Tải bản đầy đủ (.pdf) (27 trang)

Nghiên cứu tính giải nghĩa được của hệ mờ theo ngữ nghĩa thế giới thực tt

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (819.17 KB, 27 trang )

VIỆN HÀN LÂM KHOA HỌC VÀ CÔNG NGHỆ VIỆT NAM
HỌC VIỆN KHOA HỌC VÀ CÔNG NGHỆ

NGUYỄN THU ANH

Nghiên cứu tính giải nghĩa được của hệ mờ
theo ngữ nghĩa thế giới thực

Chuyên ngành: CƠ SỞ TOÁN HỌC CHO TIN HỌC
Mã số: 62.46.01.10
TÓM TẮT LUẬN ÁN TIẾN SĨ TOÁN HỌC

NGƯỜI HƯỚNG DẪN KHOA HỌC:
TS. Trần Thái Sơn

Hà Nội 2018


2
Công trình được hoàn thành tại:
Học viện Khoa học và Công nghệ – Viện Hàn lâm KH&CN Việt Nam

Người hướng dẫn khoa học :

TS. Trần Thái Sơn

Phản biện 1:
Phản biện 2:
Phản biện 3:

Luận án sẽ được bảo vệ trước Hội đồng chấm luận án tiến sĩ, họp tại Học


viện Khoa học và Công nghệ - Viện Hàn lâm Khoa học và Công nghệ Việt Nam
vào hồi … giờ ..’, ngày … tháng … năm 201….

Có thể tìm hiểu luận án tại :
1. Thư viện Học viện Khoa học và Công nghệ
2. Thư viện Quốc gia Việt Nam


3
MỞ ĐẦU
Trong một số lĩnh vực, chúng ta mong muốn máy móc có thể mô phỏng
được hành vi, khả năng lập luận như con người và đưa ra cho con người những
gợi ý tin cậy trong quá trình ra quyết định. Một đặc trưng nổi bật của con người
là khả năng suy luận trên cơ sở tri thức được hình thành từ cuộc sống và biểu thị
bằng ngôn ngữ tự nhiên. Do đặc trưng của ngôn ngữ là tính mờ, vì vậy bài toán
đầu tiên cần phải giải quyết đó là làm thế nào để hình thức hóa toán học các vấn
đề ngữ nghĩa ngôn ngữ và xử lý ngữ nghĩa ngôn ngữ mà con người thường thao
tác trong cuộc sống.
Trước những yêu cầu đặt ra đó, năm 1965 Lotfi A. Zadeh là người đầu
tiên đặt đã nền móng cho lý thuyết tập mờ. Dựa trên lý thuyết tập mờ, hệ mờ
dựa trên luật (Fuzzy Rule Based System - FRBS) đã được phát triển và trở thành
một trong những công cụ mô phỏng gần gũi nhất phương pháp suy luận và lấy
quyết định của con người. FRBS đã được ứng dụng thành công trong giải quyết
các bài toán thực tiễn như bài toán điều khiển, bài toán phân lớp, bài toán hồi
quy, bài toán trích rút ngôn ngữ...
Khi xây dựng các FRBS, chúng ta cần đạt được hai mục tiêu là độ chính
xác (accuracy) và tính giải nghĩa được (interpretability). Luận án sẽ tập trung
nghiên cứu về tính giải nghĩa được.
Trong [1]1 Gacto cho rằng hiện tại có hai hướng tiếp cận chính về tính
giải nghĩa được. Hướng thứ nhất dựa trên độ phức tạp và hướng thứ hai dựa trên

ngữ nghĩa. Một hướng tiếp cận khác được Mencar và các cộng sự đề xuất trong
[2]2, được gọi là phương pháp tiếp cận dựa trên độ đo tương tự để đánh giá tính
giải nghĩa được của các luật mờ dựa trên ngữ nghĩa. Tính giải nghĩa được của
các luật mờ được đo bằng độ tương tự giữa tri thức được biểu diễn bằng biểu
thức tập mờ và biểu thức ngôn ngữ trong ngôn ngữ tự nhiên.
Năm 2017, một cách tiếp cận mới đối với tính giải nghĩa được của hệ
mờ, đó là cách tiếp cận dựa trên khả năng giải nghĩa theo thế giới thực (Realworld-semantics-based approach – RWS-approach) lần đầu tiên đã được đề xuất
và bước đầu được khảo sát trong [3]3. Cách tiếp cận này dựa trên các ngữ nghĩa
mang tính chất thế giới thực của các từ và các mối quan hệ giữa ngữ nghĩa của
các thành phần hệ mờ với các cấu trúc phần tương ứng trong thế giới thực.
Xuất phát từ việc nhận thấy rằng, các biểu thức tập mờ, đặc biệt là các
luật mờ của các hệ mờ không có mối liên hệ trên cơ sở phương pháp luận với

1

M.J. Gacto, R. Alcalá, F. Herrera (2011), Interpretability of Linguistic Fuzzy Rule-Based
Systems: An Overview of Interpretability Measures. Inform. Sci., 181:20 pp. 4340–4360.
2
C. Mencar, C. Castiello, R. Cannone, A.M. Fanelli (2011), Interpretability assessment of fuzzy
knowledge bases: a cointension based approach, Int. J. Approx. Reason. 52 pp. 501–518.
3
Cat Ho Nguyen, Jose M. Alonso (2017), “Looking for a real-world-semantics-based approach to
the interpretability of fuzzy systems”. FUZZ-IEEE 2017 Technical Program Committee and
Technical Chairs, Italy, July 9-12.


4
ngữ nghĩa thế giới thực và, do đó, không có cơ sở hình thức để nghiên cứu bản
chất của tính giải nghĩa được, LA lựa chọn cách tiếp cận dựa trên ngữ nghĩa thế
giới thực đã được đề xuất trong [3] để nghiên cứu tính giải nghĩa được của các

hệ mờ.
Đồng thời, hiện nay, các phương pháp xây dựng FRBS từ dữ liệu theo
hướng tiếp cận dựa trên lý thuyết tập mờ thiếu một liên kết hình thức đầy đủ
giữa các tập mờ biểu diễn ngữ nghĩa tính toán của từ với ngữ nghĩa vốn có của
nó. Các từ sử dụng trong FRBS chỉ được xem như là các nhãn hay là các ký hiệu
gán cho các tập mờ tương ứng, rất khó có thể chuyển tải được đầy đủ ngữ nghĩa
tiềm ẩn (underlying semantics) như các từ ngôn ngữ tự nhiên. Do đó LA mong
muốn đi sâu nghiên cứu về tính giải nghĩa được của các hệ mờ ngôn ngữ theo
hướng tiếp cận về ngữ nghĩa dựa trên Đại số gia tử được đề xuất bởi Nguyen và
Wechler [4]4 [5]5. Theo hướng tiếp cận này, ngữ nghĩa tính toán của từ phải
được định nghĩa dựa trên ngữ nghĩa thứ tự vốn có của các từ và miền từ của các
biến thiết lập một cấu trúc dựa trên thứ tự là đủ giầu để giải các bài toán thực tế
LA đã đạt được một số kết quả như sau:
 Nghiên cứu, phân tích phép giải nghĩa như là việc nghiên cứu mối quan
hệ giữa RWS của các biểu thức ngôn ngữ và ngữ nghĩa tính toán của biểu thức
tính toán gán cho biểu thức ngôn ngữ. Đề xuất lược đồ giải bài toán tính giải
nghĩa được của biểu diễn tính toán của các khung nhận thức ngôn ngữ (khung
NTNN).
 Nghiên cứu đề xuất các ràng buộc đối với các phép giải nghĩa được xây
dựng để chuyển tải, bảo toàn các khía cạnh ngữ nghĩa mong muốn của khung
NTNN cho các hệ mờ.
 Ứng dụng phương pháp tiếp cận ĐSGT giải bài toán tính giải nghĩa được
của biểu diễn tính toán của các khung NTNN bằng việc xây dựng cấu trúc đa thể
hạt các tập mờ tam giác hay các tập mờ hình thang.
 Làm rõ thêm sự giải nghĩa RWS của các ngôn ngữ tự nhiên của con
người và các miền từ của các biến và vai trò cơ bản của nó trong việc kiểm tra
khả năng giải nghĩa RWS của các thành phần của hệ thống mờ. Đồng thời chứng
minh các đại số tập mờ tiêu chuẩn không phải là giải nghĩa được RWS.
 Đề xuất phương pháp hình thức hoá để giải quyết sự giải nghĩa RWS của
các hệ thống mờ trong trường hợp hai và n biến đầu vào.


