Tải bản đầy đủ (.pdf) (129 trang)

Một số phương pháp giải bài toán cân bằng có cấu trúc (Luận án tiến sĩ)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (210.61 KB, 129 trang )

BỘ GIÁO DỤC ĐÀO TẠO
TRƯỜNG ĐẠI HỌC BÁCH KHOA HÀ NỘI
———————-

TRỊNH NGỌC HẢI

MỘT SỐ PHƯƠNG PHÁP GIẢI BÀI TOÁN CÂN BẰNG
CÓ CẤU TRÚC

LUẬN ÁN TIẾN SĨ TOÁN HỌC

Hà Nội - 2018


BỘ GIÁO DỤC ĐÀO TẠO
TRƯỜNG ĐẠI HỌC BÁCH KHOA HÀ NỘI
———————-

TRỊNH NGỌC HẢI

MỘT SỐ PHƯƠNG PHÁP GIẢI BÀI TOÁN CÂN BẰNG
CÓ CẤU TRÚC
Ngành: Toán học
Mã số: 9460101

LUẬN ÁN TIẾN SĨ TOÁN HỌC

CÁN BỘ HƯỚNG DẪN:
TS. Lê Quang Thủy
GS.TSKH. Phạm Kỳ Anh


Hà Nội - 2018


LỜI CAM ĐOAN

Tôi xin cam đoan những kết quả trình bày trong luận án này, dưới sự hướng
dẫn của TS. Lê Quang Thủy và GS. TSKH. Phạm Kỳ Anh, là trung thực và chưa
từng được công bố trong bất kỳ công trình của ai khác. Những kết quả viết chung
với thầy hướng dẫn và các cộng sự đã được sự đồng ý của các đồng tác giả khi
đưa vào luận án.

Hà nội, ngày 02 tháng 10 năm 2018
Nghiên cứu sinh

Thay mặt tập thể hướng dẫn

TS. Lê Quang Thủy

Trịnh Ngọc Hải

2


LỜI CẢM ƠN
Trước hết, tôi xin bày tỏ lòng biết ơn chân thành và sâu sắc tới hai thầy hướng
dẫn, TS. Lê Quang Thủy và đặc biệt GS. TSKH. Phạm Kỳ Anh. Tôi vô cùng biết
ơn sự giúp đỡ tận tình, quý báu mà hai thầy đã dành cho tôi trong suốt thời gian
làm nghiên cứu sinh. Hai thầy đã từng bước dẫn dắt, truyền cho tôi niềm đam
mê nghiên cứu cùng nhiều kinh nghiệm, kỹ năng, kiến thức quý báu, đồng thời
luôn động viên khích lệ để tôi vượt qua những thử thách trên bước đường làm

khoa học.
Tôi xin chân thành cảm ơn Viện Toán ứng dụng và Tin học, Viện Sau đại học,
trường Đại học Bách Khoa Hà Nội đã tạo điều kiện cho tôi có nhiều thời gian tập
trung nghiên cứu để hoàn thành luận án và khóa học nghiên cứu sinh. Công tác
quản lý đào tạo và môi trường nghiên cứu của Trường đã góp phần không nhỏ
để cho luận án này được hoàn thành đúng dự định.
Tôi xin gửi lời cảm ơn sâu sắc tới các thầy, các anh chị và các bạn trong nhóm
Xêmina liên cơ quan Đại học Khoa học Tự nhiên, Đại học Bách Khoa Hà Nội, Viện
nghiên cứu cao cấp về Toán. Nhóm đã tạo cho tôi nhiều cảm hứng trong nghiên
cứu khoa học và sự gắn bó với môi trường nghiên cứu. Đặc biệt, tôi xin gửi lời
cám ơn chân thành tới GS. TSKH. Lê Dũng Mưu. Thầy đã giúp đỡ tôi rất nhiều
về chuyên môn, gợi ý cho tôi những ý tưởng mới trong nghiên cứu.
Bản luận án này sẽ không thể hoàn thành nếu không có sự thông cảm, chia sẻ
và giúp đỡ của những người thân trong gia đình. Tôi xin bày tỏ lòng biết ơn sâu
sắc tới bố mẹ, các anh chị em trong hai bên gia đình nội ngoại. Đặc biệt xin cảm
ơn vợ và hai con gái yêu quý, những người đã vì tôi mà phải chịu nhiều thiệt thòi
vất vả; đã luôn cảm thông và sẻ chia gánh nặng cùng tôi suốt những năm tháng
qua để tôi có thể hoàn thành luận án này.

