Tải bản đầy đủ (.pdf) (75 trang)

Phép toán gần kề trong không gian Hilbert và ứng dụng

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (574.58 KB, 75 trang )

Header Page 1 of 128.

BỘ GIÁO DỤC VÀ ĐÀO TẠO
TRƯỜNG ĐẠI HỌC SƯ PHẠM HÀ NỘI 2

NGUYỄN CÔNG NGUYÊN

PHÉP TOÁN GẦN KỀ TRONG
KHÔNG GIAN HILBERT VÀ ỨNG DỤNG

LUẬN VĂN THẠC SĨ TOÁN HỌC

Hà Nội, 2018

Footer Page 1 of 128.


Header Page 2 of 128.

BỘ GIÁO DỤC VÀ ĐÀO TẠO
TRƯỜNG ĐẠI HỌC SƯ PHẠM HÀ NỘI 2

NGUYỄN CÔNG NGUYÊN

PHÉP TOÁN GẦN KỀ TRONG
KHÔNG GIAN HILBERT VÀ ỨNG DỤNG

LUẬN VĂN THẠC SĨ TOÁN HỌC
Chuyên ngành: Toán giải tích
Mã số: 8 46 01 02


Người hướng dẫn khoa học

PGS.TS. Nguyễn Năng Tâm

Hà Nội, 2018

Footer Page 2 of 128.


Header Page 3 of 128.

Lời cảm ơn
Tác giả xin chân thành cảm ơn PGS.TS. Nguyễn Năng Tâm, thầy
đã hướng dẫn tận tình, chu đáo để tác giả có thể hoàn thành bản luận
văn này một cách tốt nhất.
Tác giả cũng xin chân thành cảm ơn các thầy cô giáo ở Khoa Toán,
trường Đại học Sư phạm Hà Nội 2, đã tận tình trang bị kiến thức, giúp
đỡ tác giả trong quá trình học tập và nghiên cứu, giúp tác giả hoàn
thành luận văn một cách thuận lợi.
Nhân dịp này tôi xin được gửi lời cảm ơn chân thành tới gia đình, bạn
bè, đồng nghiệp đã luôn động viên, cổ vũ, và tạo mọi điều kiện tốt nhất
để tác giả hoàn thành khóa học của mình.
Hà Nội, tháng 8 năm 2018
Tác giả

Nguyễn Công Nguyên

i

Footer Page 3 of 128.



Header Page 4 of 128.

Lời cam đoan
Tôi xin cam đoan, luận văn thạc sĩ chuyên ngành Toán giải tích với đề
tài "Phép toán gần kề trong không gian Hilbert và ứng dụng"
được hoàn thành dưới sự hướng dẫn của PGS.TS. Nguyễn Năng Tâm và
bởi chính nhận thức của bản thân tác giả.
Trong suốt quá trình nghiên cứu thực hiện luận văn, tác giả đã kế thừa
những thành tựu của các nhà khoa học với sự trân trọng và biết ơn.
Hà Nội, tháng 8 năm 2018
Tác giả

Nguyễn Công Nguyên

ii

Footer Page 4 of 128.


Header Page 5 of 128.

Mục lục
Lời cảm ơn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

i

Lời cam đoan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .


ii

Một số kí hiệu thường dùng . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1

Mở đầu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2

Chương 1. Kiến thức chuẩn bị . . . . . . . . . . . . . . . . . . . . . . . . . .

4

1.1. Không gian Hilbert . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4

1.2. Tập lồi, hàm lồi. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7

1.3. Một số đạo hàm cổ điển . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

12

Chương 2. Phép toán gần kề . . . . . . . . . . . . . . . . . . . . . . . . . . .

17


2.1. Điểm gần nhất và nón pháp gần kề . . . . . . . . . . . . . . . . . . . . . . .

17

2.2. Dưới gradient gần kề . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

21

2.3. Định lý trù mật và nguyên lý cực tiểu . . . . . . . . . . . . . . . . . . . .

27

2.3.1. Định lý trù mật. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

27

2.3.2. Nguyên lý cực tiểu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

32

2.4. Hàm chập toàn phương, hàm khoảng cách và hàm Lipschitz . . .
33
2.4.1. Hàm chập toàn phương . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

33

2.4.2. Hàm khoảng cách . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

38


2.4.3. Hàm Lipschitz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

42

2.5. Quy tắc cộng và dưới gradient giới hạn gần kề . . . . . . . . . . . .

47

2.5.1. Quy tắc cộng . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

47

2.5.2. Dưới gradient giới hạn gần kề . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

53

Footer Page 5 of 128.