4

C.H. Nguyen and W. Wechler (1990), “Hedge algebras: an algebraic approach to structures of sets
of linguistic domains of linguistic truth variables”, Fuzzy Sets and Systems, vol 35, no.3, pp. 281293.
5
Cat-Ho Nguyen and W. Wechler (1992),” Extended hedge algebras and their application to Fuzzy
logic”, Fuzzy Sets and Systems, 52, 259-281.


5
CHƯƠNG I : NHỮNG KIẾN THỨC CƠ SỞ
1.1 Tập mờ
Định nghĩa 1.1. [6]6 Cho U là vũ trụ các đối tượng. Tập mờ A trên U là tập
các cặp có thứ tự (x, A(x)), với A(x) là hàm từ U vào [0,1] gán cho mỗi phần
tử x thuộc U giá trị A(x) phản ánh mức độ của x thuộc vào tập mờ A.
Nếu A(x) = 0 thì ta nói x hoàn toàn không thuộc vào tập A, ngoài ra nếu
A(x) = 1 thì ta nói x thuộc hoàn toàn vào A. Trong Định nghĩa 1.1, hàm  còn
được gọi là hàm thuộc (membership function).
1.2 Biến ngôn ngữ
Nói một cách đơn giản như Zadeh đã từng nói, một biến ngôn ngữ là biến
mà “các giá trị của nó là các từ hoặc câu trong ngôn ngữ tự nhiên hoặc ngôn
ngữ nhân tạo”.
1.3 Hệ mờ dựa trên luật
1.3.1. Các thành phần của hệ mờ
Một hệ mờ dựa trên luật gồm các thành phần chính sau: cơ sở dữ liệu
(Database), cơ sở luật mờ (Fuzzy Rule-based - FRB) và hệ suy diễn (Inference
System).
- Cơ sở dữ liệu là các tập 𝔏j gồm Tj nhãn ngôn ngữ tương ứng với các tập
mờ dùng để xây dựng phân hoạch mờ miền tham chiếu UjR (tập số thực) của

biến 𝔛j, (j=1,..,n+1) của bài toán n đầu vào 1 đầu ra.
- Cơ sở luật mờ là một tập các luật mờ dạng if-then.
- Hệ suy diễn thực hiện lập luận xấp xỉ dựa trên các luật và các giá trị đầu
vào để đưa ra giá trị dự đoán đầu ra. Một số hướng lập luận xấp xỉ:
+ Lập luận xấp xỉ dựa trên quan hệ mờ
+ Lập luận xấp xỉ bằng nội suy tuyến tính trên tập mờ
+ Lập luận dựa trên độ đốt cháy luật
1.3.2. Các mục tiêu khi xây dựng FRBS
 Đánh giá hiệu quả thực hiện (tính chính xác) của FRBS
Mục tiêu hiệu quả thực hiện của FRBS, chúng ta đã có những công thức
toán học để đánh giá một FRBS như thế nào là hiệu quả.
 Vấn đề tính giải nghĩa được của FRBS
Tính giải nghĩa được là một vấn đề phức tạp và trừu tượng, nó liên quan đến
nhiều yếu tố. Trong [1] Gacto cho rằng hiện tại có hai hướng tiếp cận chính về
tính giải nghĩa được:
- Tính giải nghĩa được dựa trên độ phức tạp:
 Mức cơ sở luật: số luật của hệ luật càng ít càng tốt, độ dài của luật càng
ngắn càng tốt.

6

L. A. Zadeh, Fuzzy set, Information and control, 8, (1965), pp. 338-353


6
 Mức phân hoạch mờ: số thuộc tính hay số biến, số biến sử dụng ít sẽ làm
tăng tính giải nghĩa được của hệ luật; số hàm thuộc sử dụng trong phân hoạch
mờ, số hàm thuộc không nên vượt quá 7±2 [6].
- Tính giải nghĩa được dựa trên ngữ nghĩa:
 Ngữ nghĩa ở mức cơ sở luật: Cơ sở luật phải nhất quán, tức là nó không

chứa các luật mâu thuẫn, các luật có cùng phần tiền đề thì phải có cùng kết luận;
số luật bị đốt cháy bởi một dữ liệu đầu vào càng ít càng tốt.
 Ngữ nghĩa ở mức phân hoạch mờ (mức từ): Miền xác định của các biến
phải được phủ hoàn toàn bởi hàm thuộc của các tập mờ.
1.4 Đại số gia tử.
1.4.1. Khái niệm Đại số gia tử
Định nghĩa 1.2 [7]7: Một ĐSGT được ký hiệu là bộ 4 thành phần được ký
hiệu là AX = (X, G, H, ) trong đó G là tập các phần tử sinh, H là tập các gia tử
(hedge) còn “” là quan hệ cảm sinh ngữ nghĩa trên X. Giả thiết trong G có chứa
các phần tử hằng 0, 1, W với ý nghĩa là phần tử bé nhất, phần tử lớn nhất và
phần tử trung hòa (neutral) trong X. Ta gọi mỗi giá trị ngôn ngữ xX là một
hạng từ (term) trong ĐSGT.
Nếu tập X và H là các tập sắp thứ tự tuyến tính, khi đó AX = (X, G, H, )
gọi là ĐSGT tuyến tính. Và nếu được trang bị thêm hai gia tử tới hạn là  và 
với ngữ nghĩa là cận trên đúng và cận dưới đúng của tập H(x) khi tác động lên x,
thì ta được ĐSGT tuyến tính đầy đủ, ký hiệu AX* = (X, G, H, , , ). Lưu ý
rằng hn...h1u được gọi là một biểu diễn chính tắc của một hạng từ x đối với u nếu
x = hn...h1u và hi...h1uhi-1...h1u với i nguyên và in. Ta gọi độ dài của một hạng
từ x là số gia tử trong biểu diễn chính tắc của nó đối với phần tử sinh cộng thêm
1, ký hiệu l(x).
1.4.2. Một số tính chất của Đại số gia tử tuyến tính
Định lý 1.1: [7] Cho tập H- và H+ là các tập sắp thứ tự tuyến tính của
ĐSGT AX = (X, G, H, ). Khi đó ta có các khẳng định sau:
i) Với mỗi uX thì H(u) là tập sắp thứ tự tuyến tính.
ii) Nếu X được sinh từ G bởi các gia tử và G là tập sắp thứ tự tuyến tính thì
X cũng là tập sắp thứ tự tuyến tính. Hơn nữa nếu unhau, tức là uH(v) và vH(u), thì H(u) H(v).
Định lý dưới đây xem xét sự so sánh của hai hạng từ trong miền ngôn ngữ
của biến X.
Định lý 1.2: [7] Cho x = hn…h1u và y = km…k1u là hai biểu diễn chính tắc

của x và y đối với u. Khi đó tồn tại chỉ số j ≤ min{n, m} + 1 sao cho hj' = kj' với

7

C. H. Nguyen and V. L. Nguyen (2007), Fuzziness measure on complete hedges algebras and
quantifying semantics of terms in linear hedge algebras, Fuzzy Sets and Syst., vol.158 pp.452-471.


7
mọi j'= n + 1 ≤ m hoặc kj = I với j = m + 1 ≤ n) và
i) xii) x = y khi và chỉ khi m = n và hjxj = kjxj.
iii) x và y là không so sánh được với nhau khi và chỉ khi hjxj và kjxj là không
so sánh được với nhau.
1.4.3. Độ đo tính mờ của các giá trị ngôn ngữ
Định nghĩa 1.3: [7] Cho AX *= (X, G, H, , , ) là một ĐSGT tuyến tính
đầy đủ. Ánh xạ fm: X [0,1] được gọi là một độ đo tính mờ của các hạng từ
trong X nếu:
(i) fm là đầy đủ, tức là fm(c-) + fm(c+) =1 và hHfm(hu) = fm(u), uX;
(ii) fm(x) = 0, với các x thỏa H(x) = {x} và fm(0) = fm(W) = fm(1) = 0;
(iii) x,y X, h H, ký hiệu (h) = fm(hx)  fm(hy) , tỷ số này không phụ
fm( x)

fm( y )

thuộc vào x và y, và nó được gọi là độ đo tính mờ của các gia tử.
Các tính chất của độ đo tính mờ của các hạng từ và gia tử được thể hiện qua
mệnh đề sau:
Mệnh đề 1.1: [7] Với độ đo tính mờ fm và  đã được định nghĩa trong Định

nghĩa 1.3, ta có:
(i) fm(c-) + fm(c+) = 1 và 
fm(hx)  fm( x) ;
hH


(iii) 
(ii)