3


MỤC LỤC
Trang
Lời cam đoan

2

Lời cảm ơn


3

Mục lục

4

Bảng kí hiệu

6

Bảng các chữ viết tắt

7

Mở đầu

8

.

Chương 1 Một số kiến thức chuẩn bị
1.1 Các khái niệm và kết quả cơ bản . . . . . . . . . . . . . . . .
1.2 Bài toán cân bằng và mối liên hệ với các bài toán khác . . .
1.2.1 Bài toán bất đẳng thức biến phân . . . . . . . . . . . .
1.2.2 Bài toán cân bằng Nash trong trò chơi không hợp tác
1.2.3 Bài toán điểm yên ngựa . . . . . . . . . . . . . . . . .
1.3 Sự tồn tại và duy nhất nghiệm của bài toán cân bằng . . . .

.
.

.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.

.
.

Chương 2 Bài toán cân bằng với song hàm phân rã thành tổng hoặc hiệu
các song hàm thành phần
2.1 Phân rã song hàm thành tổng của hai song hàm thành phần . . . .
2.1.1 Thuật toán phân rã tuần tự . . . . . . . . . . . . . . . . . . . .
2.1.2 Thuật toán phân rã song song . . . . . . . . . . . . . . . . . . .
2.1.3 Trường hợp song hàm chứa nhiễu . . . . . . . . . . . . . . . .
2.1.4 Thử nghiệm số và ứng dụng . . . . . . . . . . . . . . . . . . . .
2.2 Phân rã song hàm thành hiệu của hai song hàm thành phần . . . .
2.2.1 Thuật toán và sự hội tụ . . . . . . . . . . . . . . . . . . . . . . .
2.2.2 Thử nghiệm số . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.3 Phương pháp phân rã kết hợp ergodic . . . . . . . . . . . . . . . . .
2.3.1 Phương pháp ergodic-phân rã tuần tự . . . . . . . . . . . . . .
2.3.2 Phương pháp ergodic-phân rã song song . . . . . . . . . . . .
2.3.3 Thử nghiệm số . . . . . . . . . . . . . . . . . . . . . . . . . . .

.
.
.
.
.
.

16
16
20
20
22

22
23

.
.
.
.
.
.
.
.
.
.
.
.

27
28
31
35
37
39
46
47
51
55
55
60
63


Chương 3 Bài toán cân bằng hai cấp
67
3.1 Phương pháp chiếu dưới đạo hàm cho bài toán cân bằng hai cấp . . . 68
4


3.1.1 Thuật toán và sự hội tụ . . . . . . . . . . . . . . . . . . . . . . .
3.1.2 Áp dụng cho bài toán EP( f , Fix ( T )) . . . . . . . . . . . . . . .
3.1.3 Thử nghiệm số và ứng dụng . . . . . . . . . . . . . . . . . . . .
3.2 Phương pháp ánh xạ co cho bài toán EP( f , Fix ( T )) . . . . . . . . . .
3.2.1 Tính co của ánh xạ nghiệm Uλ . . . . . . . . . . . . . . . . . .
3.2.2 Thuật toán ánh xạ co cho bài toán cân bằng trên tập điểm bất
động . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.2.3 Thử nghiệm số . . . . . . . . . . . . . . . . . . . . . . . . . . .
Chương 4 Nghiệm chung của họ hữu hạn bài toán cân bằng và bài toán
điểm bất động
4.1 Tìm nghiệm chung của họ hữu hạn các bài toán cân bằng và điểm
bất động . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.1.1 Thuật toán Armijo lai ghép . . . . . . . . . . . . . . . . . . . .
4.1.2 Thử nghiệm số . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.2 Tìm nghiệm chung của họ hữu hạn các bài toán cân bằng và bài toán
điểm bất động của nửa nhóm không giãn . . . . . . . . . . . . . . .
4.2.1 Thuật toán đạo hàm tăng cường lai ghép . . . . . . . . . . . .
4.2.2 Thử nghiệm số . . . . . . . . . . . . . . . . . . . . . . . . . . .

