896


xii

Contents

12.2.5 Com putational Requirem ents of Nonparam etric Power Spectrum
Estimates, 919
12.3

P a ra m e tric M e th o d s fo r P o w er S p e c tru m E stim a tio n 920
12.3.1 Relationships Between the A utocorrelation and the Model

Param eters, 923
12.3.2 The Y ule-W alker M ethod for the A R Model Param eters, 925
12.3.3 The Burg M ethod for the A R Model Param eters, 925
12.3.4 Unconstrained Least-Squares M ethod for the A R Model
Param eters, 929
12.3.5 Sequential Estim ation M ethods for the A R Model Param eters, 930
12.3.6 Selection of A R Model O rder, 931
12.3.7 MA Model for Power Spectrum Estim ation, 933
12.3.8 A R M A Model for Power Spectrum Estim ation, 934
12.3.9 Some Experim ental Results, 936

12.4

M in im u m V a rian ce S p ectral E stim a tio n

12.5

E ig e n an aly sis A lg o rith m s fo r S p e c tru m E stim a tio n 946
12.5.1 Pisarenko Harm onic Decom position M ethod, 948
12.5.2 Eigen-decomposition of the A utocorrelation Matrix for Sinusoids
in White Noise, 950
12.5.3 MUSIC Algorithm. 952
12.5.4 ESPR IT Algorithm, 953
12.5.5 O rder Selection Criteria. 955
12.5.6 Experim ental Results, 956

12.6

S u m m ary an d R e fe re n c e s
P ro b le m s


942

959

960

,

A RANDOM SIGNALS CORRELATION FUNCTIONS, AND POWER
SPECTRA

A1

B RANDOM NUMBER GENERATORS

B1

C TABLES OF TRANSITION COEFFICIENTS FOR THE DESIGN OF
LINEAR-PHASE FIR FILTERS
D LIST OF MATLAB FUNCTIONS
REFERENCES AND BIBLIOGRAPHY
INDEX

C1
D1
R1
11



Lj_ Preface

T h is b o o k w as d e v e lo p e d b ased on o u r te ach in g o f u n d e rg ra d u a te and g ra d u ­
a te level co u rse s in d ig ital signal p ro cessin g o v er th e p a s t several y ears. In this
b o o k w e p re se n t th e fu n d a m e n ta ls o f d isc re te -tim e signals, system s, and m o d e rn
d ig ital p ro cessin g a lg o rith m s an d a p p lic a tio n s fo r stu d e n ts in electrical e n g in e e r­
ing. c o m p u te r en g in eerin g , a n d c o m p u te r science. T h e b o o k is su itab le fo r e ith e r
a o n e -se m e s te r o r a tw o -se m e ste r u n d e rg ra d u a te level c o u rse in d isc re te system s
a n d dig ital signal p ro cessin g . It is also in te n d e d fo r use in a o n e -se m e s te r first-year
g ra d u a te -le v e l co u rse in digital signal processing.
It is a ssu m ed th a t th e s tu d e n t in electrical and c o m p u te r e n g in e e rin g has h ad
u n d e rg ra d u a te c o u rses in a d v an ce d calculus (in clu d in g o rd in a ry d iffe re n tia l e q u a ­
tio n s). an d lin ear sy stem s fo r c o n tin u o u s-tim e signals, including an in tro d u c tio n
to th e L ap lace tran sfo rm . A lth o u g h the F o u rie r se ries a n d F o u rie r tra n sfo rm s of
p e rio d ic an d a p e rio d ic signals a re d escrib ed in C h a p te r 4, we ex p ect th a t m any
s tu d e n ts m ay have h ad th is m a te ria l in a p rio r course.
A b ala n c e d co v erag e is p ro v id e d of b o th th e o ry an d p ra c tic a l ap p licatio n s.
A larg e n u m b e r o f w ell d esigned p ro b le m s a re p ro v id e d to h e lp th e s tu d e n t in
m a ste rin g th e su b ject m a tte r. A so lu tio n s m a n u a l is av ailab le fo r th e b en efit o f
th e in stru c to r an d can be o b ta in e d fro m th e p u b lish er.
T h e th ird e d itio n o f th e b o o k covers basically th e sa m e m a te ria l as th e se c­
o n d e d itio n , b u t is o rg an ized d ifferen tly . T h e m a jo r d ifferen ce is in th e o rd e r in
w hich th e D F T a n d F F T alg o rith m s are co v ered . B a sed o n su g g estio n s m a d e by
se v era l rev iew ers, w e n o w in tro d u c e th e D F T a n d d esc rib e its efficient c o m p u ta ­
tio n im m e d ia te ly fo llo w ing o u r tr e a tm e n t of F o u rie r analysis. T his re o rg a n iz a tio n
h as also allo w ed us to elim in a te re p e titio n o f so m e to p ics c o n cern in g th e D F T and
its ap p licatio n s.
In C h a p te r 1 w e d escrib e th e o p e ra tio n s in v o lv ed in th e an alo g -to -d ig ital
c o n v ersio n o f an alo g signals. T h e p ro cess o f sa m p lin g a sin u so id is d escrib ed in
so m e d e ta il an d th e p ro b le m o f aliasing is ex p lain ed . Signal q u a n tiz a tio n an d

d ig ita l-to -a n a lo g co n v ersio n a re also d escrib ed in g e n e ra l term s, b u t th e analysis
is p re s e n te d in su b s e q u e n t c h a p te rs.
C h a p te r 2 is d e v o te d e n tire ly to th e c h a ra c te riz a tio n a n d analysis o f lin e a r
tim e -in v a ria n t (sh ift-in v arian t) d isc re te -tim e system s a n d d isc re te -tim e signals in
th e tim e d o m a in . T h e co n v o lu tio n sum is d e riv e d a n d system s a re categ o rized
a c co rd in g to th e d u ra tio n of th e ir im p u lse re sp o n s e as a fin ite -d u ra tio n im p u lse
xiii