1
j  q

xX k

 (h j )   ,



p
j 1

 (h j )   , với ,> 0 và  + = 1;

fm( x)  1 , trong đó Xk là tập các hạng từ có độ dài đúng k;

(iv) fm(hx) = (h).fm(x), và xX, fm(x) = fm(x) = 0;
(v) Cho fm(c-), fm(c+) và (h) với hH, khi đó với x = hn...h1c, c {c-,
+
c }, dễ dàng tính được độ đo tính mờ của x như sau: fm(x) = (hn)...(h1)fm(c).
1.4.4. Khoảng tính mờ

Định nghĩa 1.4 [7]: Khoảng tính mờ của các hạng từ xX, ký hiệu fm(x),
là một đoạn con của đoạn [0, 1], fm(x)  Itv([0, 1]), có độ dài bằng độ đo tính
mờ, |fm(x)| = fm(x).
1.4.5. Định lượng ngữ nghĩa của giá trị ngôn ngữ
Định nghĩa 1.5 [7]: Cho ĐSGT tuyến tínhAX*= (X, G, H, ), ta định
nghĩa:
1) Hàm sign(k, h) ∈ {-1, 1} được gọi là hàm dấu tương đối (relative) của k
đối với h nếu sign(k, h) = 1((x≤ hx) hx ≤ khx)(x≥hx) hx≥khx)), và
sign(k, h) = -1  ((x ≤ hx) hx≥ khx ≥ x)  (x ≥ hx) hx≤ khx≤ x))
2) Hàm Sign: X {-1, 0, 1} được gọi là hàm dấu của các từ x nếu hn … h1c,
c∈G, là biểu diễn chính tắc, tức là hjhj-1 … h1c ≠ hj-1 … h1c, với mọi j = 1, …, n
và h0 = Id, phép đồng nhất, tức là h0c = c, thì ta có:


8
Sign(x)=Sign(hnhn-1…h1c) = sign(hn,hn-1) × … × sign(h2,h1) × sign(h1)
×sign(c).
Dựa trên định nghĩa hàm dấu, chúng ta có tiêu chuẩn để so sánh hx và x.
Mệnh đề 1.2 [7]. Với bất kỳ h và x, nếu Sign(hx) = 1 thì hx>x; nếu Sign(hx)
= -1 thì hxTừ mệnh đề trên ta có:
0≤ H(x) ≤ 1 và H(x) ≤ H(y), x, y, tức là xH(x) và yH(y)
(1.2)
Sgn(hpx) = +1 H(h-qx) ≤…≤ H(h-1x) ≤ x ≤ H(h1x) ≤…≤ H(hpx) (1.3)
Sgn(hpx) = 1 H(h-qx) ≥… ≥ H(h-1x) ≥ x ≥ H(h1x) ≥…≥ H(hpx) (1.4)
Định nghĩa 1.6 [7]: Cho AX là một ĐSGT tuyến tính và fm là một độ đo
tính mờ trên X. Ta nói ánh xạ

: X [0, 1] được cảm sinh bởi độ đo tính mờ


fm nếu được định nghĩa bằng đệ qui như sau:
(i)

(W)= =fm(c-),

(c-)=– fm(c-) = .fm(c-),

(c+) =  +fm(c+);

i  sign( j )

(x)+ Sign(h x)
( j )  (hi ) fm( x)   (h j x) (h j x) fm( x) , (1.5)
j isign


với mọi j, –qjp và j 0, trong đó:
1
 (h j x)  1  Sign(h j x) Sign(hp h j x)(   )  ,   ;
2
Với định nghĩa này, đã được chứng minh nó thỏa mãn các yêu cầu của một
hàm định lượng ngữ nghĩa và đảm bảo tính trù mật của nó đối với các hạng từ
của AX trong đoạn [0, 1].
1.5 Kết luận chương 1
Trong chương này, LA đã tóm tắt những kiến thức cơ sở làm nền tảng phục
vụ trong quá trình nghiên cứu. Nó bao gồm lý thuyết tập mờ, hệ mờ dựa trên
luật và các ứng dụng, lý thuyết của ĐSGT.

(ii)


(hjx)=

CHƯƠNG 2. TÍNH GIẢI NGHĨA ĐƯỢC CỦA KHUNG NHẬN
THỨC NGÔN NGỮ TRONG CÁC HỆ MỜ NGÔN NGỮ
Trong chương này, chúng ta sẽ đưa ra lược đồ giải bài toán tính giải nghĩa
được của biểu diễn tính toán của khung nhận thức ngôn ngữ, đề xuất các ràng
buộc ngữ nghĩa bổ sung trên các ánh xạ giải nghĩa. Phần tiếp theo sẽ khảo sát
biểu diễn cấu trúc đa thể hạt được sinh ra từ các ngữ nghĩa của miền từ và cho
thấy những biểu diễn này thỏa mãn các ràng buộc liên quan. Các kết quả của
chương này được trình bày dựa vào công trình [2] trong Danh mục các công
trình khoa học của tác giả liên quan đến luận án.


9
2.1. Tính giải nghĩa được của LRBSs ở mức từ ngôn ngữ
Nguyễn và các cộng sự, [8]8, đã đưa ra cách tiếp cận mới về tính giải nghĩa
được của FRBSs dẫn đến tính giải nghĩa được của các thành phần của chúng. Cơ
sở của cách tiếp cận mới là miền từ ngôn ngữ của biến 𝒳, Dom(𝒳), được mô
hình hóa toán học bằng một cấu trúc thứ tự cảm sinh bởi ngữ nghĩa vốn có của
các từ ngôn ngữ là ĐSGT.
Bản chất của giải nghĩa tính toán là việc diễn giải ngữ nghĩa của từ, vốn
không tính toán được, cần phải được chuyển đổi sang các đối tượng tính toán
được, nhưng việc chuyển đổi phải “bảo toàn ngữ nghĩa” của các từ. Điều này
yêu cầu chúng ta phải khảo sát để đề xuất các ràng buộc cần thiết trên diễn giải
ngữ nghĩa.
Chúng ta sử dụng khái niệm khung nhận thức ngôn ngữ LFoCs của các
biến, được xem như tập các từ vựng được dùng để nhận biết, mô tả các thực thể
thế giới thực. Vì vậy, nghiên cứu khả năng giải nghĩa của một biểu diễn tính
toán của một khung NTNN LFoC chính là việc nghiên cứu khả năng biểu diễn
ngữ nghĩa của chúng, hay khả năng chuyển tải thông tin ngữ nghĩa các từ của

LFoC sang biểu diễn tính toán cấu trúc ngữ nghĩa của phương pháp biểu diễn
tính toán.
2.1.1. Lược đồ giải bài toán tính giải nghĩa được của biểu diễn tính toán
của khung nhận thức ngôn ngữ
Các biểu thức cú pháp
của LFoC và các tính
chất hình thức của nó

ĐSGT của miền từ:

Mức thấp (mức từ):
- Các từ (chuỗi cú pháp)
- LFoC được hình thức
hóa (tập các từ được hình
thức hóa) và cấu trúc mối
quan hệ của chúng (quan
hệ dựa trên thứ tự ngữ
nghĩa của từ, quan hệ
chung-riêng …)

Các đối tượng tính
toán của cấu trúc
toán học tính toán

ĐSGT AX mô hình hóa
miền từ D chứa LFoC

I1

- Các biểu thức HA: biểu

diễn chuỗi các từ trong D
- LFoCs và cấu trúc các
mối quan hệ của chúng

I2

Cấu trúc tính toán: (số,
tập mờ, khoảng,…)
- Các đối tượng của
cấu trúc tính toán CS
và các quan hệ giữa
chúng
- Tập các đối tượng
tính toán biểu diễn
FLoC

I = I2 o
I

1
Hình 2.1. Lược đồ giải nghĩa tính toán
I của LFoC

Quá trình giải bài toán tính giải nghĩa được của biểu diễn tính toán các
LFoC, như lược đồ Hình 2.1, trong đó I1 là một giải nghĩa (interpretation) gán

8

C.H. Nguyen, V.Th. Hoang, V.L. Nguyen (2015), “A discussion on interpretability of linguistic
rule base systems and its application to solve regression problems”, Knowledge-Based Syst., vol. 88,

pp. 107-133.


