Tải bản đầy đủ (.pdf) (181 trang)

Solution manual vector mechanics engineers dynamics 8th beer chapter 05

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (9.93 MB, 181 trang )

COSMOS: Complete Online Solutions Manual Organization System

Chapter 5, Solution 1.
\

Then

A, mm 2

x , mm

y , mm

xA, mm3

yA, mm3

1

200 × 150 = 30000

−100

250

− 30 000000

6 750 000

2


400 × 300 = 120000

200

150

24 000 000

18000000

Σ

150 000

21000 000

24 750000

X =

ΣxA 21 000000
=
mm
ΣA
150000

or X = 140.0 mm

Y =


ΣyA 24 750000
=
mm
ΣA
150 000

or Y = 165.0 mm

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.


COSMOS: Complete Online Solutions Manual Organization System

Chapter 5, Solution 2.

A,in 2

x ,in.

y ,in.

xA,in 3

yA,in 3

1

10 × 8 = 80


5

4

400

320

2

1
× 9 × 12 = 54
2

13

4

702

216

Σ

134

1102

536


Then

X =

ΣxA 1102
=
ΣA
134

and

Y =

ΣyA 1102
=
ΣA
134

or

X = 8.22 in.

or Y = 4.00 in.

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.



COSMOS: Complete Online Solutions Manual Organization System

Chapter 5, Solution 3.

Then

A, mm 2

x , mm

xA, mm3

1

1
× 90 × 270 = 12 150
2

2
( 90 ) = 60
3

729 000

2

1
× 135 × 270 = 18 225
2


Σ

30375

X =

90 +

ΣxA 3189375
mm
=
ΣA
30375

1
(135) = 135
3

2 460 375
3 189 375

or X = 105.0 mm

For the whole triangular area by observation:

Y =

1
( 270 mm )
3


or Y = 90.0 mm

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.


COSMOS: Complete Online Solutions Manual Organization System

Chapter 5, Solution 4.

A,in 2

x ,in.

1

1
( 21)( 24 ) = 252
2

2

(13)( 40 ) = 520

Σ

2
( 21) = 14

3
21 +

1
(13) = 27.5
2

xA,in 3

y ,in.
40 −

1
( 24 ) = 32
3

20

772

Then

yA,in 3

3528

8064

14 300


10 400

17 828

18 464

X =

ΣxA 17828
=
in.
ΣA
772

or

Y =

ΣyA 18464
=
in.
ΣA
772

or Y = 23.9 in.

X = 23.1 in.

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell

© 2007 The McGraw-Hill Companies.


COSMOS: Complete Online Solutions Manual Organization System

Chapter 5, Solution 5.

A, mm 2

x , mm

2

1

π ( 225 )

2

1
( 375)( 225) = 42 188
2

4



= 39 761

4 ( 225 )



= − 95.493

125

y , mm

xA, mm3

yA, mm3

95.493

− 3 796 900

3 796 900

5 273 500

3 164 100

1 476 600

6 961 000

75

81 949


Σ

Then

X =

ΣxA 1476600
mm
=
ΣA
81 949

or X = 18.02 mm

Y =

ΣyA 6961 000
mm
=
ΣA
81 949

or

Y = 84.9 mm

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.



COSMOS: Complete Online Solutions Manual Organization System

Chapter 5, Solution 6.

1
2

3



π
4


A,in 2

x ,in.

y ,in.

xA,in 3

yA,in 3

17 × 9 = 153

8.5


4.5

1300.5

688.5

2

× ( 4.5 ) = −15.9043 8 −

π
4

( 6 )2 = − 28.274

Σ

4 × 4.5
4 × 4.5
= 6.0901 9 −
= 7.0901 − 96.857



−112.761

− 298.19

−182.466


905.45

393.27

10.5465

6.4535

108.822

Then

X =

ΣxA
905.45
=
ΣA 108.822

and

Y =

ΣyA 393.27
=
ΣA 108.22

or

X = 8.32 in.


or Y = 3.61 in.

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.


COSMOS: Complete Online Solutions Manual Organization System

Chapter 5, Solution 7.