xiv

Preface

re sp o n se (F IR ) an d as an in fin ite -d u ra tio n im pulse re sp o n se ( II R ) . L in e a r tim ein v a ria n t sy stem s c h a ra c te riz e d by d ifferen ce e q u a tio n s are p r e s e n te d an d th e so ­
lu tio n o f d ifferen ce e q u a tio n s w ith initial c o n d itio n s is o b ta in e d . T h e c h a p te r
co n clu d es w ith a tre a tm e n t o f d isc re te -tim e c o rre la tio n .
T h e z -tra n sfo rm is in tro d u c e d in C h a p te r 3. B o th th e b ila te ra l an d th e
u n ila te ra l z -tra n sfo rm s are p re se n te d , a n d m e th o d s fo r d e te rm in in g th e in v erse
z -tra n sfo rm are d esc rib e d . U se o f the z -tra n s fo rm in the analysis o f lin ear tim ein v a ria n t sy stem s is illu stra te d , an d im p o rta n t p ro p e rtie s o f system s, su c h as c a u s a l­
ity a n d stab ility , a re re la te d to z-d o m ain ch aracteristics.
C h a p te r 4 tr e a ts th e analysis o f signals and sy stem s in th e fre q u e n c y d o m ain .
F o u rie r se ries an d th e F o u rie r tra n sfo rm a re p re s e n te d fo r b o th co n tin u o u s-tim e
an d d isc rete-tim e signals. L in e a r tim e -in v a ria n t (L T I) d isc rete sy stem s are c h a r­
a c terized in th e fre q u e n c y d o m a in by th e ir freq u e n c y resp o n se fu n c tio n an d th e ir
re sp o n se to p e rio d ic an d a p e rio d ic signals is d e te rm in e d . A n u m b e r of im p o rta n t
ty p es o f d isc re te -tim e system s are d esc rib e d , in clu d in g re s o n a to rs , n o tc h filters,
co m b filters, all-p ass filters, a n d o scillato rs. T h e desig n of a n u m b e r of sim ple
F IR a n d IIR filters is also co n sid ered . In a d d itio n , th e stu d e n t is in tro d u c e d to
th e co n c e p ts o f m in im u m -p h a se , m ix ed -p h ase, an d m a x im u m -p h a se system s an d
to th e p ro b le m o f d e c o n v o lu tio n .

T h e D F T . its p ro p e rtie s an d its a p p licatio n s, a re th e topics c o v e re d in C h a p ­
te r 5. T w o m e th o d s a re d e sc rib e d fo r using th e D F T to p e rfo rm lin e a r filtering.
T h e use o f th e D F T to p e rfo rm fre q u e n c y analysis o f signals is also d escrib ed .
C h a p te r 6 co v ers th e efficient c o m p u ta tio n o f th e D F T . In c lu d e d in this c h a p ­
te r are d e sc rip tio n s o f radix-2, ra d ix -4, a n d sp lit-ra d ix fast F o u rie r tra n sfo rm (F F T )
alg o rith m s, a n d a p p lic a tio n s o f th e F F T a lg o rith m s to th e c o m p u ta tio n o f c o n v o ­
lu tio n a n d c o rre la tio n . T h e G o e rtz e l alg o rith m a n d the ch irp -z tra n sfo rm are
in tro d u c e d as tw o m e th o d s fo r c o m p u tin g th e D F T using lin e a r filtering.
C h a p te r 7 tre a ts th e re a liz a tio n o f I I R an d F IR system s. T h is tre a tm e n t
in clu d es d irect-fo rm , cascad e, p a ra lle l, lattice, a n d la ttic e -la d d e r re a liz a tio n s. T h e
c h a p te r in clu d es a tr e a tm e n t o f sta te -sp a c e analysis an d s tru c tu re s fo r d isc rete-tim e
system s, an d ex am in es q u a n tiz a tio n effects in a d igital im p le m e n ta tio n o f F IR and
I IR system s.
T e c h n iq u e s fo r d esign o f digital F IR a n d IIR filters are p r e s e n te d in C h a p ­
te r 8. T h e d esign te c h n iq u e s in clu d e b o th d irect design m e th o d s in d isc re te tim e
an d m e th o d s involv in g th e co n v ersio n o f an a lo g filters in to digital filters by v ario u s
tra n sfo rm a tio n s. A lso tre a te d in this c h a p te r is th e d esig n o f F I R a n d IIR filters
by le a st-sq u a re s m e th o d s.
C h a p te r 9 fo cu ses o n th e sam pling o f c o n tin u o u s-tim e sig n a ls a n d th e r e ­
c o n s tru c tio n o f such signals fro m th e ir sam ples. In th is c h a p te r, w e d eriv e th e
sam p lin g th e o re m fo r b a n d p a ss co n tin u o u s-tim e -sig n a ls an d th e n co v e r th e A /D
an d D /A co n v ersio n te c h n iq u e s, including o v e rsam p lin g A /D a n d D /A co n v erters.
C h a p te r 10 p ro v id e s an in d e p th tre a tm e n t o f sa m p lin g -ra te c o n v ersio n and
its a p p lic a tio n s to m u ltira le d ig ital signal p ro cessin g . In a d d itio n to d escrib in g d e c ­
im atio n a n d in te rp o la tio n by in te g e r facto rs, we p re s e n t a m e th o d o f sa m p lin g -rate