10
một phần tử của ĐSGT AX thích hợp cho mỗi từ và I2 gán một phần tử của
ĐSGT AX thành một đối tượng của cấu trúc tính toán.
2.1.2. Ràng buộc về tính giải nghĩa được của việc biểu diễn ngữ nghĩa
của các từ của biến
Các tác giả trong [8] đã đề xuất những ràng buộc ban đầu áp dụng cho các
diễn giải được mô tả trong Hình 2.1 đối với các khung NTNN LFoC để duy trì
ngữ nghĩa các từ của các LFoCs trong ngữ cảnh của toàn bộ miền từ, thay vì
những ràng buộc được áp đặt chỉ trên các tập mờ.
Ràng buộc 2.1 [8] (Vai trò thiết yếu của ngữ nghĩa vốn có của từ): Về
nguyên tắc ngữ nghĩa vốn có của các từ ngôn ngữ của một biến có mặt trong
một cơ sở luật mờ (FRB) phải được tận dụng hoặc, tốt hơn cần thiết lập một cơ
sở hình thức để sinh ra ngữ nghĩa định lượng, kể cả ngữ nghĩa dựa trên tập mờ
của các từ, để biểu diễn ngữ nghĩa của FRB.
Ràng buộc 2.2 [8] (Một hình thức hóa đầy đủ để xác định việc định lượng
ngữ nghĩa của từ): Các ngữ nghĩa tính toán được của từ, kể cả các ngữ nghĩa
định lượng dựa trên tập mờ, cần được sinh ra dựa trên một phương pháp hình
thức đúng đắn dựa trên toàn bộ miền từ của các biến ngôn ngữ. Ngoài ra, chúng
cần được tạo ra bởi một thủ tục được phát triển dựa trên hệ hình thức hoá này để
trên cơ sở đó có thể thực hiện việc sinh ngữ nghĩa tính toán của các từ một cách
tự động.
Ràng buộc 2.3 [8] (Về ngữ nghĩa khoảng của từ và quan hệ chung-riêng):
cho tập từ 𝒮 của một biến 𝒳, ánh xạ 𝒜: 𝒮 → Intv, với Intv là tập hợp các khoảng
con của miền xác định số của biến 𝒳, chỉ ra khoảng ngữ nghĩa của các từ của
tập 𝒮, cần bảo toàn các mối quan hệ chung-riêng giữa các từ, ví dụ đối với bất
kỳ hai từ x, hx𝒮, trong đó h là một gia tử, chúng ta luôn có quan hệ 𝒜(hx)
𝒜(x).

Ràng buộc 2.4 [8] (Phép gán diễn giải ngữ nghĩa là một đẳng cấu thứ tự):
Cho cấu trúc tính toán có thứ tự (C(𝒳), ≼). Một phép giải nghĩa ℑ các từ được
xem như là các xâu kí hiệu của biến 𝒳 sang các đối tượng tính toán trong
C(𝒳),ℑ: Dom(𝒳) → C(𝒳), nhằm biểu diễn ngữ nghĩa tính toán được của các từ
của biến 𝒳, phải thỏa mãn điều kiện bảo toàn được thứ tự ngữ nghĩa của các từ
của 𝒳, nghĩa là x ≤ yℑ(x) ≼ℑ(y) and xyℑ(x) ℑ(y), với mọi x, yDom(𝒳),
để chuyển tải được ngữ nghĩa thứ tự của các từ ngôn ngữ của biến. Điều đó có
nghĩa là ℑ phải là một đẳng cấu thứ tự (order isomorphism).
2.1.3. Bổ sung ràng buộc trên biểu diễn tính toán của các khung NTNN
Để nghiên cứu tính giải nghĩa được của các LRBSs ở mức khung nhận thức,
trong LA này chúng tôi đưa thêm ràng buộc sau đây về lõi ngữ nghĩa các từ của
LFoCs được sử dụng để thiết kế LRBSs.
Định nghĩa 2.1. Một khung NTNN 𝔉 của một biến 𝒳 (trong một ngôn ngữ
tự nhiên của các chuyên gia) với tập H các gia tử của biến là một tập các từ của
𝒳 thỏa mãn các điều kiện sau:


11
(i) {0,c, W, c+, 1} 𝔉;
(ii) hx𝔉(h’H)(h’x𝔉) (nghĩa là hoặc là tất cả các từ có dạng hx,
hH, đều thuộc 𝔉, hoặc tất cả chúng đều không thuộc);
(iii) x𝔉 & x = hx’& hHx’𝔉 (đóng đối với bậc sinh thành).
Khi đó, nếu k là độ dài lớn nhất của từ có mặt trong 𝔉 được gọi là mức đặc
tả của khung NTNN 𝔉.
Chú ý rằng, các gia tử trong (ii) và (iii) có chức năng đặc biệt mà chỉ được
đề cập trong cách tiếp cận dựa trên ĐSGT là chúng được sử dụng để sinh các từ
có mức tính riêng tăng thêm.
Để nhận biết thế giới thực của một ứng dụng bằng ngôn ngữ, mỗi từ trong
khung NTNN phải được xem xét và lựa chọn trong ngữ cảnh của toàn bộ khung
NTNN. Do đó, ngữ nghĩa của các từ của một LFoC phụ thuộc vào khai báo

LFoC và sự phụ thuộc này dẫn đến các ràng buộc áp đặt lên các biểu diễn tính
toán của khung NTNN được mô tả trong Hình 2.1.
Đầu tiên, chúng ta khảo sát cái được gọi là lõi ngữ nghĩa của từ x được giới
thiệu trong [11]9 để đưa ra một ràng buộc liên quan đến lõi của từ. Chúng ta có
thể thiết lập các tính chất trong (2.1), với x, yDom(𝒳):
xvà x và core(x) là không so sánh được.
Về trực quan, lõi ngữ nghĩa nằm trong ngữ nghĩa của từ, nên chúng ta cần
đưa ra ràng buộc đối với ngữ nghĩa tính toán của lõi ngữ nghĩa.
Vì vậy, với mỗi biến 𝒳, với U𝒳 là miền xác định số của nó, ta sử dụng kí
hiệu int(U𝒳) để chỉ tập các khoảng của U𝒳, kể cả khoảng suy biến [a, a]. Về
phương pháp luận, ta có thể xét ánh xạ giá trị khoảng, kí hiệu là ℐint, ℐint :
Dom(𝒳) → int(U𝒳). Để ℐint được xem là phép giải nghĩa giá trị khoảng của biến
với ngữ nghĩa lõi, ta đưa ra ràng buộc sau:
Ràng buộc 2.5 (Ràng buộc đối với ngữ nghĩa khoảng, ℐint, và lõi của từ):
ℐint được cho là một ngữ nghĩa khoảng của các từ cùng với lõi ngữ nghĩa của
biến 𝒳, nếu nó thỏa mãn điều kiện sau x của 𝒳, C-core(x) =ℐint(h0x)  ℐint(x).
Bây giờ chúng ta khảo sát phép giải nghĩa của các từ khi dùng ngữ nghĩa
tập mờ tam giác hay tập mờ hình thang. Như đã đề cập ở trên, ta có thể sử dụng
biểu diễn bộ 3 cho cả hai loại tập mờ này.
Xem xét một phép giải nghĩa bộ 3, kí hiệu là ℐtrp,ℐtrp : Dom(𝒳) → {(a, b,
d) : a, d∈U𝒳, b∈int(U𝒳)}. Mỗi ℐtrp(x) được gọi là ngữ nghĩa bộ ba của các từ x,
nhớ rằng core(x) ∈Dom(𝒳). Mọi ℐint(core(x)) = ℐint(h0x) bao gồm các giá trị của
U(𝒳) phù hợp nhất với x và, vì thế, về mặt ngữ nghĩa chúng không thể phụ

9

C.H. Nguyen, T. S. Tran, D.P. Pham (2014), Modeling of a semantics core of linguistic terms
based on an extension of hedge algebrasemantics and its application, Knowl-Based Syst., Vol. 67 pp.
244-262.