Header Page 6 of 128.

Chương 3. Ứng dụng . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

56

3.1. Bài toán tối ưu với ràng buộc là tập đóng. . . . . . . . . . . . . . . . .

56

3.2. Bài toán tối ưu với ràng buộc đẳng thức . . . . . . . . . . . . . . . . . .


59

3.3. Bài toán tối ưu với ràng buộc bất đẳng thức . . . . . . . . . . . . . .

65

Kết luận . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

68

Tài liệu tham khảo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

69

Footer Page 6 of 128.


Header Page 7 of 128.

Một số kí hiệu thường dùng
projS (x)

phép chiếu của điểm x lên trên tập S;

dS (x)

khoảng cách từ điểm x tới tập S;

NSP (x)


nón pháp tuyến gần kề tại x của S;

∂P f (x)

dưới gradient gần kề của f tại x;

domf

miền xác định của hàm f ;

epif

tập trên đồ thị của hàm f ;

F(U )

tập tất cả các hàm f : U → (−∞, ∞]
nửa liên tục dưới và không đồng nhất bằng +∞;

∂L f (x)

dưới gradient giới hạn gần kề;

NS (x)

nón pháp tuyến của S tại điểm x;

NSL (x)


nón pháp tuyến giới hạn của f tại x;

f (x; v)

đạo hàm theo hướng v của hàm f tại điểm x;

fG (x)

đạo hàm Gâteaux của f tại điểm x;

f (x)

đạo hàm Fréchet của f tại x;

IS (·)

hàm chỉ của tập S;

∇f (x)

vectơ gradient của f tại x;

L(X, Y )

tập tất cả các toán tử tuyến tính liên tục từ X vào Y ;

1

Footer Page 7 of 128.



Header Page 8 of 128.

Mở đầu
1. Lý do chọn đề tài
Giải tích biến phân là một bộ phận của toán học, được hình thành
và phát triển nhằm trang bị các công cụ để nghiên cứu các bài toán tối
ưu và những vấn đề có liên quan. Một mặt, các bài toán tối ưu thường
xuyên xuất hiện trong các khoa học ứng dụng. Mặt khác, giải quyết vấn
đề dựa vào tối ưu là một phương pháp hiệu quả trong toán học. Điều
này làm cho giải tích biến phân trở thành một lĩnh vực đáng quan tâm
xét theo cả góc độ lý thuyết lẫn góc độ ứng dụng.
Phép toán gần kề là một bộ phận của Giải tích biến phân có nhiều ứng
dụng trong lý thuyết cũng như trong thực tiễn. Việc nghiên cứu Phép
toán gần kề cùng những ứng dụng của nó là một chủ đề đã và đang được
nhiều tác giả trong và ngoài nước quan tâm. Vì vậy, sau khi được học
và nghiên cứu những kiến thức về Toán giải tích, với mong muốn tìm
hiểu sâu hơn về những kiến thức đã học và ứng dụng của chúng, dưới sự
định hướng của thầy hướng dẫn, tôi đã chọn đề tài nghiên cứu: “Phép
toán gần kề trong không gian Hilbert và ứng dụng” để thực hiện
luận văn tốt nghiệp chương trình đào tạo Thạc sĩ chuyên ngành Toán
giải tích.

2

Footer Page 8 of 128.


Header Page 9 of 128.


2. Mục đích nghiên cứu
Nghiên cứu Phép toán gần kề và ứng dụng của nó. Qua đó thấy được
tầm quan trọng của những kiến thức đã học và những ứng dụng của
chúng.

3. Nhiệm vụ nghiên cứu
Tìm hiểu và nghiên cứu Phép toán gần kề và ứng dụng của nó.

4. Đối tượng và phạm vi nghiên cứu
Đối tượng nghiên cứu: Phép toán gần kề và ứng dụng của nó.
Phạm vi nghiên cứu: Trong không gian Hilbert.

5. Phương pháp nghiên cứu
Sử dụng các phương pháp của Giải tích hàm, Giải tích không trơn và
Lý thuyết tối ưu. Thu thập tài liệu để nghiên cứu, phân tích tổng hợp
để giải quyết vấn đề luận văn đề cập tới.