Preface

xv


co n v e rsio n by an a rb itra ry facto r. S ev eral a p p licatio n s to m u ltira te signal p ro c e ss­
ing a re p re s e n te d , in clu d in g th e im p le m e n ta tio n o f d igital filters, su b b a n d cod in g
o f sp e ech sig n als, tra n sm u ltip le x in g , an d o v ersam p lin g A /D a n d D /A c o n v e rte rs.
L in e a r p re d ic tio n an d o p tim u m lin e a r (W ien er) filters a re tr e a te d in C h a p ­
te r 11. A lso in clu d ed in this c h a p te r are d escrip tio n s o f th e L e v in s o n -D u rb in
alg o rith m a n d Schiir a lg o rith m fo r solving th e n o rm a l e q u a tio n s , as w ell as th e
A R la ttic e a n d A R M A la ttic e -la d d e r filters.
P o w e r sp e c tru m e stim a tio n is th e m ain to p ic of C h a p te r 12. O u r co v erag e
in clu d es a d e s c rip tio n o f n o n p a ra m e tric an d m o d el-b ased (p a ra m e tric ) m e th o d s.
A lso d e s c rib e d a re e ig e n -d e c o m p o sitio n -b a se d m e th o d s, in clu d in g M U S IC an d
E S P R IT .
A t N o r th e a s te r n U n iv ersity , w e h av e u se d th e first six c h a p te rs o f this b o o k
fo r a o n e -se m e s te r (ju n io r level) c o u rse in d isc rete sy stem s a n d d ig ital signal p r o ­
cessing.
A o n e -s e m e s te r se n io r level c o u rse fo r stu d e n ts w h o h av e h a d p rio r e x p o su re
to d isc rete sy stem s can u se th e m a te ria l in C h a p te rs 1 th ro u g h 4 for a q u ick rev iew
a n d th e n p ro c e e d to co v er C h a p te r 5 th ro u g h 8.
In a first-v ear g ra d u a te level c o u rse in digital signal p ro cessin g , th e first five
c h a p te rs p ro v id e th e s tu d e n t w ith a goo d rev iew of d isc re te -tim e system s. T h e
in stru c to r can m o v e q u ick ly th ro u g h m o st o f th is m aterial a n d th e n co v e r C h a p te rs
6 th ro u g h 9, fo llo w ed by e ith e r C h a p te rs 10 and 11 o r by C h a p te rs 11 an d 12.
W e h a v e in c lu d e d m an y ex am p les th ro u g h o u t th e b o o k an d a p p ro x im a te ly
500 h o m e w o rk p ro b le m s. M an y o f th e h o m ew o rk p ro b le m s can b e so lv ed n u m e r ­
ically on a c o m p u te r, using a so ftw are p ack ag e such as M A T L A B © . T h e se p r o b ­
lem s a re id e n tifie d by an asterisk . A p p e n d ix D co n tain s a list o f M A T L A B fu n c­
tio n s th a t th e s tu d e n t can use in solving th e se p ro b lem s. T h e in s tru c to r m ay also
w ish to c o n s id e r th e u se o f a s u p p le m e n ta ry b o o k th a t c o n ta in s c o m p u te r b ased
exercises, su c h as th e b o o k s Digilal Signal Processing Us ing M A T L A B (P.W .S.
K e n t, 1996) by V. K. In g le a n d J. G . P ro a k is a n d C o m p u te r- B a s e d Exercises f o r

S ignal P ro cessing Using M A T L A B (P re n tic e H all, 1994) by C. S. B u rru s e t al.
T h e a u th o rs a re in d e b te d to th e ir m an y facu lty c o lleag u es w ho h av e p ro v id e d
v alu ab le su g g e stio n s th ro u g h review s o f the first an d se co n d ed itio n s o f this b o o k .
T h e se in clu d e D rs. W . E . A le x a n d e r, Y. B re sle r, J. D e lle r, V. Ingle, C. K eller,
H . L e v -A ri, L. M e ra k o s , W. M ik h a e l, P. M o n ticcio lo , C. N ikias, M . S ch etzen ,
H . T ru ssell, S. W ilso n , a n d M. Z o lto w sk i. W e a re also in d e b te d to D r. R , P ric e fo r
re c o m m e n d in g th e in clu sion o f sp lit-ra d ix F F T alg o rith m s a n d re la te d su g g estio n s.
F in ally , w e w ish to ac k n o w le d g e th e su g g e stio n s an d c o m m e n ts o f m an y fo rm e r
g ra d u a te s tu d e n ts , a n d especially th o se by A . L. K ok, J. L in an d S. S rin id h i w ho
assisted in th e p r e p a r a tio n o f several illu stra tio n s an d th e so lu tio n s m an u al.
J o h n G . P ro a k is
D im itris G , M a n o lak is



Introduction

D ig ital signal p ro cessin g is an are a o f science a n d e n g in e e rin g th a t h a s d ev e lo p e d
rap id ly o v e r th e p ast 30 y ears. T his rap id d e v e lo p m e n t is a resu lt o f th e signif­
ican t ad v an ce s in digital c o m p u te r tech n o lo g y an d in te g ra te d -c irc u it fab rica tio n .
T h e digital c o m p u te rs an d asso ciated digital h ard w are of th re e d e c a d e s ago w ere
relativ ely larg e an d ex p en siv e and, as a co n seq u en ce, th e ir use w as lim ited to
g e n e ra l-p u rp o s e n o n -re a l-tim e (o ff-line) scientific c o m p u ta tio n s an d business a p ­
p licatio n s. T h e ra p id d ev e lo p m e n ts in in te g ra te d -c irc u it te c h n o lo g y , sta rtin g with
m ed iu m -scale in te g ra tio n (M S I) an d p ro g ressin g to large-scale in te g ra tio n (L S I),
a n d now , v ery -larg e-scale in te g ra tio n (V L S I) of e le c tro n ic circuits has sp u rre d
th e d e v e lo p m e n t o f p o w erfu l, sm a ller, faster, an d c h e a p e r digital c o m p u te rs an d
sp e cial-p u rp o se d igital h a rd w a re . T h e se in ex p en siv e an d re lativ ely fast digital c ir­
cuits h av e m a d e it p o ssib le to co n stru c t highly so p h istic a te d digital system s cap ab le
o f p e rfo rm in g co m p lex digital signal p ro cessin g fu n ctio n s a n d tasks, w hich are u su ­