12
thuộc vào ngữ nghĩa của những từ khác. Do đó, khoảng ℐint(core(x)) = (b, c)
khoảng có thể được viết như bộ ba (b, b, c), với b = (b,c) và, với xy,
ℐint(core(x))ℐint(core(y)) = . Điều này cùng với (2.1) gợi ý chúng ta đưa ra
một ràng buộc để bảo toàn ngữ nghĩa dựa trên thứ tự như sau:
Ràng buộc 2.6. Cho một quan hệ thứ tự mong muốn≼ trên bộ ba theo Định
nghĩa 2.1, ngữ nghĩa bộ ba ℐtrp(x), ngữ nghĩa khoảng ℐint(x) của các từ trong 𝒳
cần bảo toàn các ngữ nghĩa của từ và lõi ngữ nghĩa của từ bằng các điều kiện
ràng buộc sau: (i) ℐtrp(core(x)) = ℐint(core(x))
(ii) Với 2 từ bất kỳ x và y:
x2.2. Giải nghĩa tính toán của LFoCs với tập mờ tam giác/ hình thang
Cho khung NTNN 𝔉 của 𝒳 có mức tính đặc tả k. Để đơn giản, giả sử rằng
tập H bao gồm 2 gia tử, L(little) và V(very), và một nhân tạo h0. Chúng ta bắt
đầu với cấu trúc dựa trên thứ tự của 𝔉 và quan hệ G-S của các từ trong 𝔉: hx là
đặc tả hơn x hoặc x là khái quát hơn hx, với mọi hx𝔉.
1) Xây dựng đa mức
W
0
1
tính đặc tả 𝔉: Phân chia
𝔉 theo các mức đặc tả
Lev
e
sao cho các từ ở cùng
c
1
l c

0
một mức có cùng mức
+
 Lev
1
1
độ chung-riêng hoặc,
0e
một cách tương đương,
l
V
Lc
L
Vc+ 1
0
chúng có dùng độ dài.
Lev
c
c
1
2
Ký hiệu 𝔉2 k là tập các từ
e
+

của 𝔉 có độ dài k, k = 0,
l
LLc
VLc
VL

0VV LVc
1, …, κ, với 𝔉0 = {0, W,
LL
LV VV 1
Lev


2 c

+
3c
3
c
c 𝔉1 c= {0
1},
1, c , c , 11},
e +

+
+
+


l
𝔉2 = {02,Vc , Lc , Lc+,
Vc+, 12}, 𝔉3 = {03,VVc,
Hình 2.3. Đa thể hạt với tập mờ tam giác/hình
thang
3
LVc, LLc, VLc, VLc+,

của các từ trong LFoC 𝔉
LLc+, LVc+, VVc+, 13}
… Sự có mặt của các từ nhân tạo 0k and 1k xuất phát từ yêu cầu phân hoạch mờ
của 𝔉j phải đầy đủ. Hơn nữa, việc thêm các từ như vậy làm cho tập 𝔉 trở nên
phong phú hơn.
2) Xây dựng biểu diễn đa thể hạt mờ của 𝔉: Mọi mức đặc tả 𝔉k được biểu
diễn bởi tập mờ tam giác/hình thang phân hoạch như biểu diễn ở Hình 2.3, trong
đó có 3 phân hoạch mờ. Cấu trúc tập mờ như vậy được gọi là đa thể. Có thể dễ
dàng xác minh rằng cấu trúc này bảo toàn quan hệ chung-riêng của các từ trong
𝔉: độ hỗ trợ của tập mờ của hx được bao gồm trong độ hỗ trợ của tập mờ của x.


13
3) Tính giải nghĩa của 𝔉 được định nghĩa bởi cấu trúc đa thể hạt mờ:
Cho một cấu trúc đa thể hạt, chẳng hạn giống như cấu trúc cho trong Hình
2.3. Từ cấu trúc đa thể hạt, chúng ta có thể xác định các phép giải nghĩa như sau:
(I1) Giải nghĩa tập mờ của 𝔉: Nó là phép giải nghĩa, ký hiệu là ℐfuz, gán mỗi từ x
trong 𝔉 một tập mờ tam giác/hình thang có lõi là ℑ(h0x) – khoảng tính mờ của từ
h0x.
(I2) Ngữ nghĩa khoảng ℐint của 𝔉: Phép giải nghĩa khoảng ℐint được định nghĩa
đơn giản như sau: Với x𝔉,
(i) ℐint(x) là giá (support) của tập mờ tam giác/hình thang ℐfuz(x), tức là
ℐint(x) là đáy của hình tam giác hay đáy lớn của hình thang;
(ii) Nếu từ x = h0y, ℐint(x) = ℐint(h0y) = ℑ(h0x), lõi của tập mờ x.
(I3) Ngữ nghĩa bộ ba ℐtrp của 𝔉: Cho x𝔉, ℐtrp(x) = (a, b, d), với (a, d) là độ hỗ
trợ của tập mờ ℐfuz(x) và b = ℐint(h0x) = ℑ(h0x).
Định lý 2.1. Giải nghĩa ℐfuz và ℐtrp của 𝔉, liên kết với ngữ nghĩa khoảng ℐint,
định nghĩa bởi cấu trúc đa thể mờ được xây dựng như trên thỏa mãn tất cả các
ràng buộc từ 2.1 – 2.6.
Đã chứng minh các giải nghĩa được định nghĩa như trên thỏa mãn các ràng

buộc trên
2.3. Kết luận
Trong chương này LA đã nghiên cứu giải quyết một số vấn đề sau:
 Nghiên cứu, phân tích phép giải nghĩa như là việc nghiên cứu mối quan
hệ giữa RWS của các biểu thức ngôn ngữ và ngữ nghĩa tính toán của biểu thức
tính toán gán cho biểu thức ngôn ngữ, đề xuất lược đồ giải bài toán tính giải
nghĩa được của biểu diễn tính toán của các khung nhận thức ngôn ngữ.4
 Đề xuất các ràng buộc đối với các phép giải nghĩa được xây dựng để
chuyển tải, bảo toàn các khía cạnh ngữ nghĩa mong muốn của khung NTNN cho
các hệ mờ.
 Ứng dụng phương pháp tiếp cận ĐSGT giải bài toán tính giải nghĩa được
của biểu diễn tính toán của các khung NTNN bằng việc xây dựng cấu trúc đa thể
hạt các tập mờ tam giác hay các tập mờ hình thang.
CHƯƠNG 3. TÍNH GIẢI NGHĨA ĐƯỢC THEO NGỮ NGHĨA THẾ
GIỚI THỰC CỦA CÁC BIỂU THỨC NGÔN NGỮ
Về bản chất, mỗi hệ mờ là một biểu thức tập mờ được thao tác dựa trên một
cơ sở hình thức tính toán nào đó trong lý thuyết tập mờ. Trong đó mỗi tập mờ
được gán nhãn ngôn ngữ. Do vậy, mỗi biểu thức tập mờ được tương ứng với
một biểu thức ngôn ngữ mà con người đọc được và hiểu được (Comprehensive)
và nó được xem là một biểu diễn tập mờ của biểu thức ngôn ngữ đó. Do vậy,
vấn đề giải nghĩa được của một biểu thức tập mờ gồm ít nhất 02 vấn đề: (1) Các
tập mờ trong biểu thức tập mờ đã cho có biểu diễn đúng ngữ nghĩa của nhãn


14
ngôn ngữ không? (2) Biểu thức ngôn ngữ của nó có dễ hiểu đối với con người
hay không?
Mục tiêu của chương này là nghiên cứu tính giải nghĩa được theo RWS của
nền tảng lý thuyết để phát triển phương pháp luận hay giải thuật. Đồng thời
nghiên cứu khảo sát tính giải nghĩa được theo RWS của lý thuyết ĐSGT và trên

cơ sở đó nghiên cứu tính giải nghĩa được theo RWS của các thành phần của các
hệ mờ. Các kết quả của chương này được trình bày dựa vào công trình [1,3,4]
trong Danh mục các công trình khoa học của tác giả liên quan đến luận án.
3.1. Khả năng giải nghĩa được theo RWS của miền từ các biến ngôn ngữ
3.1.1. Khái niệm mới về tính giải nghĩa được theo RWS của các lý
thuyết hình thức
Về phương pháp luận, con người nhận thức được thực tế xung quanh cuộc
sống hàng ngày của họ bằng cách sử dụng các ngôn ngữ ký hiệu, như các ngôn
ngữ tự nhiên của các cộng đồng con người, các ngôn ngữ toán học, các ngôn
ngữ vật lý ...,và nhờ chúng mà các yếu tố, các đặc trưng cơ bản, hay “ngữ nghĩa
của thế giới thực”, được mô phỏng và chuyển tải.
Do vậy, cần phải nghiên cứu về tính giải nghĩa được của các hệ thống mờ
trong các mối quan hệ giữa con người, thế giới thực và các ngôn ngữ tự nhiên,
được thể hiện bằng một sơ đồ đưa ra trong Hình 3.1.