A,in 2
1

π (16 )
4

2

= 201.06

2

− ( 8 )( 8 ) = − 64

Σ

137.06


ΣxA 1109.32
=
in.
ΣA
137.06

Then

X =

and

Y = X by symmetry

x ,in.
4 (16 )


= 6.7906
4

xA,in 3
1365.32

− 256
1109.32

or

X = 8.09 in.


or Y = 8.09 in.

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.


COSMOS: Complete Online Solutions Manual Organization System

Chapter 5, Solution 8.

A, mm 2

x , mm

y , mm

xA, mm3

yA, mm3

1

35 343

63.662

0


2 250 006

0

2

− 4417.9

31.831

− 31.831

−140 626

140 626.2

Σ

30925.1

2 109 380

140 626.2

Then

X =

ΣxA 2109 380
=

ΣA
30 925.1

and

Y =

ΣyA 140 625
=
ΣA
30 925.1

or

X = 68.2 mm

or Y = 4.55 mm

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.


COSMOS: Complete Online Solutions Manual Organization System

Chapter 5, Solution 9.

A



1

Therefore, for X =

4

π

2

Σ

π2

2

π

( 2r
4

2
2

r12

r22
− r12

4r1



r13
 π 2  4r1 
 − r1 
=−
3
 4  3π 

4r2


 π 2  4r2  2r23
 r2 
=
3
 2  3π 

1
2r23 − r13
3

(

)

ΣxA 4r1
=
:
ΣΑ



(
(

or

xA

)

)

4 2r23 − r13
4r1
=

3π 2r22 − r12

or

x

π =

)

  r 3

r13  2  2  − 1

  r1 

4


=
2
 r 


r12  2  2  − 1
  r1 




r
2ρ 3 − 1
, where ρ = 2
2
r1
2ρ − 1

2 ρ 3 − 2πρ 2 + (π − 1) = 0.

Solving numerically for ρ and noting that ρ > 1:

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.


r2
= 3.02
r1


COSMOS: Complete Online Solutions Manual Organization System

Chapter 5, Solution 10.

First, determine the location of the centroid.
y2 =

From Fig. 5.8A:

=
y1 =

Similarly
Then

Σ yA =



2 sin 2 − α
r2 π
3
−α
2


(

2
cos α
r2 π
3
−α
2

)

(

)

(

)

2
cos α
r1 π
3
−α
2

2
cosα 
r2 π

3
−α 
2

(

)

(

)

A2 =

A1 =

( π2 − α ) r12

( π2 − α ) r22  − 23 r1

(

cosα 
−α 
2

π

)


2 3
r2 − r13 cosα
3
π

π

Σ A =  − α  r22 −  − α  r12
2

2

=

and

π

=  − α  r22 − r12
2


Y Σ A = Σ yA

(

Now

( π2 − α ) r22


)

 π
 2 3

Y  − α  r22 − r12  =
r2 − r13 cos α

 2
 3

(

)

Y =

(

)

2 r23 − r13 cos α
3 r22 − r12 π2 − α

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.

)


( π2 − α ) r12 


COSMOS: Complete Online Solutions Manual Organization System

Using Figure 5.8B, Y of an arc of radius

1
( r1 + r2 ) is
2
Y =

=



sin − α
1
( r1 + r2 ) π 2
2
−α
2

(

)

)

1

cos α
(r1 + r2 ) π
2
−α
2

(

(

( r2 − r1 ) r22 + r1 r2 + r12
r23 − r13
=
r22 − r12
( r2 − r1 )( r2 + r1 )

Now

=

(1)

)

)

r22 + r1 r2 + r12
r2 + r1

r2 = r + ∆


Let

r1 = r − ∆

r =

Then

1
( r1 + r2 )
2
2

and

( r + ∆ ) + ( r + ∆ )( r − ∆ ) + ( r − ∆ )
r23 − r13
=
2
2
r2 − r1
(r + ∆) + (r − ∆)
=

2

3r 2 + ∆ 2
2r


In the limit as ∆ → 0 (i.e., r1 = r2 ), then

r23 − r13
3
= r
2
2
2
r2 − r1
=

so that

Y =

3 1
× (r1 + r2 )
2 2

2 3
cos α
× ( r1 + r2 ) π
3 4
−α
2

Which agrees with Eq. (1).

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell

© 2007 The McGraw-Hill Companies.

or Y =

1
cos α
!
( r1 + r2 ) π
2
−α
2


COSMOS: Complete Online Solutions Manual Organization System

Chapter 5, Solution 11.