ally to o difficult a n d /o r to o expensive to be p e rfo rm e d by an a lo g circuitry or a n alo g
signal p ro cessin g system s. H e n c e m an y of th e signal p ro cessin g task s th a t w ere
c o n v en tio n ally p e rfo rm e d by an alo g m e a n s a re realized to d a y by less ex p en siv e
an d o fte n m o re re lia b le digital h a rd w a re .
W e do n o t w ish to im ply th a t digital signal p ro cessin g is th e p ro p e r so lu ­
tio n fo r all signal p ro cessin g p ro b lem s. In d e e d , fo r m a n y signals w ith e x tre m e ly
w ide b a n d w id th s, real-tim e p ro cessin g is a re q u ire m e n t. F o r such signals, a n a ­
log o r, p e rh a p s, o p tical signal p ro cessin g is th e only p o ssib le so lu tio n . H o w ev er,
w h ere dig ital circuits are av ailab le an d h av e sufficient sp e e d to p e rfo rm th e signal
p ro cessin g , th ey a re usually p re fe ra b le .
N o t only d o d igital circuits yield c h e a p e r an d m o re re lia b le system s fo r signal
p ro cessin g , th e y h av e o th e r a d v an tag es as w ell. In p a rtic u la r, digital pro cessin g
h a rd w a re allow s p ro g ra m m a b le o p e ra tio n s. T h ro u g h so ftw are, on e can m o re easily
m o d ify th e sig n al p ro cessin g fu n ctio n s to b e p e rfo rm e d by th e h a rd w a re . T h u s
dig ital h a rd w a re a n d a s so ciated so ftw are p ro v id e a g re a te r d eg re e o f flexibility in
sy stem d esign. A lso , th e re is o ften a h ig h e r o rd e r of p re c isio n ach iev ab le w ith
d ig ital h a rd w a re an d so ftw are c o m p a re d w ith an alo g circu its a n d an alo g signal
p ro cessin g system s. F o r all th e se re a so n s, th e re h as b e e n an explosive grow th in
d ig ital signal p ro cessin g th e o ry a n d a p p licatio n s o v e r th e p ast th re e decades.


2

Introduction

Chap. 1

In this b o o k o u r o b jectiv e is to p re se n t an in tro d u c tio n o f th e basic analysis
to ols an d te c h n iq u e s fo r d igital p ro cessin g o f signals. W e b eg in by in tro d u c in g
so m e o f th e n ecessa ry term in o lo g y an d by d escrib in g th e im p o rta n t o p e ra tio n s

asso ciated w ith th e p ro cess of c o n v ertin g an an alo g signal to d ig ital fo rm su itab le
fo r d igital p ro cessin g . A s we shall se e, digital p ro cessin g o f a n a lo g signals has
som e d raw b ack s. F irst, an d fo re m o st, c o n v ersio n o f an a n a lo g signal to digital
fo rm , acco m p lish ed by sa m p lin g th e signal an d q u a n tiz in g th e sa m p le s, resu lts in a
d isto rtio n th a t p re v e n ts us fro m re c o n stru c tin g th e o rig in a l a n a lo g signal fro m the
q u a n tiz e d sam p les. C o n tro l o f th e a m o u n t o f th is d isto rtio n is ach ie v e d by p ro p e r
choice o f th e sam p lin g ra te a n d th e p recisio n in th e q u a n tiz a tio n p ro cess. S eco n d ,
th e re a re finite p re c isio n effects th a t m u st be c o n s id e re d in th e d igital pro cessin g
o f th e q u a n tiz e d sam p les. W hile th e se im p o rta n t issues are c o n s id e re d in som e
d etail in this b o o k , th e em p h asis is on th e analysis a n d d esig n o f digital signal
p ro cessin g sy stem s a n d c o m p u ta tio n a l te ch n iq u es.

1.1 SIGNALS, SYSTEMS, AND SIGNAL PROCESSING
A signal is d efin ed as any physical q u a n tity th a t varies w ith tim e, sp ace, o r any
o th e r in d e p e n d e n t v ariab le o r variables. M a th em atic ally , we d e sc rib e a signal as
a fu n ctio n o f o n e o r m o re in d e p e n d e n t variab les. F o r e x am p le, th e fu n ctio n s
* i( r ) = 5/

(1.1.1)
S2(t) = 20 r
d escrib e tw o signals, o n e th a t varies lin early w ith the in d e p e n d e n t v ariab le t (tim e)
an d a seco n d th a t v aries q u a d ra tic a lly w ith t. A s a n o th e r ex a m p le , co n sid e r the
fu n ctio n
v) = 3x + 2 x y + 1 0 y 2
(1.1.2)
T his fu n ctio n d escrib es a signal o f tw o in d e p e n d e n t v a riab les x a n d y th a t could
r e p re s e n t th e tw o sp a tia l c o o rd in a te s in a p lan e.
T h e signals d e sc rib e d by (1.1.1) an d (1.1.2) b e lo n g to a class o f signals th a t
are p recisely d efin ed by specifying th e fu n c tio n a l d e p e n d e n c e on th e in d e p e n d e n t
v ariab le. H o w ev er, th e re are cases w h ere such a fu n c tio n a l re la tio n sh ip is u n k n o w n

o r to o highly c o m p licated to be o f any p ractical use.
F o r ex am p le, a sp e ech signal (see Fig. 1.1) c a n n o t be d e s c rib e d fu n ctio n ally
by ex p ressio n s such as (1.1.1). In g e n eral, a se g m e n t o f sp e ech m ay be re p re se n te d
to a high d eg re e o f accu racy as a sum of se v era l sin u so id s o f d iffe re n t am p litu d e s
a n d freq u e n cies, th a t is, as
N
A j ( t ) s i n [ 2 ; r f } ( r ) f + #,■(/)]