Các cấu trúc của thế
giới thực

Các mô hình thế giới
thực của các lý
thuyết hình thức
Các ứng dụng/thuật toán được
thiết kế dựa trên các lý thuyết
hình thức nhất định tương tác
với thế giới con của thế giới
thực tương ứng của chúng

Các lý thuyết hình thức
được phát triển dựa trên
các tiên đề


Hình 3.1. Mối quan hệ giữa các lý thuyết hình thức, các mô hình và ứng dụng
của chúng và các thế giới con của thế giới thực tương ứng

3.1.1.1. Khái niệm về giải nghĩa được RWS của các lý thuyết hình thức
Nghiên cứu [3] đưa ra định nghĩa về giải nghĩa được theo RWS như sau:
Định nghĩa 3.1 [3] Phương pháp/lý thuyết hình thức T được xây dựng trong
ngôn ngữ hình thức để mô phỏng một cấu trúc thế giới thực, được kí hiệu bởi
WT, được gọi là giải nghĩa được theo RWS nếu có một ánh xạ giải nghĩa RT: WT
→ T, gán các đối tượng trong thế giới thực của WT cho các phần tử cơ sở của
ngôn ngữ hình thức nền của T sao cho nó có thể truyền tải được các tính chất
thiết yếu được phát hiện của WT. Trong trường hợp này, T được gọi là một mô
hình thế giới thực WT hoặc WT là diễn giải hay giải nghĩa được trong T. Khi đó,
phương pháp/lý thuyết hình thức T được gọi là giải nghĩa được theo RWS.


15
Lưu ý rằng, cấu trúc WT là một khái niệm chủ quan vì nó phụ thuộc vào
quan sát/nhận thức của người sử dụng và giải quyết bài toán ứng dụng.
Dựa trên khái niệm về tính giải nghĩa được theo RWS được định nghĩa
trong Định nghĩa 3.1 và các ứng dụng thành công của lý thuyết toán học trong
thực tế, chúng ta chấp nhận giả thuyết sau:
Giả thuyết 3.1: Sự phát triển của các lý thuyết toán học dựa trên các
phương pháp tiên đề và các quy tắc suy diễn lôgic đảm bảo tính giải nghĩa được
theo RWS của chúng.
3.1.1.2. Đề xuất một lược đồ để giải quyết một vấn đề tính giải nghĩa được
theo RWS
Trong logic toán học, các cơ chế suy luận được đề xuất của logic vị từ đảm
bảo rằng một kết luận suy ra được từ các mệnh đề đúng thì cũng đúng. Tuy
nhiên, trong môi trường mờ/không chắc chắn với các câu bất định, không chính

xác, không có cơ chế hình thức chặt chẽ nào cho phép dẫn xuất các câu đúng
(valid) từ các câu biết chắc chắn là đúng.
Do đó, trong một môi trường mờ, cần phải đưa ra một lược đồ để giải quyết
vấn đề giải nghĩa được RWS thể hiện trong Hình 3.2, trong đó khả năng giải
nghĩa được RWS của một biểu thức mờ được hình thức hoá phụ thuộc vào cấu
trúc được phát hiện của phần thế giới thực, bao gồm các biểu thức mô tả các
phương pháp lập luận xấp xỉ (ARMs).
Cho phần thế giới thực W với
cấu trúc của bản thân nó SW và
LE được biểu thức hóa bởi
một chuyên gia, cố gắng phát
hiện mối quan hệ chủ yếu giữa
các biến của SW và giữa các
thành tố của mỗi biến

(i) Xây dựng một không gian
tính toán CSW;

+ Xây dựng một ánh xạ f
để dịch SW sang CSW.

(ii) Định nghĩa các khái niệm
cần thiết và các mối quan hệ
chủ chốt trong CSW để có thể
mô hình hóa những cấu trúc
được phát hiện tương ứng
trong SW

+ Kiểm tra xem liệu f có
thể bảo toàn các mối

quan hệ chủ chốt của SW
không.

Hình 3.2. Lược đồ giải quyết vấn đề giải nghĩa được RWS

3.1.2. Tính giải nghĩa được RWS của ngôn ngữ tự nhiên của con người và
của đại số gia tử các biến ngôn ngữ
3.1.2.1. Khả năng giải nghĩa được RWS của các ngôn ngữ tự nhiên của mọi
cộng đồng người
Mọi ngôn ngữ tự nhiên của một cộng đồng người nhìn một cách tổng thể là
không thể hình thức hoá thành một cấu trúc, và do đó, chúng ta không thể chứng
minh rằng nó là giải nghĩa được RWS theo Định nghĩa 3.1. Tuy nhiên, trong lịch
sử đấu tranh cho sự tồn tại và phát triển của con người, ngôn ngữ đã được sử
dụng trong suốt chiều dài lịch sử để liên lạc với nhau hoặc ra quyết định trong
cuộc sống hàng ngày, chứng minh rằng ngôn ngữ của nó phải được giải nghĩa
theo RWS, nếu không cộng đồng người không thể tồn tại.


16
Giả thuyết 3.2. Bất kỳ ngôn ngữ tự nhiên nào của con người đều có thể giải
nghĩa được RWS.
3.1.2.2.Khả năng giải nghĩa được RWS của đại số gia tử - Mô hình toán học
của các miền từ các biến
Các đường thẳng trong thực tế và nhu cầu tính toán của con người dựa trên
cấu trúc của chúng thúc đẩy sự phát triển lý thuyết về số thực. Các ứng dụng
thành công của lý thuyết này trong thực tế chứng minh rằng nó là giải nghĩa
được RWS. Về mặt phương pháp luận, sự giải nghĩa được RWS của lý thuyết số
thực có thể được đảm bảo bởi hai sự kiện sau:
• Sự giải nghĩa được RWS của các tiên đề: Người ta biết rằng đường thẳng
là các mô hình thế giới thực của lý thuyết về số thực, và do đó, tính giải nghĩa

được RWS của các tiên đề của lý thuyết số thực được chứng minh bằng các
RWS biểu diễn mối quan hệ khoảng cách giữa các điểm thực trên đường thẳng.
• Sự phát triển của lý thuyết dựa trên các luật suy luận của một logic hình
thức sẽ duy trì khả năng giải nghĩa được RWS của toàn bộ lý thuyết. Tính hợp lệ
(hợp lý) của một câu được xác minh dựa trên các sự kiện trong thế giới thực.
Dựa vào những điều này, chúng ta có thể chứng minh rằng lý thuyết đại số
gia tử bao gồm lý thuyết định lượng của chúng là giải nghĩa được RWS. Vì các
luật logic, nói chung, giống trong lĩnh vực toán học, chỉ cần chứng minh rằng
các tiên đề của các đại số gia tử và định lượng của chúng là giải nghĩa được
RWS.
Như lập luận ở trên các ngôn ngữ tự nhiên có thể giải nghĩa được RWS và
miền từ của các biến được sắp xếp dựa trên nghĩa tự nhiên vốn có của chúng
cũng là có thể giải nghĩa được theo RWS. Do đó, bất kỳ miền từ nào cũng có thể
được hiểu là những phần cấu trúc nhất định của thế giới thực. Để mô hình hóa
miền từ của các biến, tương tự như lý thuyết số thực, lý thuyết về các đại số gia
tử được phát triển theo cách tiên đề và tiên đề của chúng là các biểu thức hình
thức hóa của các tính chất thiết yếu chính của từ và gia tử của miền từ tương ứng
[5,4,1010,7], được xem như bản đối chiếu trong thế giới thực. Như được khảo sát
trong [7], lý thuyết định lượng của đại số gia tử cũng được phát triển theo cách
tiên đề hoá và các tiên đề của nó được thiết lập dựa trên cấu trúc của các đại số
gia tử. Điều này đảm bảo tính giải nghĩa được RWS của các tiên đề định lượng.
Như vậy, tương tự như bất kỳ lý thuyết toán học cổ điển nào, chúng ta có
mệnh đề như sau:
Mệnh đề 3.1. Bất kỳ đại số gia tử và lý thuyết định lượng của nó là giải
nghĩa theo RWS.

10

C. H. Nguyen and N.V. Huynh (2002), An algebraic approach to linguistic hedges in Zadeh's
fuzzy logic, Fuzzy Sets and Syst., vol.129 pp.229-254.