6. Dự kiến đóng góp của luận văn
Dựa trên tài liệu [5], luận văn trình bày một cách có hệ thống về phép
toán gần kề trong không gian Hilbert và một số ứng dụng của nó trong
bài toán tối ưu có ràng buộc.

3

Footer Page 9 of 128.


Header Page 10 of 128.

Chương 1

Kiến thức chuẩn bị
Trong chương này, chúng tôi nhắc lại một số kết quả sẽ được dùng cho
các chương sau. Cụ thể, phần đầu chương nhắc lại một số kiến thức cơ
bản về không gian Hilbert và giải tích lồi. Phần sau đó, chúng tôi nhắc
lại một số khái niệm về đạo hàm và các kết quả liên quan. Nội dung
trong chương được trích dẫn chủ yếu từ các tài liệu tham khảo [1, 2, 3].

1.1. Không gian Hilbert
Định nghĩa 1.1 ([3]). Cho H là không gian vectơ trên trường R. Ta gọi
một tích vô hướng xác định trên H là một ánh xạ xác định như sau:
·, · : H × H −→ R
(x, y) −→

x, y

thỏa mãn các điều kiện sau đây:
a) x, y = y, x với mọi x, y ∈ H;
b) x + y, z = x, z + y, z với mọi x, y, z ∈ H;
c) λx, y = λ x, y với mọi x, y ∈ H, λ ∈ R;
d) x, x ≥ 0 với mọi x ∈ H và x, x = 0 khi và chỉ khi x = 0.
Số x, y được gọi là tích vô hướng của hai vectơ x và y. Cặp (H, ·, · )
được gọi là không gian tiền Hilbert.
4

Footer Page 10 of 128.


Header Page 11 of 128.

Từ định nghĩa ta thấy rằng tích vô hướng ·, · chính là một dạng

song tuyến tính xác định dương trên H. Khi đó H được gọi là không
gian tiền Hilbert thực.
Định lí 1.1 ([3]). Cho H là không gian tiền Hilbert với x, y ∈ H, khi đó
ta luôn có bất đẳng thức sau
| x, y |2 ≤ x, x y, y .
Bất đẳng thức ở Định lí 1.1 được gọi là bất đẳng thức Schwarz, trong
bất đẳng thức Schwarz dấu bằng xảy ra khi và chỉ khi x, y phụ thuộc
tuyến tính.
Định lí 1.2 ([3]). Cho H là không gian tiền Hilbert. Khi đó
x = x, x

1/2

x∈H

,

xác định một chuẩn trên H.
Nhờ định lí trên ta thấy rằng, một không gian tiền Hilbert được xem
như là một không gian định chuẩn, có thể đầy đủ hoặc không đầy đủ.
Định nghĩa 1.2 ([3]). Nếu H là một không gian tiền Hilbert và đầy đủ
đối với chuẩn cảm sinh từ tích vô hướng thì H được gọi là không gian
Hilbert.
Cũng tương tự như trường hợp không gian tiền Hibert, với trường R
thì ta có không gian Hilbert thực.
Ví dụ 1.1.

1. Rn là không gian Hilbert thực với tích vô hướng
n


x, y =

x i yi ,
i=1

trong đó x = (x1 , x2 , . . . , xn ) , y = (y1 , y2 , . . . , yn ) ∈ Rn .
5

Footer Page 11 of 128.


Header Page 12 of 128.

2. Xét không gian

2

l =

|xn |2 < +∞ .

x = (xn )n ⊂ K
n=1

Ta đã biết l2 là không gian Banach với chuẩn


|xn |2 .

x =


(1.1)

n=1

Với x = (xn )n∈N∗ , y = (yn )n∈N∗ ∈ l2 , nhờ bất đẳng thức
2



x n yn

2

≤ x

2

y

< +∞,

n=1

ta kiểm tra được rằng


x, y =

x n yn

n=1

xác định một tích vô hướng trong l2 và nó cảm sinh chuẩn trong
(1.1). Vậy l2 là một không gian Hilbert.
3. Cho (X, A, µ) là một không gian độ đo và E ∈ A. Xét không gian
L2 (E, µ) =

|f |2 dµ < ∞

f :E→R
E

ta đã biết L2 (E, µ) là một không gian Banach với chuẩn
|f |2 dµ

f =

1
2

.