(1.1.3)

i=i
w h ere {/!,(/)}, {F ,(r)j, a n d {t9,(r)} a re th e se ts of (p o ssib ly tim e -v a ry in g ) a m p litu d es,
freq u e n cies, an d p h a se s, resp ectiv ely , o f th e sinusoids. In fact, o n e w ay to in te rp re t
th e in fo rm a tio n c o n te n t o r m essag e co n v ey ed by an y sh o rt tim e se g m e n t o f th e


Sec. 1.1



#
S

^

#

i j ^

3


Signals, Systems, and Signal Processing

I

Th

... ‘ ^



ft

A

N

D

---------- ,|* y y y > v y y m w

■'r r m

■'

w m

' W W W ’ ......................

1

Figure 1.1

Example of a speech signal.

sp e e c h signal is to m e a s u re the a m p litu d es, freq u e n cies, a n d p h a se s c o n ta in e d in
th e sh o rt tim e se g m e n t o f the signal.
A n o th e r ex am p le o f a n a tu ra l signal is an e le c tro c a rd io g ra m (E C G ). Such a
signal p ro v id e s a d o c to r w ith in fo rm a tio n a b o u t th e co n d itio n o f the p a tie n t's h e a rt.
S im ilarly, an e le c tro e n c e p h a lo g ra m (E E G ) signal p ro v id es in fo rm a tio n a b o u t th e
activ ity o f th e b rain .
S p eech , e le c tro c a rd io g ra m , a n d e le c tro e n c e p h a lo g ra m signals a re ex am p les
o f in fo rm a tio n -b e a rin g signals th a t evolve as fu n ctio n s o f a single in d e p e n d e n t
v ariab le, n am elv , tim e. A n ex am p le o f a signal th at is a fu n ctio n o f tw o in d e ­
p e n d e n t v ariab les is an im age signal. T h e in d e p e n d e n t v ariab les in th is case are
th e sp atial c o o rd in a te s. T h e se a re b u t a few ex am p les o f th e co u n tless n u m b e r of
n a tu ra l signals e n c o u n te re d in practice.
A s so c ia te d w ith n a tu ra l signals are the m ean s by w hich such signals are g e n ­
e ra te d . F o r ex am p le, sp e ech signals are g e n e ra te d by fo rcin g air th ro u g h th e vocal
co rd s. Im ag es a re o b ta in e d by ex p o sin g a p h o to g ra p h ic film to a scene o r an o b ­
ject. T h u s signal g e n e ra tio n is usually asso ciated w ith a sy stem th a t re sp o n d s to a
stim u lu s o r fo rce. In a sp e ech signal, th e system consists o f th e vocal cords a n d
th e vocal tra c t, also called th e vocal cavity. T h e stim ulus in c o m b in a tio n w ith th e
sy stem is called a signal source. T h u s w e have sp eech so u rces, im ag es so u rces, an d
v ario u s o th e r ty p es o f signal sources.
A sy stem m ay also be defin ed as a physical device th a t p e rfo rm s an o p e r a ­
tio n on a signal. F o r e x am p le, a filter u sed to red u c e th e n o ise an d in te rfe re n c e
co rru p tin g a d e s ire d in fo rm a tio n -b e a rin g signal is called a system . In this case th e
filter p e rfo rm s so m e o p e ra tio n (s ) on th e signal, w hich h as th e effect o f red u cin g
(filterin g ) th e n o ise a n d in te rfe re n c e from th e d e sire d in fo rm a tio n -b e a rin g signal.
W h en w e pass a signal th ro u g h a system , as in filterin g , w e say th a t we h av e

p ro c e sse d th e signal. In this case th e p ro cessin g of th e signal involves filtering th e
n o ise an d in te rfe re n c e fro m th e d e s ire d signal. In g e n e ra l, th e system is c h a ra c ­
te riz e d by th e ty p e o f o p e ra tio n th a t it p e rfo rm s on th e signal. F o r ex am p le, if
th e o p e ra tio n is lin ear, th e system is called linear. If th e o p e ra tio n o n th e signal
is n o n lin e a r, th e system is said to be n o n lin e a r, a n d so fo rth . S uch o p e ra tio n s a re
u su a lly re fe rre d to as signal processing.


4

Introduction

Chap. 1

F o r o u r p u rp o se s, it is c o n v en ien t to b r o a d e n th e d efin itio n o f a system to
include n o t o n ly physical devices, b u t also so ftw are re a liz a tio n s o f o p e ra tio n s on
a signal. In d igital p ro cessin g o f signals on a digital c o m p u te r, th e o p e ra tio n s p e r­
fo rm e d on a signal co n sist of a n u m b e r of m a th e m a tic a l o p e ra tio n s as specified by
a so ftw are p ro g ram . In this case, th e p ro g ra m r e p re s e n ts an im p le m e n ta tio n o f the
system in software. T h u s we h ave a system th a t is re a liz e d on a d igital c o m p u te r
by m ean s o f a se q u en ce o f m a th e m a tic a l o p e ra tio n s; th a t is, w e h av e a digital
signal p ro cessin g system realized in so ftw are. F o r e x am p le, a d ig ital c o m p u te r can
be p ro g ra m m e d to p e rfo rm digital filtering. A lte rn a tiv e ly , th e d igital processing
o n th e signal m ay be p e rfo rm e d by digital h ard w a re (logic circu its) co nfigured to
p e rfo rm th e d e sire d specified o p e ra tio n s. In such a re a liz a tio n , w e h av e a physical
d ev ice th a t p e rfo rm s th e specified o p e ra tio n s. In a b r o a d e r se n se, a digital system
can be im p le m e n te d as a c o m b in a tio n o f digital h a rd w a re an d so ftw are, each of
w hich p e rfo rm s its ow n set of specified o p e ra tio n s.
T h is b o o k d eals w ith th e p ro cessin g o f signals by digital m e a n s, e ith e r in so ft­
w are o r in h a rd w a re . Since m an y of the signals e n c o u n te re d in p ra c tic e are analog,