.
.
.
.
.


68
75
76
82
82

. 87
. 92

96
. 97
. 97
. 109
. 113
. 114
. 118

Kết luận

121

Danh mục công trình khoa học của tác giả liên quan đến luận án

122

Tài liệu tham khảo

123


5


BẢNG KÍ HIỆU

R
R+
H
⟨ x, y⟩
∥x∥
xn → x
xn ⇀ x
Rn
l2
PC ( x )
NC ( x )
∂g( x )
∂2 f ( x, x )
S:C→H
Fix (S)
VI( A, C )
Sol ( A, C )
EP( f , C )
Sol ( f , C )
EPS ( f , C )
EPD ( f , C )



Tập hợp các số thực

Tập hợp các số thực không âm
Không gian Hilbert thực
Tích vô hướng của hai véc tơ x và y
Chuẩn của vectơ x trong không gian Hilbert H
Dãy { x n } hội tụ mạnh tới x
Dãy { x n } hội tụ yếu tới x
Không gian Hilbert thực n chiều với tích vô hướng
⟨ x, y⟩ := ∑in=1 xi yi , trong đó x = ( x1 , . . . , xn ) , y = (y1 , . . . , yn ) ∈ Rn
Không gian Hilbert thực các dãy khả tổng bậc hai với tích vô hướng
⟨ x, y⟩ := ∑i∞=1 xi yi , trong đó x = ( x1 , x2 , . . .), y = (y1 , y2 , . . .) ∈ l 2
Phép chiếu vuông góc của x ∈ H lên tập C, tức
PC ( x ) := argminy∈C ∥y − x ∥
Nón pháp tuyến ngoài của tập lồi C tại x, tức
NC ( x ) := {w ∈ H : ⟨w, y − x ⟩ ≤ 0 ∀y ∈ C }
Dưới vi phân của hàm g tại x, là tập
∂g( x ) := {w ∈ H : ⟨w, y − x ⟩ ≤ g(y) − g( x ) ∀y ∈ H }
Dưới vi phân của hàm f ( x, .) tại x
Ánh xạ S từ tập C vào H
Tập điểm bất động của ánh xạ S
Bài toán bất đẳng thức biến phân của toán tử A trên C
Tập nghiệm của bất đẳng thức biến phân cho toán tử A trên C
Bài toán cân bằng của song hàm f trên C
Tập nghiệm của bài toán cân bằng cho song hàm f trên C
Bài toán cân bằng với song hàm được phân rã thành tổng
hai song hàm thành phần f = f 1 + f 2
Bài toán cân bằng với song hàm được phân rã thành hiệu
hai song hàm thành phần f = f 1 − f 2
Tập rỗng
Kết thúc chứng minh


6


BẢNG CÁC CHỮ VIẾT TẮT

BEP
CDMA
DEP
EP
FP
NCP
OP
SP
VI

Bài toán cân bằng hai cấp
Mạng đa truy cập phân chia theo mã
Bài toán cân bằng đối ngẫu
Bài toán cân bằng
Bài toán điểm bất động
Bài toán bù phi tuyến
Bài toán tối ưu
Bài toán yên ngựa
Bài toán bất đẳng thức biến phân