E

Hơn nữa, với f, g ∈ L2 (E, µ), từ bất đẳng thức H¨older, ta có
2

|f | dµ

|f g| dµ ≤

E

1
2

2

|g| dµ

E

E

Ta dễ dàng kiểm tra được
f, g =

f g dµ,
E

6

Footer Page 12 of 128.

1
2

< +∞.


Header Page 13 of 128.


xác định một tích vô hướng trong L2 (E, µ) và L2 (E, µ) là không
gian Hilbert thực.
Định nghĩa 1.3 ([3]). Cho H là một không gian Hilbert. Dãy {xn }
trong H được gọi là hội tụ yếu đến phần tử x trong H nếu với mọi
y ∈ H ta có
lim xn , y = x, y .

n→∞
w

Khi đó ta viết xn −
→ x.
Định lí 1.3 ([3]). Giả sử H là không gian Hilbert
i) Nếu dãy {xn } hội tụ yếu đến x ∈ H và dãy {yn } hội tụ mạnh đến
y ∈ H thì dãy số { xn , yn } hội tụ đến x, y .
ii) Nếu dãy {xn } hội tụ yếu đến x ∈ H và dãy { xn } hội tụ mạnh
đến x thì dãy {xn } hội tụ mạnh đến x ∈ H.

1.2. Tập lồi, hàm lồi
Định nghĩa 1.4 ([1]). Cho hai điểm a, b ∈ H.
i) Một đường thẳng đi qua hai điểm a, b là tập hợp có dạng
{x ∈ H : x = αa + βb, α, β ∈ R, α + β = 1} .
ii) Đoạn thẳng nối hai điểm a, b trong H là tập hợp
{x ∈ H : x = αa + βb, α ≥ 0, β ≥ 0, α + β = 1} .
Định nghĩa 1.5 ([1]). Một tập D được gọi là tập affine nếu D chứa
mọi đường thẳng đi qua hai điểm bất kì x, y ∈ D, tức là
∀x, y ∈ D, ∀λ ∈ R =⇒ λx + (1 − λ)y ∈ D.
7


Footer Page 13 of 128.


Header Page 14 of 128.

Định nghĩa 1.6 ([1]). Cho a ∈ H là một vectơ khác 0 và α ∈ R. Tập hợp
x : aT x ≥ α được gọi là nửa không gian đóng và tập {x : aT x > α}
gọi là nửa không gian mở.
Định nghĩa 1.7 ([1]). Một tập D được gọi là tập lồi nếu với mọi a, b ∈ D
và mọi λ ∈ [0, 1], ta có
λa + (1 − λ)b ∈ D.
Định nghĩa 1.8 ([1]). Ta nói x là tổ hợp lồi của các điểm x1 , . . . , xk
nếu

k

x=

k

λj xj ,

λj ≥ 0, j = 1, . . . , k,

j=1

λj = 1.
j=1

Mệnh đề 1.1 ([1]). Tập hợp D là lồi khi và chỉ khi nó chứa mọi tổ hợp

lồi của các điểm của nó. Tức là, tập D là lồi khi và chỉ khi
k


∀k ∈ N , ∀λ1 , . . . , λk ≥ 0 :

k

λj = 1, ∀x1 , . . . , xk ∈ D =⇒
j=1

λj xj ∈ D.
j=1

Mệnh đề 1.2 ([1]). Nếu A, B, C là các tập lồi đóng trong H, thì các
tập sau là lồi
A ∩ B := {x|x ∈ A, x ∈ B};
αA + βB := {x|x = αa + βb, a ∈ A, b ∈ B, α, β ∈ R};
A × C := {x ∈ H × H|x = (a, c) : a ∈ A, c ∈ C}.
Định nghĩa 1.9 ([2]). Một tập D ⊂ H được gọi là nón nếu
∀x ∈ D, ∀λ > 0 ⇒ λx ∈ D.
Một nón được gọi là nón lồi nếu nó là nón và là một tập lồi.
8

Footer Page 14 of 128.


Header Page 15 of 128.