w e will also co n sid er th e p ro b lem of c o n v ertin g an a n a lo g signal in to a digital sig­
n al fo r pro cessin g . T h u s we will be d ealin g p rim a rily w ith d ig ital system s. T he
o p e ra tio n s p e rfo rm e d by such a system can u su ally be specified m ath em atically .
T h e m e th o d o r set o f ru les for im p le m e n tin g th e sy stem by a p ro g ra m th a t p e r ­
fo rm s th e c o rre sp o n d in g m a th e m a tic a l o p e ra tio n s is called an algorithm. U sually,
th e re are m an y w ays o r alg o rith m s by w hich a system can be im p le m e n te d , e ith e r
in so ftw are o r in h a rd w a re , to p e rfo rm th e d e sire d o p e ra tio n s a n d c o m p u tatio n s.
In p ra c tic e , we h av e an in te re st in devising a lg o rith m s th a t are c o m p u ta tio n a lly
efficient, fast, an d easily im p lem en ted . T h u s a m a jo r to p ic in o u r stu d y o f digi­
tal signal p ro cessin g is th e discussion o f efficient a lg o rith m s fo r p e rfo rm in g such
o p e ra tio n s as filterin g , c o rre la tio n , an d sp e c tra l analysis.

1.1.1 Basic Elements of a Digital Signal Processing
System
M o st o f th e signals e n c o u n te re d in science an d e n g in e e rin g a re a n a lo g in n a tu re.
T h a t is. th e signals a re fu n ctio n s of a c o n tin u o u s v a ria b le , such as tim e o r space,
an d u su ally ta k e o n v alues in a co n tin u o u s ran g e. S uch signals m ay be p ro cessed
directly by a p p ro p ria te an alo g system s (such as filters o r fre q u e n c y an aly zers) or
fre q u e n c y m u ltip lie rs for th e p u rp o se of ch an g in g th e ir c h a ra c te ristic s o r ex tractin g
so m e d esired in fo rm a tio n . In such a case w e say th a t th e signal h as b e e n p ro cessed
d irectly in its an alo g fo rm , as illu strated in Fig. 1.2. B o th th e in p u t signal a n d the
o u tp u t signal a re in an a lo g form .

Analog
input
signal

Analog
signal
processor


Analog
output
signal
Figure 1.2

A nalog signal processing.


Sec. 1.1

Signals, Systems, and Signal Processing

5
Analog
output
signal

Analog
input

signal
Digital
input
signal
Figure 1.3

Digital
output
signal


Block diagram of a digital signal processing system.

D ig ital signal p ro cessin g p ro v id e s an a lte rn a tiv e m e th o d fo r p ro cessin g th e
a n a lo g signal, as illu stra te d in Fig. 1.3. T o p e rfo rm th e p ro cessin g digitally, th e re
is a n e e d fo r an in te rfa c e b e tw e e n th e an a lo g signal a n d th e digital p ro cesso r.
T h is in te rfa c e is called an analog-to-digital ( A / D ) converter. T h e o u tp u t of th e
A /D c o n v e rte r is a d ig ital signal th a t is a p p ro p ria te as an in p u t to th e d igital
p ro cesso r.
T h e dig ital signal p ro c e ss o r m ay be a larg e p ro g ra m m a b le digital c o m p u te r
o r a sm all m ic ro p ro c e s so r p ro g ra m m e d to p e rfo rm th e d e s ire d o p e ra tio n s on th e
in p u t signal. It m ay also be a h a rd w ire d digital p ro c e ss o r co n fig u red to p e rfo rm
a specified se t o f o p e ra tio n s on th e in p u t signal. P ro g ra m m a b le m ach in es p r o ­
v id e th e flexibility to ch an g e th e signal p ro cessin g o p e ra tio n s th ro u g h a ch an g e
in th e so ftw are, w h e re a s h a rd w ire d m ach in es a re difficult to reco n fig u re. C o n s e ­
q u e n tly , p ro g ra m m a b le signal p ro c e ss o rs a re in very c o m m o n use. O n th e o th e r
h an d , w h en signal p ro cessin g o p e ra tio n s are w ell d efin ed , a h a rd w ire d im p le m e n ­
ta tio n o f th e o p e ra tio n s can be o p tim ized , re su ltin g in a c h e a p e r signal p ro c e sso r
a n d , u su ally , o n e th a t ru n s fa ste r th a n its p ro g ra m m a b le c o u n te rp a rt. In a p p li­
c atio n s w h e re th e d ig ital o u tp u t fro m th e d igital signal p ro c e sso r is to be given
to th e u se r in an alo g form , such as in sp e ech co m m u n icatio n s, w e m ust p r o ­
vid e a n o th e r in te rfa c e fro m th e digital d o m a in to th e a n a lo g d o m ain . S uch an
in te rfa c e is called a digital-to-analog ( D / A ) converter. T h u s th e signal is p r o ­
v id ed to th e u se r in an a lo g form , as illu stra te d in th e b lo ck d iag ram o f Fig. 1.3.
H o w e v e r, th e re a re o th e r p ractical a p p lic a tio n s involving signal analysis, w h ere
th e d e s ire d in fo rm a tio n is co n v ey ed in digital form a n d n o D /A c o n v e rte r is
re q u ire d . F o r ex am p le, in th e d igital p ro cessin g o f r a d a r signals, th e in fo rm a ­
tio n e x tra c te d fro m th e ra d a r signal, such as th e p o sitio n o f th e aircra ft a n d its
sp e ed , m ay sim ply b e p rin te d on p a p e r. T h e re is n o n e e d fo r a D /A c o n v e rte r in
th is case.