7


MỞ ĐẦU


Cân bằng (equilibria) thường được hiểu như là một trạng thái đồng đều giữa
các quá trình hoặc lực lượng đối lập. Trong Cơ học, hệ vật đạt được trạng thái
cân bằng khi tổng các lực tác động vào hệ vật đó bằng 0. Trong Sinh học, một hệ
sinh thái ở trạng thái cân bằng khi số loài thú mồi và săn mồi đạt được tỉ lệ tương
đồng nhau. Cân bằng là một trạng thái rất quan trọng của vạn vật. Mọi sự tồn tại
trong tự nhiên muốn bền vững, phải đạt được trạng thái này.
Trong Toán học, mô hình cân bằng có thể được xem như mở rộng của mô hình
tối ưu hóa với nhiều chủ thể tham gia. Mỗi chủ thể có mục tiêu khác nhau, thậm
chí đối lập nhau. Do đó, rất khó tìm được một phương án tối ưu cho tất cả các
chủ thể. Trong tình huống này, mô hình cân bằng tỏ ra phù hợp, để giải quyết các
mâu thuẫn về lợi ích.
Cho C là tập lồi, đóng, khác rỗng trong không gian Hilbert thực H, f : C × C →
R là song hàm thỏa mãn tính chất cân bằng f ( x, x ) = 0 với mọi x ∈ C. Xét bài
toán
tìm x ∗ ∈ C sao cho f ( x ∗ , y) ≥ 0 ∀y ∈ C.
(EP( f , C ))
Bài toán EP( f , C ) được H. Nikaido và K. Isoda [60] đề xuất lần đầu vào năm 1955
nhằm tổng quát hóa bài toán cân bằng Nash. Năm 1972, nó tiếp tục được Ky Fan
nghiên cứu dưới dạng bất đẳng thức minimax [31]. Tên gọi Bài toán cân bằng
được GS. Lê Dũng Mưu và W. Oettli đưa ra vào năm 1992 [55]. Điểm lý thú của
bài toán này là nó bao hàm một loạt các bài toán riêng lẻ khác nhau trong một
thể thống nhất, chẳng hạn như bài toán tối ưu, bài toán cân bằng Nash, bài toán
điểm bất động, bất đẳng thức biến phân, bài toán điểm yên ngựa . . . Ví dụ, khi
chọn f ( x, y) := g(y) − g( x ), trong đó g : C → R, bài toán EP( f , C ) sẽ trở thành
bài toán tối ưu
tìm x ∗ ∈ C sao cho g( x ∗ ) ≤ g(y)

∀y ∈ C.

(OP( g, C ))


Trong trường hợp f ( x, y) := ⟨ Fx, y − x ⟩, với F : C → C là một ánh xạ, bài toán
cân bằng sẽ trở thành bài toán bất đẳng thức biến phân
tìm x ∗ ∈ C sao cho ⟨ Fx ∗ , y − x ∗ ⟩ ≥ 0
8

∀y ∈ C.

(VI( F, C ))


Mặt khác, các phương pháp giải và kết quả nghiên cứu của từng bài toán riêng
lẻ nói trên có thể được mở rộng và tổng quát hóa để áp dụng trở lại cho bài toán
cân bằng.
Các nghiên cứu về bài toán EP( f , C ) có thể tạm chia thành hai hướng: các
nghiên cứu định tính bao gồm nghiên cứu sự tồn tại nghiệm, cấu trúc tập nghiệm,
sự ổn định nghiệm [10, 12, 30, 45, 54] và các nghiên cứu định lượng, bao gồm đề
xuất các giải thuật, nghiên cứu tốc độ hội tụ của các thuật toán [6,7,15,28,32,44,57,
65,70], áp dụng bài toán cân bằng vào thực tế [36,38,64]. Trong các hướng nghiên
cứu trên, việc đề xuất các thuật giải cho bài toán cân bằng chiếm một tỉ trọng
lớn. Hai phương pháp chính để giải bài toán cân bằng là phương pháp điểm gần
kề [8] và phương pháp chiếu tổng quát [65]. Phương pháp điểm gần kề (PPM Proximal Point Method) bao gồm việc giải một bài toán cân bằng hiệu chỉnh tại
f
mỗi bước lặp. Giả sử tại bước lặp k, biết x k , ta tính xấp xỉ tiếp theo x k+1 = Jλ ( x k ),
f

trong đó, Jλ là giải thức của song hàm f với tham số λ > 0, được cho bởi:
{
}
1

f
Jλ ( x ) = z ∈ H : f (z, y) + ⟨y − z, z − x ⟩ ≥ 0 ∀y ∈ C , x ∈ H.
λ

(0.1)