Định nghĩa 1.10 ([2]). Cho D ⊆ H là một tập lồi và x0 ∈ D. Tập

ND (x0 ) := w ∈ H : w, x − x0 ≤ 0, ∀x ∈ D ,
được gọi là nón pháp tuyến ngoài của D tại x0 và tập −ND (x0 ) được gọi
là nón pháp tuyến trong của D tại x0 .
Hiển nhiên 0 ∈ ND (x0 ) và dùng định nghĩa ta có ND (x0 ) là một nón
lồi đóng.
Định nghĩa 1.11 ([2]). Cho D là một tập lồi và f : D → R ∪ {+∞}.
Hàm f được gọi là:
• lồi trên D nếu
f (λx + (1 − λ)y) ≤ λf (x) + (1 − λ)f (y), ∀x, y ∈ D, 0 < λ < 1;
• lồi chặt nếu
f (λx + (1 − λ)y) < λf (x) + (1 − λ)f (y), ∀x, y ∈ D, x = y, 0 < λ < 1.
Hàm f được gọi là lõm (lõm chặt) nếu hàm −f là lồi (lồi chặt).
Hàm f : X → (−∞, +∞] được gọi là hàm có giá trị thực mở rộng.
Tập
domf := {x ∈ X : f (x) < ∞}.
gọi là miền xác định của f. Đồ thị và trên đồ thị trên của f được xác
định bởi
grf := {(x, f (x)) : x ∈ domf },
epif := {(x, r) ∈ domf × R : r ≥ f (x)}.
9

Footer Page 15 of 128.


Header Page 16 of 128.

Các tập này đóng nếu hàm f là nửa liên tục dưới. Nhắc lại rằng f :
X → (−∞, +∞] nửa liên tục dưới tại x nếu
lim inf f (x ) ≥ f (x).
x →x


Tương đương với mọi

> 0, tồn tại δ > 0 sao cho y ∈ B(x; δ) nghĩa là

f (y) ≥ f (x) − , trong đó ∞ − r là ∞ khi r ∈ R.
Hàm f là nửa liên tục trên tại x nếu −f là nửa liên tục dưới tại x.
Hơn nữa, một hàm f liên tục tại x ∈ X, x hữu hạn và với mọi

> 0,

tồn tại δ > 0 sao cho y ∈ B(x; δ) hay |f (x) − f (y)| ≤ . Với f có giá trị
hữu hạn, thì f là nửa liên tục trên và nửa liên tục dưới tại x.
Nếu f là nửa liên tục dưới (tương ứng, nửa liên tục trên, liên tục) tại
mọi x thuộc U ⊂ X mở, thì f được gọi là nửa liên tục dưới (tương ứng,
nửa liên tục trên, liên tục) trên U.
Ví dụ 1.2. Hàm a-phin f (x) := aT x + α, trong đó a ∈ H, α ∈ R. Dễ
dàng kiểm tra được f là một hàm vừa lồi vừa lõm trên toàn không gian.
Khi α = 0, thì hàm này được gọi là hàm tuyến tính.
Định lí 1.4 ([2]). Cho f và g là hai hàm lồi trên tập lồi và D tương ứng.
Khi đó các hàm số αf + βg với α, β là các hằng số dương và max{f, g}
cũng lồi trên D.
Một hàm lồi có thể không liên tục tại một điểm trên biên miền xác
định của nó, tuy nhiên nó liên tục tại mọi điểm trong của tập đó theo
định lí sau
Định lí 1.5 ([2]). Một hàm lồi f xác định trên tập lồi D thì f liên tục
tại mọi điểm trong của D.
10

Footer Page 16 of 128.



Header Page 17 of 128.

Ta ký hiệu F(D), trong đó S ⊆ X là mở, là lớp các hàm f : X →
(−∞, ∞] nửa liên tục dưới trên tập D và domf ∩ D = ∅. Nếu D = X,
ký hiệu F thay cho F(X).
Gọi S là tập con của X. Hàm chỉ của S, được cho bởi IS (·) hoặc
I(·; S), là hàm được xác định bởi


0
IS (x) :=

+∞

nếu x ∈ S,
nếu x ∈
/ S.