17
3.2. Tính giải nghĩa được RWS của các thành phần hệ thống mờ
Một hệ thống mờ có thể được xem là bao gồm một cơ sở tri thức mờ gồm
các khung ngôn ngữ của nhận thức (LFoC) và cơ sở nguyên tắc mờ ngôn ngữ
của nó (LRB) và một công cụ suy luận mờ được xây dựng chủ yếu dựa trên một
phương pháp lý luận xấp xỉ (ARM ). Sau đây, chúng ta sẽ khảo sát khả năng giải
nghĩa được RWS của các thành phần này.
3.2.1. Khả năng giải nghĩa được RWS của LFoCs
Trong cách tiếp cận RWS, một biểu diễn tính toán có thể giải nghĩa theo
RWS của một LFoC 𝔉 nào đó được xây dựng dựa trên lược đồ được đưa ra
trong Hình 3.2 được mô tả dưới đây, trong đó 𝔉=X(k)={x∈X: tập các từ của một
biến có độ dài không lớn hơn k> 0}.
3.2.1.1. Thử khám phá các mối quan hệ cấu trúc giữa các từ của 𝔉 được coi
như là một 𝕃E:
Như đã thảo luận ở trên, 𝔉 có thể được coi là một bản đối chiếu thế giới
thực và chúng tôi cố gắng tìm ra các đặc trưng cấu trúc chính của 𝔉. Có thể thấy
rằng trên tập này có tồn tại hai quan hệ sau đây, được ký hiệu bằng ≤ và GS (x,
y), mà chưa được xem xét trong môi trường mờ.
∘ 𝔉 là tập thứ tự tuyến tính được cảm sinh bởi nghĩa của từ. Cấu trúc của nó
được ký hiệu là (𝔉, ≤).
∘ GS (x, y) là mối quan hệ chung-riêng trên 𝔉. Ví dụ, đối với biến Tuổi,
"già" là khái quát hơn "rất già", và "khá trẻ" đặc tả hơn là "trẻ", nếu tất cả chúng
ở trong 𝔉. Có thể xác minh G (x, y) có các thuộc tính sau:
- Phản đối xứng: GS (x, y) & GS (y, x) => x = y.
- Bắc cầu: GS (x, y) & GS (y, z) => GS (x, z).
Các mối quan hệ này được đưa ra để đề xuất các ràng buộc thích hợp áp
dụng cho hai ánh xạ giải nghĩa tương ứng của các biểu diễn tính toán đúng đắn
(Sound) của LfoC.

Định nghĩa 3.2. Cho một LFoC 𝔉, một tập mờ biểu diễn của 𝔉, FR(𝔉) =
{F(x): x∈𝔉}, trong đó F(x)là tập mờ được gán cho từ x, được gọi là có thể giải
nghĩa được RWS nếu có hai điều kiện sau đây:
(I) Trên FR(𝔉) có thể định nghĩa hai mối quan hệ: thứ nhất ký hiệu là ≤*, có
tính chất phản xạ, phản đối xứng và truyền ứng, và thứ hai là GS*có tính chất
phản đối xứng và truyền ứng.
(II) Tồn tại hai phép gán giải nghĩa I và IGS đều là ánh xạ 𝔉 vào FR (𝔉),
sao cho chúng bảo toàn quan hệ tương ứng ≤ và GS trên 𝔉, nghĩa là với mọi x, y
trong 𝔉, chúng ta có x ≤ y =>I(x) ≤* I(y) và GS(x, y) =>GS*(IGS(x), IGS(y)).


18
3.2.1.2. Thử xây dựng một không gian tính toán có thể biểu diễn đúng ngữ
nghĩa của 𝔉:
W
00
10
Nghiên cứu [3] lập
luận rằng topo cấu trúc đa
thể của tập mờ, như thể
01
young
11
old
hiện trong Hình 3.3 trong
đó các tập mờ được bố trí
ở ba mức chung của
02 Vyoung
Ryoung
Rold Vold

12
chúng, có thể đáp ứng. Ở
g
đây, các tập mờ ở mức k
thì biểu diễn ngữ nghĩa
Hình 3.3 . Biểu diễn đa thể hạt tam giác/hình thang
của các từ chung độ k và,
giải nghĩa RWS của XTUỔI,(2)
với k = 0, các từ trên mức
này là tổng quát nhất và
tập mờ là tất cả các tam giác hoặc tất cả các hình thang, điểm lõi thì được biểu
diễn bằng những điểm đậm trong hình và độ hỗ trợ của nó được xác định duy
nhất bởi khoảng mờ của các từ tương ứng. Biểu diễn các hình tam giác/hình
thang bằng bộ ba dạng (a, b, d), trong đó b là lõi của hình tam giác/hình thang,
thứ tự giữa các tập mờ được xác định như sau: (a, b, d) ≤ (a’, b’, d’) {b ≤ b '
& có ít nhất một trong số các thành phần còn lại của bộ ba đáp ứng bất đẳng
thức a ≤ a'}. Các mối quan hệ GS giữa các bộ ba được xác định như sau: GS((a,
b, d), (a’, b’, d’))  [a, d] [a’, d’]. Rõ ràng, bộ ba ở mức cao nhất là khái quát
nhất tương thích với ngữ nghĩa của các từ ở mức này.
3.2.2. Khả năng giải nghĩa được theo RWS đối với biểu diễn tính toán
của LRB và ARM
Trong [3], các tác giả cho rằng người ta có thể thu nhận được một thông
tin tri thức hiểu biết về mối quan hệ phụ thuộc giữa hai biến trong thế giới thực
chỉ khi người ta quan sát được rằng chúng phụ thuộc đơn điệu vào nhau trong
một khoảng nhất định của mỗi biến, nếu không, sự phụ thuộc của chúng là hỗn
độn. Tương tự, như đã thảo luận trong chương này, ngữ nghĩa của một luật ngôn
ngữ cũng thể hiện các mối quan hệ phụ thuộc đơn điệu của một biến đầu ra vào
một trong các biến đầu vào đang được xem xét.
Một cách tổng quát, xét các luật ngôn ngữ có một biến đầu ra và m biến
đầu vào như dạng dưới đây

(r) IF 𝒳1L is x1 & … &𝒳mL is xm, THEN 𝒳m+1,L is xm+1
(1)
trong đó, chúng ta ký hiệu 𝒳jL là các biến ngôn ngữ của các biến thực tế đã cho
tương ứng 𝒳j, j = 1 đến m + 1. Luật r có thể được coi là tập hợp các luật ‘IF 𝒳jL
là xj, THEN 𝒳m + 1 , L là xm+ 1’, j = 1 đến m + 1, và, do đó, r thể hiện m mối quan
hệ đơn điệu của 𝒳m + 1, L và 𝒳jL trên một khoảng xác định nào đó của mỗi biến,
với j = 1 đến m.


19
Để phân tích sâu hơn, chúng ta giả định rằng một cơ sở luật ngôn ngữ ℛℬ
là đầy đủ (các điều kiện), tức là tất cả m biến 𝒳jL, j = 1, ..., m đều có mặt trong
mỗi luật (tương tự như đối với các luật quen biết Wang và Mendel [11]11). Điều
này có nghĩa bài toán cần đủ dữ kiện đầu vào mới có thể sinh ra (quyết định
được) thông tin đầu ra. Nhiều bài toán thực tế cần tính đầy đủ này, chẳng hạn
trong lĩnh vực điều khiển hay các bài toán lấy quyết định có yêu cầu chính xác
cao đòi hỏi đủ thông tin. Trong trường hợp này, để đơn giản, nó được gọi là cơ
sở luật ngôn ngữ đầy đủ. Đương nhiên chúng ta cũng cần yêu cầu ℛℬ phải nhất
quán, tức là nếu các tiền đề của hai luật ℛℬ là giống nhau, thì kết luận cũng phải
giống nhau. Ngoài ra, một cơ sở luật ngôn ngữ đầy đủ và nhất quán có thể được
coi là nó biểu diễn một phụ thuộc hàm ngôn ngữ của 𝒳m + 1,L vào 𝒳jL, j = 1 đến
m. Do tính giải nghĩa được theo RWS của các ngôn ngữ tự nhiên và RWS của
các luật ngôn ngữ, cơ sở luật ngôn ngữ (LRBs) ℛℬ biểu thị sự phụ thuộc hàm
trong thế giới thực của 𝒳m + 1 vào 𝒳j, với j = 1 đến m.
Định nghĩa 3.3. Cho không gian tính toán 𝒮 = (𝒞, ≤𝒮) được định nghĩa
trên tích Đề Các của các cấu trúc dựa trên thứ tự CSj’s. Một phương pháp biểu
diễn tính toán ℳ với phép giải nghĩa của nó I𝒳j, I𝒳j: Dom(𝒳j) → CSj, được gọi
là giải nghĩa được cơ sở luật ngôn ngữ ℛℬ trong không gian tính toán 𝒮 nó thỏa
các điều kiện sau:
1) Các giải nghĩa I𝒳j là các đẳng cấu thứ tự.