Then

X =

A,in 2

x ,in.

xA,in 3

1

27


8.1962

221.30

2

15.5885

3.4641

54.000

3

−18.8495

3.8197

−71.999

Σ

23.739

ΣxA 203.30
=
ΣA
23.739


203.30

or

X = 8.56 in.

and by symmetry

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.

Y =0


COSMOS: Complete Online Solutions Manual Organization System

Chapter 5, Solution 12.

1
2

A, mm 2

x , mm

y , mm

xA, mm3


yA, mm3

1
( 240 )(150 ) = 18 000
2

160

50

2 880 000

900 000

3
( 240 ) = 180
4

3
(150 ) = 45
10

−2160000

−540 000

720 000

360 000




1
( 240 )(150 ) = 12 000
3
6000

Σ

Then

X =

ΣxA 720000
=
mm
ΣA
6000

Y =

ΣyA 360000
=
mm
ΣA
6000

or X = 120.0 mm
or


Y = 60.0 mm

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.


COSMOS: Complete Online Solutions Manual Organization System

Chapter 5, Solution 13.

A,in 2

x ,in.

y ,in.

1

(18)(8) = 144

−3

4

− 432

576

2


1
( 6 )( 9 ) = 27
2

2

−3

54

−81

−5.0930

−3.8197

− 432.00

− 324.00

−810.00

171.00

3

Σ

Then


π
4

(12 )( 9 ) = 84.823
255.82

X =

ΣxA −810.00
=
in.
255.82
ΣA

Y =

ΣyA 171.00
=
in.
ΣA
255.82

xA,in 3

or

yA,in 3

X = − 3.17 in.


or Y = 0.668 in.

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.


COSMOS: Complete Online Solutions Manual Organization System

Chapter 5, Solution 14.

X = 90 mm

First, by symmetry

1
2



3



A, mm 2

y , mm

yA, mm3


(180 )(120 ) = 21 600

60

1 296 000

π
4

π
4

( 90 )(120 ) = − 8482.3

120 −

4 × 120
= 69.070


−585 870

( 90 )(120 ) = − 8482.3

120 −

4 × 120
= 69.070



−585 870

4635.4

Σ

Y =

ΣyA 124 260
=
4635.4
ΣA

124 260

or Y = 26.8 mm

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.


COSMOS: Complete Online Solutions Manual Organization System

Chapter 5, Solution 15.

A, mm 2

x , mm


y , mm

xA, mm3

yA, mm3

1

18 240

−4

12

72 960

218 880

2

−1920

− 56

54

107520

−103 680


3

− 4071.5

− 41.441

− 41.441

168 731

186 731

Σ

12 248.5

−134171

−53 531.1

Then
and

X =

ΣxA −134171
=
ΣA
12 248.5


Y =

ΣyA −53 531
=
ΣA 12 248.5

or

X = −10.95 mm
or Y = − 43.7 mm

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.


COSMOS: Complete Online Solutions Manual Organization System

Chapter 5, Solution 16.
\

A, mm 2
2
( 200 )( 200 ) = 26 667
3

1




2

2
(100 )( 50 ) = − 3333.3
3

23 334

Σ

xA, mm3

yA, mm3

x , mm

y , mm

75

70

2 000 000

1866 690

37.5

− 20


−125 000

66 666

1875 000

1 933 360

Then X =

ΣxA 1875 000
=
mm
ΣA
23 334

or X = 80.4 mm

Y =

ΣyA 1 933 360
=
mm
ΣA
23 334

or Y = 82.9 mm

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,

Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.


COSMOS: Complete Online Solutions Manual Organization System

Chapter 5, Solution 17.
Locate first Y :

Note that the origin of the X axis is at the bottom of the whole area.

A, in 2

Y =

yA, in 3

1

8 × 15 = 120

7.5

900

2

− 4 × 10 = − 40

8


− 320

Σ

Then

y , in.

80

580

ΣyA 580
=
= 7.2500 in.
ΣA
80

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.


COSMOS: Complete Online Solutions Manual Organization System

Now, to find the first moment of each area about the x-axis:
Area I:

QI = ΣyA =


7.75
5.75
 − ( 4 × 5.75 )  ,
(8 × 7.75) +
2
2 

or QI = 174.125 in 3 !