Mệnh đề sau đây cho ta một số tính chất cơ bản khác của hàm lồi. Chú
ý rằng X ×R, là không gian trong đó có epif , luôn luôn được xem như là
một không gian Hilbert với tích vô hướng (x, r), (x , r ) := x, x + rr .
Mệnh đề 1.3. Giả sử f : X → (−∞, +∞].
(a) Hàm f là nửa liên tục trên trong X nếu và chỉ nếu epif là đóng
trong X × R, hoặc nếu và chỉ nếu mỗi tập {x : f (x) ≤ r}, đóng,
r ∈ R. Lưu ý rằng grf không nhất thiết đóng khi f là nửa liên tục
dưới.
(b) Hàm f là lồi trên X nếu và chỉ nếu epif là tập con lồi của X × R.
(c) Khi f là một hàm chỉ, f = IS , f ∈ F(X) nếu S khác rỗng và đóng,

thì f lồi nếu S lồi.
P
(d) Giả sử rằng (ζ, −λ) ∈ X × R thuộc Nepif
(x, r) với (x, r) ∈ epif ,

trong đó f ∈ F. Khi đó λ ≥ 0, r = f (x) nếu λ > 0, và λ = 0 nếu
P
r > f (x). Trong trường hợp này, ta có (ζ, 0) ∈ Nepif
(x, f (x)).

(e) Tồn tại f ∈ F(R) liên tục sao cho với mỗi x chúng ta có (1, 0) ∈
P
Nepif
(x, f (x)).

11

Footer Page 17 of 128.


Header Page 18 of 128.

(f) Nếu S = epif , trong đó f ∈ F, với mọi x, thì dS (x, r) là hàm không
tăng của r.

1.3. Một số đạo hàm cổ điển
Trong mục này, chúng tôi nhắc lại một số khái niệm về đạo hàm và
tính chất của đạo hàm trong không gian Hilbert X.
Định nghĩa 1.12. Cho f là phiếm hàm xác định trên X. Đạo hàm theo
hướng v ∈ X của f tại x ∈ domf được định nghĩa là

f (x + tv) − f (x)
,
t→0
t

f (x; v) := lim

(1.2)

trong đó giới hạn tồn tại.
Định nghĩa 1.13. Ta nói rằng f khả vi Gâteaux tại x, nếu giới hạn (1.2)
tồn tại với mọi v ∈ X, và tồn tại duy nhất phần tử duy nhất fG (x) ∈ X
thỏa mãn
f (x; v) := fG (x), v ∀v ∈ X.

(1.3)

Khi đó, ta gọi fG (x) ∈ X là đạo hàm Gâteaux của f tại x.
Một phiếm hàm có thể có đạo hàm theo hướng tại x theo mọi hướng
nhưng không tồn tại đạo hàm Gâteaux, chẳng hạn f (x) = x tại x = 0.
Khi đó, đạo hàm theo hướng v bất kì tại 0 là f (0; v) = v . Ngoài ra,
các hàm nửa liên tục dưới có thể có đạo hàm Gâteaux tại x nhưng chưa
chắc liên tục tại điểm này.
Định nghĩa 1.14. Giả sử (1.3) đúng tại điểm x, và giới hạn trong (1.2)
hội tụ đều theo v trên các tập con bị chặn của X. Khi đó ta nói f khả
12

Footer Page 18 of 128.



Header Page 19 of 128.

vi Fréchet tại x, ký hiệu f (x) là đạo hàm Fréchet thay cho fG (x). Điều
này có nghĩa là, với mọi r > 0 và > 0, tồn tại δ > 0 sao cho
f (x + tv) − f (x)
− f (x), v
t

<

thỏa mãn với mọi |t| < δ và v ≤ r.
Từ các định nghĩa trên ta thấy rằng, nếu f khả vi Fréchet tại x thì
f cũng khả vi Gâteaux tại x. Hơn nữa, nếu f khả vi Fréchet tại x thì f
cũng liên tục tại điểm này, tuy nhiên điều này có thể không còn đúng
cho tính khả vi Gâteaux.
Mệnh đề 1.4. Giả sử f, g : X → R có đạo hàm Fréchet tại x ∈ X. Khi
đó, f ± g, f g và f /g (g(x) = 0) có đạo hàm Fréchet tại x và khi đó:
a) (f ± g) (x) = f (x) ± g (x);
b) (f g) (x) = f (x)g(x) + f (x)g (x);
c)

f
g

(x) =

f (x)g(x) − f (x)g (x)
.
g 2 (x)


Tương tự như đối với đạo hàm cổ điển, ta cũng có tính chất quan
trọng về định lý giá trị trung bình đối với đạo hàm Gâteaux.
Định lí 1.6. Giả sử f ∈ F(X) là khả vi Gâteaux trên một tập mở chứa
đoạn thẳng [x, y] := {tx + (1 − t)y : 0 ≤ t ≤ 1}, ở đó x, y ∈ X. Tức là,
tồn tại tập U mở chứa [x, y] sao cho f khả vi tại mọi điểm của U. Khi
đó tồn tại z := tx + (1 − t)y, 0 < t < 1, sao cho
f (y) − f (x) = fG (z), y − x .