1.1.2 Advantages of Digital over Analog Signal
Processing
T h e re a re m an y re a so n s w hy d ig ital signal p ro cessin g o f an an alo g signal m ay be
p re fe ra b le to p ro cessin g th e signal directly in th e an a lo g d o m ain , as m e n tio n e d
briefly e a rlie r. F irst, a digital p ro g ra m m a b le sy stem allow s flexibility in r e c o n ­
figuring th e digital signal p ro cessin g o p e ra tio n s sim ply by ch anging th e p ro g ra m .


6

Introduction

Chap. 1

R e c o n fig u ra tio n o f an an a lo g system usually im plies a re d e sig n o f th e h a rd w a re
follow ed by te stin g a n d v erification to see th a t it o p e ra te s p ro p e rly .
A ccu racy c o n s id e ra tio n s also p lay an im p o rta n t role in d e te rm in in g th e fo rm
o f th e signal p ro cesso r. T o le ra n c e s in an alo g c ircu it c o m p o n e n ts m a k e it e x tre m e ly
difficult fo r th e system d esig n er to co n tro l th e accu racy o f an an a lo g signal p r o ­
cessing system . O n th e o th e r h an d , a digital system p ro v id e s m uch b e tte r c o n tro l
o f accu racy re q u ire m e n ts . Such re q u ire m e n ts , in tu rn , re s u lt in specifying th e a c ­
cu racy r e q u ire m e n ts in th e A /D c o n v e rte r a n d th e d igital sig n a l p ro c e sso r, in te rm s
o f w ord le n g th , flo atin g -p o in t v ersu s fix ed -p o in t arith m e tic , a n d sim ilar facto rs.
D ig ita l signals are easily sto re d o n m a g n e tic m ed ia (ta p e o r disk) w ith o u t d e ­
te rio ra tio n o r loss o f signal fidelity b e y o n d th a t in tro d u c e d in th e A /D co n v ersio n .
A s a c o n se q u e n c e , th e signals b e c o m e tra n s p o rta b le an d can b e p ro cessed off-line
in a re m o te la b o ra to ry . T h e digital signal p ro cessin g m e th o d also allow s for th e im ­
p le m e n ta tio n o f m o re so p h istic a te d signal p ro cessin g alg o rith m s. It is usually very
difficult to p e rfo rm p recise m a th e m a tic a l o p e ra tio n s on signals in a n a lo g fo rm b u t

th ese sam e o p e ra tio n s can b e ro u tin e ly im p le m e n te d on a d ig ital c o m p u te r using
so ftw are.
In so m e cases a d igital im p le m e n ta tio n of th e signal p ro cessin g system is
c h e a p e r th a n its an a lo g c o u n te rp a rt. T h e lo w er cost m ay be d u e to th e fact th a t
th e dig ital h a rd w a re is c h e a p e r, o r p e rh a p s it is a re su lt o f th e flexibility fo r m o d ­
ifications p ro v id e d by th e digital im p le m e n ta tio n .
A s a c o n se q u e n c e o f th ese ad v a n ta g e s, d igital signal p ro c e ssin g has b e e n
a p p lied in p ractical sy stem s co v erin g a b ro a d ra n g e of d iscip lin es. W e cite, fo r ex ­
am p le, th e a p p licatio n o f d igital signal p ro cessin g te c h n iq u e s in sp e ech p ro cessin g
an d signal tran sm issio n o n te le p h o n e ch an n els, in im age p ro c e ssin g an d tra n sm is­
sio n , in seism o lo g y an d geophysics, in oil e x p lo ra tio n , in th e d e te c tio n of n u c le a r
ex p lo sio n s, in th e p ro cessin g of signals receiv ed fro m o u te r sp a ce, an d in a vast
v ariety o f o th e r a p p licatio n s. S om e o f th e se a p p lic a tio n s a re cited in su b s e q u e n t
ch ap ters.
A s a lre a d y in d icated , h o w ev er, digital im p le m e n ta tio n has its lim itatio n s.
O n e p ractical lim ita tio n is th e sp e ed o f o p e ra tio n o f A /D c o n v e rte rs a n d digital
signal p ro cesso rs. W e shall see th a t signals hav in g e x tre m e ly w id e b a n d w id th s re ­
q u ire fa st-sam p lin g -rate A /D c o n v e rte rs an d fast d igital signal p ro cesso rs. H e n c e
th e re a re an alo g signals w ith larg e b a n d w id th s fo r w hich a digital p ro cessin g a p ­
p ro a c h is b ey o n d th e s ta te of th e a rt o f digital h a rd w a re .

1.2 CLASSIFICATION OF SIGNALS
T h e m e th o d s we use in p ro cessin g a signal o r in an aly zin g th e re s p o n s e o f a system
to a sig n al d e p e n d h eavily on th e ch a ra c te ristic a ttr ib u te s o f th e specific signal.
T h e re a re te c h n iq u e s th a t ap p ly only to specific fam ilies o f signals. C o n seq u en tly ,
an y in v estig atio n in signal p ro cessin g sh o u ld sta rt w ith a classification o f th e signals
in v o lv ed in th e specific ap p licatio n .