Với giả thiết f đơn điệu, lồi và nửa liên tục dưới theo biến thứ hai, hê-mi liên tục
f
theo biến thứ nhất, ánh xạ Jλ là đơn trị và không giãn. Tuy nhiên, nếu f thuộc
lớp hàm đơn điệu tổng quát hơn, chẳng hạn f là giả đơn điệu, thì bài toán cân
f
bằng trong (0.1) không còn đơn điệu mạnh, và do đó, Jλ , nói chung, là không đơn
trị. Vì vậy, phương pháp PPM không thể áp dụng trong trường hợp này. Ngoài
ra, thao tác giải bài toán cân bằng phụ tại mỗi bước lặp khiến cho phương pháp
PPM khá phức tạp về mặt tính toán. Phương pháp chiếu tổng quát có thể khắc
phục các nhược điểm này của PPM. Tại bước lặp k, giả sử biết x k , ta tính xấp xỉ
f
f
tiếp theo x k+1 = Uλ ( x k ), trong đó, Uλ là ánh xạ nghiệm của song hàm f với tham
số λ > 0, được cho bởi
{
}
1
f
2
(0.2)
Uλ = argmin λ f ( x, y) + ∥y − x ∥ : y ∈ C .
2
Với giả thiết song hàm f lồi, nửa liên tục dưới theo biến thứ hai, bài toán tối ưu
f

f
trong (0.2) là lồi mạnh, và do đó, Uλ đơn trị. Hơn nữa, việc tính Uλ đơn giản hơn
f

rất nhiều so với tính Jλ . Trong trường hợp f ( x, y) = ⟨ Fx, y − x ⟩, với F là ánh xạ
trên C, phương pháp chiếu tổng quát cho bài toán cân bằng quay trở về phương
pháp chiếu truyền thống cho bài toán bất đẳng thức biến phân, có dạng
(
)
k +1
k
k
x
= PC x − λFx ,

trong đó, PC là phép chiếu lên C. Đây có thể coi là phương pháp cơ bản và đơn
giản nhất cho bài toán VI(F, C). Năm 2014, Phạm Duy Khánh và Phan Tú Vượng
[43] đã chứng minh phương pháp này hội tụ tuyến tính tới nghiệm duy nhất của
9


bài toán VI(F, C) với giả thiết F giả đơn điệu mạnh và liên tục Lipschitz trên C.
Trong luận án, chúng tôi sẽ mở rộng kết quả này cho bài toán cân bằng.
Để giảm nhẹ điều kiện đặt lên song hàm f , các tác giả trong [65] đã đề xuất
phương pháp đạo hàm tăng cường cho bài toán cân bằng:

{
}
 yk = argmin λ f ( x k , y) + 1 ∥y − x k ∥2 : y ∈ C
2

}
{
 x k+1 = argmin λ f (yk , y) + 1 ∥y − x k ∥2 : y ∈ C .
2
Phương pháp này được tổng quát hóa từ phương pháp tương ứng cho bài toán
điểm yên ngựa [48]. Với giả thiết song hàm f giả đơn điệu, thỏa mãn điều kiện
Lipschitz, thuật toán đạo hàm tăng cường hội tụ yếu tới nghiệm của bài toán
EP( f , C ).
Đặc điểm chung của các phương pháp giải xấp xỉ bài toán cân bằng là chúng
sinh ra một dãy lặp hội tụ tới nghiệm của bài toán. Nói chung, trên mỗi bước lặp
của thuật toán, ta cần giải một bài toán phụ. Chi phí tính toán để giải các bài toán
phụ này là một trong những yếu tố chính ảnh hưởng đến tính hiệu quả và tốc
độ của thuật toán. Một trong những ý tưởng để giảm chi phí tính toán cho các
bài toán phụ là phân rã song hàm f ban đầu thành tổng hoặc hiệu các song hàm
thành phần: f = f 1 ± f 2 . Khi đó, thay vì xử lí song hàm f , ta chỉ cần làm việc
với từng song hàm thành phần. Ý tưởng này đặc biệt hữu ích khi song hàm f có
dạng phức tạp, trong khi các song hàm thành phần có các dạng đơn giản hoặc
đặc biệt. Phương pháp phân rã đã được áp dụng rộng rãi cho các bài toán tối ưu
và bất đẳng thức biến phân [9, 37] và thu được các kết quả rất đáng khích lệ. Tuy
nhiên, trong trường hợp của bài toán cân bằng, các kết quả thu được của phương
pháp này vẫn còn rất hạn chế. Năm 2009, để giải bài toán cân bằng EP( f , C) với
f = f 1 + f 2 , Moudafi [53] đã đề xuất phương pháp phân rã sau:

n
n n
n+1 theo công thức


Giả sử biết x , tính y , z và x



f1 n

n

y = Jrn ( x ),
f

zn = Jrn2 ( x n ),




n
n


 x n +1 = y + z ,
2

trong đó, rn > 0 thỏa mãn điều kiện




n =0

n =0

∑ rn = ∞, ∑ rn2 < ∞.


Với giả thiết các song hàm f 1 , f 2 đơn điệu, tác giả đã chứng minh dãy ergodic
của { x n } hội tụ yếu tới nghiệm của bài toán. Có thể thấy nhược điểm chính của
phương pháp này là tại mỗi bước lặp, ta cần tính giải thức của hai song hàm f 1
và f 2 . Như đã phân tích ở trên, đây là các thao tác rất đắt về mặt tính toán, do đó,
10


ảnh hưởng nhiều đến tốc độ của thuật toán. Để khắc phụ nhược điểm này, chúng
tôi sẽ đề xuất các phương pháp phân rã kiểu mới cho bài toán cân bằng. Khác với
các thuật toán phân rã đã có trong [15, 53], tại mỗi bước lặp, thay vì phải tính giải
thức của các song hàm thành phần, chúng tôi chỉ cần giải các bài toán quy hoạch
lồi mạnh, có chi phí tính toán rẻ hơn rất nhiều. Hơn nữa, do không sử dụng giải
thức của các song hàm thành phần, nên điều kiện đơn điệu đặt lên các song hàm
này cũng được loại bỏ.
Khi áp dụng bài toán cân bằng vào trong thực tế, ta có thể gặp tình huống
tập ràng buộc của bài toán không được cho dưới dạng hiển. Chẳng hạn, trong
[38–40], các tác giả nghiên cứu bài toán điều khiển công suất của mạng viễn
thông CDMA. Mô hình này được miêu tả bởi bài toán cân bằng với tập ràng buộc
cho bởi tập điểm bất động của ánh xạ không giãn T:
tìm x ∗ ∈ Fix ( T ) sao cho f ( x ∗ , y) ≥ 0

∀y ∈ Fix ( T ),

(EP( f , Fix ( T )))

trong đó Fix ( T ) := {t ∈ C : T (t) = t}. Bài toán nói trên chính là một trường hợp
riêng của bài toán cân bằng hai cấp, tức là bài toán cân bằng với tập ràng buộc là
tập nghiệm của một bài toán cân bằng khác
tìm x ∗ ∈ Sol ( g, C ) sao cho f ( x ∗ , y) ≥ 0

với Sol ( g, C ) := {t ∈ C : g(t, y) ≥ 0

∀y ∈ Sol ( g, C ),

(BEP( f , g, C ))

∀y ∈ C } ,

trong đó f , g là các song hàm cân bằng trên C. Mặc dù bài toán cân bằng hai cấp
rất thú vị và có nhiều ứng dụng trong thực tế, việc giải nó còn gặp nhiều khó
khăn. Một số trường hợp riêng của BEP( f , g, C) khi các bài toán cân bằng có dạng
bất đẳng thức biến phân, đã được xét đến trong [4,5,50]. Năm 2014, PGS. Nguyễn
Văn Quý [66] nghiên cứu bài toán:
Tìm x ∗ ∈ S := Sol ( g, C )