Area II:

QII = ΣyA = −

7.75
4.25
 − ( 4 × 4.25 )  ,
(8 × 7.25) −
2
2 

or QII = −174.125 in 3 !

Note that Q( area ) = QI + QII = 0 which is expected as y = 0 and Q( area ) = yA since x is a centroidal axis.

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.



COSMOS: Complete Online Solutions Manual Organization System

Chapter 5, Solution 18.

A, mm 2

Y =

yA, mm3

1

(80 )( 20 ) = 1600

90

144 000

2

( 20 )(80 ) = 1600

40

64 000

Σ

Then


y , mm

3200

208 000

ΣyA 208 000
=
= 65.000 mm
ΣA
3200

Now, for the first moments about the x-axis:
Area I

QI = ΣyA = 25 ( 80 × 20 ) + 7.5 ( 20 × 15 ) = 42 250 mm3 ,

or QI = 42.3 × 103 mm3 !

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.


COSMOS: Complete Online Solutions Manual Organization System

Area II

QII = ΣyA = − 32.5 ( 20 × 65 ) = 42 250 mm3 ,


or QII = 42.3 × 103 mm3 !

Note that Q( area ) = QI + QII = 0 which is expected as y = 0 and Q( area ) = yA since x is a centroidal axis.

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.


COSMOS: Complete Online Solutions Manual Organization System

Chapter 5, Solution 19.

(a) With Qx = Σ yA and using Fig. 5.8 A,

(

)

 2 r sin π − θ 
  r 2 π2 − θ  −
Qx =  3 π 2


θ


2



2
= r 3 cos θ − cos θ sin 2 θ
3

(

) ( 32 r sin θ )  12 × 2r cos θ × r sin θ 

(

)

or Qx =

(b) By observation, Qx is maximum when
and then

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.

2 3
r cos3 θ
3

θ =0
Qx =

2 3
r

3


COSMOS: Complete Online Solutions Manual Organization System

Chapter 5, Solution 20.

From the problem statement: F is proportional to Qx . Therefore:

FA
FB
=
, or
( Qx ) A ( Qx )B

FB =

( Qx )B
F
( Qx ) A A

For the first moments:

Then

( Qx ) A

12 

=  225 +  ( 300 × 12 ) = 831 600 mm3

2


( Qx )B

12 

= ( Qx ) A + 2  225 −  ( 48 × 12 ) + 2 ( 225 − 30 )(12 × 60 ) = 1 364 688 mm 3
2


FB =

1364688
( 280 N ) ,
831600

or FB = 459 N

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.


COSMOS: Complete Online Solutions Manual Organization System

Chapter 5, Solution 21.
Because the wire is homogeneous, its center of gravity will coincide with the centroid for the
corresponding line.


L, mm

x , mm

y , mm

xL, mm 2

yL, mm 2

1

400

200

0

80 000

0

2

300

400

150


120 000

45 000

3

600

100

300

60 000

180 000

4

150

− 200

225

− 30 000

33 750

5


200

−100

150

− 20 000

30 000

6

150

0

75

0

11 250

Σ

1800

210 000

300 000


Then

X =

ΣxL
210 000
=
= 116.667 mm
ΣL
1800

or X = 116.7 mm

and

Y =

ΣyL 300 000
=
= 166.667 mm
ΣL
1800

or Y = 166.7 mm

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.



COSMOS: Complete Online Solutions Manual Organization System

Chapter 5, Solution 22.

L, in.

x , in.

y , in.

xL, in 2

y , in 2

1

19

9.5

0

180.5

0

2

15


14.5

6

217.5

90

3

4

10

10

40

40

4

10

5

8

50


80

5

8

0

4

0

32

Σ

56

488

242

Then

X =

ΣxL
488
=
ΣL

56

or X = 8.71 in.

and

Y =

ΣyA 242
=
56
ΣA

or Y = 4.32 in.

Vector Mechanics for Engineers: Statics and Dynamics, 8/e, Ferdinand P. Beer, E. Russell Johnston, Jr.,
Elliot R. Eisenberg, William E. Clausen, David Mazurek, Phillip J. Cornwell
© 2007 The McGraw-Hill Companies.


×