Sec. 1.2


Classification of Signals

7

1.2.1 Multichannel and Multidimensional Signals
A s e x p lain ed in S ectio n 1.1, a signal is d escrib ed by a fu n c tio n o f o n e o r m o re
in d e p e n d e n t v ariab les. T h e v alue of th e fu n ctio n (i.e., th e d e p e n d e n t v ariab le) can
be a re a l-v a lu e d sc alar q u a n tity , a co m p lex -v alu ed q u a n tity , o r p e rh a p s a v ecto r.
F o r e x am p le, th e signal
si( r ) = A sin37rr
is a re a l-v a lu e d signal. H o w e v e r, th e signal
s2(f) = A e ji7Tt = A cos 37t t

j'A sin 3:r r

is co m p lex v alu ed .
In so m e a p p lic a tio n s, signals a re g e n e ra te d by m u ltip le so u rces or m u ltip le
sen so rs. Such signals, in tu rn , can be re p re s e n te d in v e c to r fo rm . F ig u re 1.4 show s
th e th re e c o m p o n e n ts of a v e c to r signal th a t re p re se n ts th e g ro u n d a c c e le ra tio n
d u e to an e a r th q u a k e . T h is a c c e le ra tio n is the re su lt of th re e basic ty p es of elastic
w aves. T h e p rim a ry (P ) w aves an d th e se co n d a ry (S) w aves p ro p a g a te w'ithin th e
b o d y o f rock a n d a re lo n g itu d in al a n d tra n sv e rsa l, resp ec tiv ely . T h e th ird ty p e
o f elastic w ave is called th e su rface w ave, b e c a u se it p ro p a g a te s n e a r th e g ro u n d
su rface. If $*(/). k = 1. 2. 3. d e n o te s th e electrical signal from th e £ th se n so r as a
fu n ctio n o f tim e, th e se t of p = 3 signals can be re p re se n te d by a v e c to r S?(f )< w h ere
r si (O '
S;,(r) =

Si(t)


-Sl(t) J
W e re fe r to such a v e c to r o f signals as a m u ltich a n n el signal. In e le c tro c a rd io g ra ­
p hy. for ex am p le, 3 -lead an d 12-lead e le c tro c a rd io g ra m s (E C G ) are o ften used in
p ractice, w hich resu lt in 3 -ch an n el a n d 12-channel signals.
L e t us n o w tu rn o u r a tte n tio n to th e in d e p e n d e n t v a ria b le (s). If the signal is
a fu n ctio n o f a single in d e p e n d e n t v ariab le, th e signal is called a o ne-d im en sio n a l
signal. O n th e o th e r h a n d , a signal is called M -d i m e n s i o n a l if its v alu e is a fu n ctio n
of M in d e p e n d e n t v ariab les.
T h e p ic tu re sh o w n in Fig. 1.5 is an ex am p le of a tw o -d im e n sio n al signal, since
th e in ten sity o r b rig h tn e ss I ( x . y) a t each p o in t is a fu n ctio n of tw o in d e p e n d e n t
v ariab les. O n th e o th e r h a n d , a b la c k -a n d -w h ite telev isio n p ic tu re m ay be r e p ­
r e se n te d as I ( x . y . t ) since th e b rig h tn e ss is a fu n ctio n of tim e. H e n c e th e T V
p ic tu re m ay b e tr e a te d as a th re e -d im e n s io n a l signal. In c o n tra st, a co lo r T V p ic ­
tu re m ay b e d e sc rib e d by th re e in te n sity fu n ctio n s of th e fo rm Ir (x, y. ?), Is (x. y. t ),
a n d I i , ( x . y , t ) , c o rre sp o n d in g to th e b rig h tn e ss of the th re e p rin cip al colors (red .
g re e n , b lu e) as fu n ctio n s o f tim e. H e n c e th e co lo r T V p ic tu re is a th re e -c h a n n e l,
th re e -d im e n s io n a l signal, w hich can b e re p re s e n te d by th e v e c to r
-/,(* ,> ■ . O '
I U , y. t) —
. l b(x, v ,r ) _
In this b o o k we d e a l m ainly w ith sin g le-ch an n el, o n e -d im e n sio n a l real- or
co m p lex -v alu ed signals a n d w e re fe r to th e m sim ply as signals. In m a th e m a tic a l


Introduction

Chap. 1

Up


/ % East

7jJL______
South

bouth

1

I____ i

]____ I.

f S waves

_4 P waves

1____ 1____ I

t Surface waves

I

I

i

i


i_______ I ,

0

2

4

6

8

10

r1 -2

I____ _ J _______I_______ I----------- 1-----------1----------- 1-----------1----------- 1-----------1

12

14

16

18

20

22


24

26

28

30

Time (seconds)
(b)
Figure 1.4 Three components of ground acceleration measured a few kilometers
from the epicenter of an earthquake. (From Earthquakes, by B. A . Bold. © 1988
by W. H. Freeman and Company. Reprinted with permission of the publisher.)

te rm s th ese signals are d escrib ed by a fu n ctio n o f a single in d e p e n d e n t v ariable.
A lth o u g h th e in d e p e n d e n t variab le n e e d n o t be tim e, it is c o m m o n p ractice to use
t as th e in d e p e n d e n t v ariab le. In m an y cases th e signal p ro c e ssin g o p e ra tio n s and
a lg o rith m s d e v e lo p e d in this tex t for o n e -d im e n sio n a l, sin g le-ch an n el signals can
b e e x te n d e d to m u ltic h a n n e l an d m u ltid im e n sio n a l signals.

1.2.2 Continuous-Time Versus Discrete-Time Signals
Signals can b e fu rth e r classified in to fo u r d iffe re n t c a te g o rie s d e p e n d in g on the
ch a ra c te ristic s o f th e tim e (in d e p e n d e n t) v a ria b le an d th e v alu es th ey tak e.
Con tin u o u s -tim e signals o r a nalog signals a re d e fin ed for ev e ry value o f tim e an d


×