Fix ( T ) sao cho

f ( x∗ , y) ≥ 0

∀y ∈ S,

(BEP( f , g, T, C ))

với T : C → C là ánh xạ giả co và đề xuất giải bài toán này bằng phương pháp
điểm gần kề kết hợp với phép lặp Halpern:

g


uk = Jrk ( x k );




 tính wk ∈ ∂ f ( x k , .)( x k );







ξ k = x k − ρwk ;
x k +1

= αk

ξk

[

+ (1 − α k ) (1 − t k

)uk

+ tk

T (uk )


]
,

trong đó ρ > 0, {αk }, {tk }, {rk } ⊂ (0, ∞) là các dãy tham số. Với giả thiết song
hàm f đơn điệu mạnh, song hàm g đơn điệu, vi phân đường chéo theo biến thứ
hai của song hàm f liên tục Lipschitz trên C, PGS. Nguyễn Văn Quý đã chứng
11


minh dãy { x k } hội tụ mạnh tới nghiệm duy nhất của bài toán BEP( f , g, T, C). Tuy
g
nhiên, do phải tính giải thức Jrk tại mỗi bước lặp, phương pháp trên khá phức
tạp về mặt tính toán. Dựa trên các ý tưởng từ bài báo [50,70], chúng tôi sẽ đề xuất
một thuật toán mới, hiệu quả hơn để giải bài toán cân bằng hai cấp. Thay vì phải
tính giải thức của các song hàm f và g, chúng tôi chỉ cần tính các vectơ dưới đạo
hàm của chúng và thực hiện các phép chiếu lên tập ràng buộc C. Các thao tác này
g
có chi phí tính toán thấp hơn nhiều so với việc sử dụng ánh xạ Jλ .
f

Ánh xạ Uλ được định nghĩa trong (0.2) đóng vai trò là ánh xạ nghiệm của
bài toán cân bằng, theo nghĩa, x ∗ là nghiệm của EP( f , C ) khi và chỉ khi nó là
điểm bất động của ánh xạ này. Rất nhiều tác giả đã sử dụng nó để đề xuất các
thuật toán cho bài toán cân bằng [2, 3, 36, 56, 64, 65]. Tuy nhiên, theo hiểu biết
của tác giả, các nghiên cứu về ánh xạ này vẫn còn rất hạn chế. Trong trường hợp
f
f ( x, y) = ⟨ Fx, y − x ⟩ với F là ánh xạ trên C, Uλ có dạng
GλF :C → C
x → PC ( x − λFx ) .
Năm 2001, Yamada [82] đã chứng minh GλF là ánh xạ co với giả thiết F là đơn điệu

mạnh và liên tục Lipschitz. Từ đây, nảy sinh câu hỏi: "Liệu kết quả này có thể mở
f
rộng cho trường hợp của bài toán cân bằng? Liệu Uλ có là ánh xạ co khi song
hàm f thỏa mãn điều kiện đơn điệu mạnh và Lipschitz?" Câu trả lời sẽ được đưa
f
ra trong luận án. Cụ thể, chúng tôi sẽ chứng minh tính co của ánh xạ Uλ với các
giả thiết song hàm f đơn điệu mạnh và thỏa mãn điều kiện Lipschitz kiểu mới
và trên cơ sở đó, đề xuất thuật toán ánh xạ co cho bài toán EP( f , Fix ( T )).
Ngoài ra, việc kết hợp bài toán cân bằng và bài toán điểm bất động cũng là
một đề tài lý thú. Trong khi bài toán cân bằng mới chỉ được nghiên cứu tập trung
trong khoảng 20 năm gần đây, bài toán điểm bất động đã có lịch sử phát triển trên
100 năm. Có rất nhiều phương pháp lặp đã được đề xuất để tìm điểm bất động
của một hoặc một họ ánh xạ không giãn, ví dụ phương pháp lặp kiểu Halpern,
phương pháp lặp kiểu Mann [17]. . . . Bằng việc kết hợp hai bài toán nói trên, ta
tận dụng được các kĩ thuật đã có trong lý thuyết điểm bất động để đề xuất và
chứng minh tính hội tụ của các thuật toán mới cho bài toán cân bằng. Một trong
những chủ đề nhận được sự quan tâm của rất nhiều nhà khoa học là bài toán tìm
nghiệm chung của bài toán cân bằng và điểm bất động [2, 3, 36, 69]. Trong luận
án, chúng tôi nghiên cứu hai dạng mở rộng của bài toán này, đó là:

) 
(


tìm x ∈

n


Sol ( f i , C )






m


j =1

i =1

12

Fix ( Tj )

(0.3)


(


tìm x ∗ ∈

n


)
Sol ( f i , C )


i =1



(



)
Fix ( Ts ) ,

(0.4)

s ≥0

trong đó, f i , i = 1, . . . , n là các song hàm cân bằng trên C, Tj , j = 1, . . . , m là các
ánh xạ không giãn và { Ts }s≥0 là nửa nhóm không giãn trên C. Một số trường
hợp riêng của hai bài toán (0.3), (0.4) đã được nhiều tác giả khác nhau nghiên
cứu. Chẳng hạn, với m = n = 1, bài toán (0.3) trở thành
tìm x ∗ ∈ Sol ( f , C ) ∩ Fix ( T ).
Đây là bài toán đã được xét trong [3, 74]. Trong trường hợp các song hàm f i đồng
nhất bằng 0, hai bài toán nói trên trở thành bài toán tìm điểm bất động chung của
họ ánh xạ không giãn [1, 17, 72, 76]. Khó khăn chính khi đề xuất thuật toán cho
hai bài toán (0.3) và (0.4) là tại mỗi bước lặp, ta cần giải nhiều bài toán phụ của
các song hàm khác nhau, sau đó cần xử lý kết quả của các bài toán phụ này để
xây dựng giá trị xấp xỉ tiếp theo. Để giải quyết vấn đề này, kĩ thuật chiếu song
song tỏ ra đặc biệt có hiệu quả. Chúng tôi sẽ thực hiện các phép chiếu tổng quát
tương ứng với từng song hàm, trong số các kết quả thu được, ta chọn phần tử
cách xa giá trị xấp xỉ hiện tại nhất để làm cơ sở tính xấp xỉ tiếp theo. Kỹ thuật này
đã được sử dụng trong các công trình của GS. Phạm Kỳ Anh và cộng sự [1,35,36].

Chúng tôi sẽ tập trung nghiên cứu các nội dung sau:
• Xây dựng thuật toán cho bài toán cân bằng với song hàm được phân rã thành
tổng hoặc hiệu các song hàm thành phần.
• Xây dựng thuật toán cho bài toán cân bằng hai cấp cùng các trường hợp riêng
của nó.
• Xây dựng thuật toán tìm nghiệm chung của bài toán cân bằng và bài toán
điểm bất động của các ánh xạ không giãn.
Tất cả các thuật toán đề xuất trong luận án đều được chứng minh là hội tụ. Chúng
tôi cũng tiến hành một vài thử nghiệm số để so sánh các thuật toán mới với các
thuật toán đã có đồng thời áp dụng chúng vào một số mô hình thực tế. Ngoài
phần mở đầu, kết luận, danh mục các công trình đã công bố của tác giả có liên
quan đến luận án và danh mục tài liệu tham khảo, luận án gồm 4 chương. Các
kết quả chính được tập trung trong các Chương 2, 3 và 4.
Chương 1 trình bày một số kiến thức chuẩn bị và kết quả bổ trợ được sử dụng
trong luận án. Cụ thể, chương này nhắc lại các khái niệm và kết quả cơ bản của
giải tích lồi. Sau đó, các kết quả về sự tồn tại và duy nhất nghiệm cũng như cấu
trúc tập nghiệm của bài toán cân bằng được trình bày một cách sơ lược. Để thấy
được vai trò của bài toán cân bằng, chúng tôi trình bày mối liên hệ của bài toán
này với một số bài toán quan trọng khác trong giải tích phi tuyến như: bài toán
13


Luận án đủ ở file: Luận án full













×