13

Footer Page 19 of 128.


Header Page 20 of 128.

Tiếp theo, ta mở rộng các khái niệm đạo hàm cho các ánh xạ giữa
hai không gian Hilbert. Giả sử X1 , X2 là không gian Hilbert với chuẩn
tương ứng là

·

1,

·

2,

và ánh xạ F : X1 → X2 . Ký hiệu L(X1 , X2 )

là ánh xạ tuyến tính bị chặn từ X1 đến X2 với chuẩn của toán tử thông

thường. Trường hợp X2 = R, thì L(X1 , R) đồng nhất với X1 .
Định nghĩa 1.15. Cho x ∈ X1 . Đạo hàm Gâteaux của F tại x là phần
tử FG (x) ∈ L(X1 , X2 ) thỏa mãn
lim
t→0

F (x + tv) − F (x)
− FG (x)(v)
t

= 0,
2

với mọi v ∈ X1 .
Nếu giới hạn trên là đều theo v trên các tập bị chặn của X1 , thì F
khả vi Fréchet và ký hiệu F (x) thay cho FG (x).
Tương tự như trường hợp vô hướng, đạo hàm của tổng hai ánh xạ từ
X1 đến X2 là tổng của các đạo hàm.
Chúng ta có quy tắc đạo hàm của hàm hợp sau đây.
Định lí 1.7. Giả sử X1 , X2 và X3 là các không gian Hilbert, và F :
X1 → X2 , G : X2 → X3 . Giả sử rằng F , G tương ứng khả vi Fréchet tại
x ∈ X1 và F (x) ∈ X2 . Khi đó, G ◦ F : X1 → X3 khả vi Fréchet tại x và
(G ◦ F ) (x) = G (F (x))F (x),
trong đó G (F (x))F (x) ∈ L(X1 , X3 ) là hợp thành của F (x) với G (F (x)).
Giả sử U ⊂ X mở và f : U → R khả vi Fréchet trên U. Nếu f (·) :
U → X liên tục trên U , ta nói rằng f là C 1 trên U , và viết f ∈ C 1 (U ).

14

Footer Page 20 of 128.



Header Page 21 of 128.

Định lí 1.8. Giả sử ánh xạ f (·) : U → X khả vi Fréchet trên U, có đạo
hàm tại x ∈ U ký hiệu là f (x) ∈ L(X, X). Khi đó, với mỗi x ∈ U , thì
f có khai triển Taylor bậc hai địa phương tại x, nghĩa là tồn tại lân cận
B(x; η) của x sao cho mỗi y ∈ B(x; η) ta có
f (y) = f (x) + f (x), y − x +

1
f (z)(y − x), y − x ,
2

trong đó z ∈ [x, y].
Nếu chuẩn f (y) bị chặn với y ∈ B(x; η) bởi hằng số 2σ > 0, thì
f (y) ≥ f (x) + f (x), y − x − σ y − x

2

(1.4)

với mọi y ∈ B(x; η).
Nếu f : X → L(X, X) liên tục trên U , khi đó f khả vi liên tục cấp
hai trên U , và ký hiệu f ∈ C 2 (U ), hoặc f ∈ C 2 nếu U = X.
Chú ý rằng nếu f ∈ C 2 (U ), thì với mỗi x ∈ U tồn tại lân cận B(x; η)
và hằng số σ để (1.4) đúng, vì f liên tục tại x nên chuẩn của f bị chặn
trong lân cận của x.

Kết luận chương 1


Trong chương này chúng tôi nhắc lại các khái niệm cơ bản về giải tích
lồi trong không gian Hilbert. Các nội dung chính của chương này bao
gồm:
• Các khái niệm cơ bản của không gian Hilbert;
• Các khái niệm về tập lồi, hàm lồi và một số tính chất của tập lồi,
hàm lồi;
15

Footer Page 21 of 128.


Header Page 22 of 128.

• Các khái niệm đạo hàm cổ điển và các phép toán về đạo hàm.

16

Footer Page 22 of 128.


Header Page 23 of 128.

Chương 2
Phép toán gần kề
Trong chương này, chúng tôi trình bày về phép toán gần kề trong
không gian Hilbert. Các nội dung trình bày trong chương này chủ yếu
dựa trên chương 1 của tài liệu [5].

2.1. Điểm gần nhất và nón pháp gần kề

Cho X là không gian Hilbert thực, và S là tập con khác rỗng của X.
Định nghĩa 2.1. ([5, tr. 22]). Giả sử x là một điểm không nằm trong
S. Nếu tồn tại một điểm s ∈ S có khoảng cách đến x là nhỏ nhất, thì ta
gọi s là điểm gần nhất hoặc hình chiếu của x trên S.
Lưu ý rằng, một điểm x có thể có nhiều điểm gần nhất. Khi đó, tập
hợp tất cả các điểm gần nhất của x trên S được ký hiệu projS (x).
¯
Ta có s ∈ projS (x) nếu và chỉ nếu {s} ⊂ S ∩ B(x;
x − s ) và S ∩
B(x; x − s ) = ∅ (xem Hình 2.1 dưới đây).
Định nghĩa 2.2. ([5, tr. 22]).
a) Cho s là điểm gần nhất của x trên S. Khi đó, véctơ x − s được
gọi là một hướng pháp tuyến gần kề của S tại s. Mọi véctơ ζ =
t(x − s), t ≥ 0 được gọi là pháp tuyến gần kề (hoặc P -pháp tuyến)
của S tại s.
17

Footer Page 23 of 128.


Header Page 24 of 128.

Hình 2.1: Tập S và một số điểm biên của S.

b) Tập hợp tất cả các pháp tuyến gần kề ζ có thể có của S tại s được
gọi là nón pháp tuyến gần kề của S tại s, và được ký hiệu NSP (s).
Ta thấy, NSP (s) thực sự là một nón vì nó đóng với phép nhân với vô
hướng không âm.
Giả sử s ∈ S sao cho s ∈
/ projS (x) với mọi x ∈

/ S. Khi đó ta đặt
NSP (s) = {0}. Ta không xét NSP (s) nếu s ∈
/ S.
Trong Hình 2.1, tại các điểm s3 và s5 có các nón pháp tuyến gần kề
bằng {0}, và các điểm s1 , s2 , s7 , s8 có ít nhất hai vectơ độc lập trong
các nón pháp tuyến gần kề của chúng. Các điểm biên còn lại của S có
nón pháp tuyến gần kề là một véctơ khác không duy nhất.
Ví dụ 2.1. Cho X là không gian Hilbert với cơ sở trực giao, đếm được

18

Footer Page 24 of 128.


Header Page 25 of 128.

{ei }∞
i=1 , và tập hợp
S :=

i+1
ei : i ≥ 1 .
i

Khi đó S đóng, và projS (0) = ∅.
Bây giờ giả sử rằng s ∈ projS (x), theo định nghĩa ta thấy điều này
tương đương với
x−s

≥ x−s ,


∀s ∈ S.

Nếu ta bình phương hai vế của bất đẳng thức này, thì ta có s ∈ projS (x)
nếu và chỉ nếu
x − s, s − s ≤

1
s − s 2,
2

∀s ∈ S.

1
s − s 2,
2

∀t ∈ [0, 1], ∀s ∈ S.

Điều này tương đương với
[s + t(x − s)] − s, s − s ≤

Từ các đánh giá trên, ta có mệnh đề sau.
Mệnh đề 2.1. ([5, tr. 24]). Gọi S là tập con khác rỗng của X, và cho
x ∈ X, s ∈ S. Các phát biểu sau đây là tương đương:
(a) s ∈ projS (x);
(b) s ∈ projS (s + t(x − s)) , ∀t ∈ [0, 1];
(c) dS (s + t(x − s)) = t x − s , ∀t ∈ [0, 1]; và
(d) x − s, s − s ≤


1
s − s 2 , ∀s ∈ S.
2

Nhận xét 2.1. Với 0 < t < 1 trong Mệnh đề 2.1(b), chúng ta có
projS (s + t(x − s)) = {s};
19

Footer Page 25 of 128.


×