2) Với cơ sở luật ngôn ngữ ℛℬ đã cho, ℳ bảo toàn sự đơn điệu, nếu có,
của ℛℬ. Nghĩa là, nếu ℛℬ đơn điệu tăng (hoặc giảm) và cho a = (xi1, …,xim) ≤ a’
= (xi’1, …,xi’m) (hoặc a = (xi1, …,xim) ≥ a’ = (xi’1, …,xi’m)), trong đó a và a’ là hai
véc tơ ngôn ngữ bất kỳ có m từ ngôn ngữ, tương ứng với hai luật ravà ra’ của ℛℬ
có dạng (1), thì ta có: ℳ(ra)|𝒳m+1 ≤ ℳ(ra’)|𝒳m+1 (hay, ℳ(ra)|𝒳m+1 ≥ ℳ(ra’)|𝒳m+1).
Có thể nhận thấy rằng bất kỳ phương pháp tính toán nào biểu diễn một cơ
sở luật ngôn ngữ bất kỳ nào thành một quan hệ mờ (m + 1)-chiều không thể giải
nghĩa được theo RWS, vì trong phương pháp này người ta đã bỏ qua quan hệ thứ
tự của các từ và của các tập mờ của chúng, trong khi tính giải nghĩa được của
phương pháp biển diễn tính toán ℳ cần định nghĩa dựa trên quan hệ thứ tự.
Các phương pháp lập luận xấp xỉ (ARM) được phát triển để giải quyết các
vấn đề ứng dụng đóng một vai trò quan trọng để xây dựng các FSyst vừa hiệu
quả vừa có thể giải nghĩa được. Điều đó phụ thuộc mạnh mẽ vào chính cơ sở
luật ngôn ngữ ℛℬ cũng như phương pháp biển diễn tính toán được đề xuất ℳ
sinh ra một biểu diễn tính toán của ℛℬ. Khi phát triển phương pháp lập luận xấp
xỉ ℝ phải phát triển để làm việc trên các biểu diễn tính toán của ℛℬ tạo ra bởi
phương pháp biển diễn tính toán ℳ, khả năng giải nghĩa được RWS của nó phụ

11

L.-X. Wang and J. M. Mendel (1992), “Generating fuzzy rules by learning from examples,” IEEE
Transactions on Systems, Man and Cybernetics, vol. 22, no. 6, pp. 1414–1427.


20
thuộc rất nhiều vào ℳ. Do đó, tính giải nghĩa được theo RWS của phương pháp
lập luận xấp xỉ cần được xác định dựa trên một phương pháp biển diễn tính toán
giải nghĩa được RWS đã cho. Bây giờ, chúng ta sẽ đưa ra định nghĩa sau, trong
đó cho một vector a = (a1, ..., am), ℝ(a) biểu thị giá trị đầu ra số của a tạo ra bởi
ℝ.

Định nghĩa 3.4. Giả sử một phương pháp lập luận xấp xỉ ℝ được phát
triển để làm việc trên các biểu diễn cơ sở luật ngôn ngữ được tạo ra bởi một
phương pháp biển diễn tính toán ℳ. Khi đó, ℝ được gọi là giải nghĩa được theo
RWS nếu cho cơ sở luật ngôn ngữ ℛℬ bất kỳ đơn điệu tăng đối với mọi biến
đầu vào riêng biệt của ℛℬ, ℝ phải thỏa mãn điều kiện sau:
(a, a’){[a ≼ a’  ℝℳ(𝔹)(a)  ℝℳ(𝔹)(a’)] and
[a  a’)  ℝℳ(𝔹)(a)  ℝℳ(𝔹)(a’)]}
(2)
3.3. Về tính giải nghĩa được theo RWS của các biểu thức, phương pháp
luận hay các lý thuyết ngôn ngữ mờ
Như đã thảo luận trong các phần trước, khái niệm mới về tính giải nghĩa
được theo RWS của thủ tục hay lý thuyết mờ nói chung và của các hệ mờ
(FSysts) nói riêng là cốt yếu và thiết thực để bảo đảm sự tương tác hiệu quả của
chúng với thế giới thực. Vì vậy, một câu hỏi đặt ra là liệu các lý thuyết tập mờ
hay các biểu thức của nó có thể giải nghĩa được RWS không ? và nếu không thì
liệu có tồn tại các phương pháp luận để phát triển các hệ mờ giải nghĩa được
theo RWS?
3.3.1. Kiểm tra tính giải nghĩa được theo RWS của một số biểu thức mờ
của lý thuyết tập mờ
Tính giải nghĩa được theo RWS của lý thuyết tập mờ là một vấn đề quá
lớn, và do đó, trong phần này, nó được giới hạn để kiểm tra tính giải nghĩa được
theo RWS của đại số tập mờ tiêu chuẩn.
3.3.1.1. Phân tích về tính giải nghĩa được theo RWS của đại số tập mờ tiêu
chuẩn
Chúng ta hãy xem xét một tập nền U và ký hiệu F(U) là tập hợp của tất cả
các tập mờ của U, F(U) = { :  ∈ [0, 1]U}, trong đó [0, 1]U là tập hợp của tất cả
các hàm thuộc từ U vào khoảng [0, 1]. Để đơn giản việc trình bày chúng ta xem
các kí hiệu tập mờ và hàm thuộc của chúng là đồng nhất. Có thể thấy rằng các
phép hợp (), giao (), lấy phần bù () có thể được định nghĩa trong F(U) như
là một sự mở rộng (generalization) của các phép toán tương ứng trên các tập

kinh điển (crisp) của U. Chúng được định nghĩa theo từng điểm trên các hàm
thuộc của các tập mờ trong toàn bộ F(U). Từ đó, chúng ta có một đại số tập mờ
tiêu chuẩn có thể được ký hiệu là F𝔸= (F(U), , , ).
Trong các ứng dụng các toán tử ,  và  thường được giải nghĩa như là
biểu diễn cho các ngữ nghĩa tính toán của các liên kết logic tương ứng trong
ngôn ngữ tự nhiên AND, OR và NOT. Vì vậy, chúng ta sẽ xem xét khả năng


21
giải nghĩa được RWS của các toán tử của đại số tập mờ tiêu chuẩn dựa trên các
ngữ nghĩa thực của các kết nối AND, OR và NOT.
Có hai lý do chính cho thấy F𝔸 không thể giải nghĩa được RWS.
1) Lý do về mặt phương pháp luận trong môi trường mờ.
Chúng ta hãy xem xét biến CHIỀU_CAO của con người và ý nghĩa của
câu "anh ta là ’Cao OR Khá_Cao’ ". Các ngữ nghĩa của câu này phải được xem
xét trong ngữ cảnh của biểu thức từ của miền từ CHIỀU_CAO,
LDom(CHIỀU_CAO). Giả thiết rằng đại số tập mờ tiêu chuẩn được định nghĩa
trên tập nềnU của CHIỀU_CAO là F𝔸= (F(U), , , ).
Mệnh đề 3.2. Vì LDom(CHIỀU_CAO) là hữu hạn, trong khi F(U) là vô
hạn, không có một phép giải nghĩa ℑ từ LDom(CHIỀU_CAO) vào F(U) có thể
duy trì các mối quan hệ đặc trưng cấu trúc của LDom(CHIỀU_CAO), lưu ý rằng
các toán tử của F𝔸 được định nghĩa trong toàn bộ F(U).
Mệnh đề trên được chứng minh và minh họa bởi ví dụ hình 3.4.
2) Lý do về mặt phương
AB
pháp luận dựa trên quan điểm
của phương pháp tiếp cận RWS.
A
B
Đầu tiên, chúng ta chấp

nhận một giả định rằng chúng ta
Hình 3.4. Hợp của 2 tập mờ của biến
chỉ nói đến các biến với tập nền
CHIỀU_CAO
tuyến tính số và từ đó các miền
từ của các biến ngôn ngữ của
chúng được sắp xếp tuyến tính. Vì vậy, các đại số gia tử (HA) tương ứng của
chúng cũng là tuyến tính.
Trong Phần 1, như đã trình bày trong Mệnh đề 1 rằng các đại số gia tử
AXCHIỀU_CAO là giải nghĩa được RWS. Do đó tồn tại một phép giải nghĩa
ℑCHIỀU_CAO từ LDom(CHIỀU_CAO) vào tập cơ bản của AXCHIỀU_CAO, có nghĩa là
ℑCHIỀU_CAO(wAANDwB)
=
ℑCHIỀU_CAO(wA)ℑCHIỀU_CAO(wB)
=
max{ℑCHIỀU_CAO(wA), ℑCHIỀU_CAO(wB)} và nó biểu diễn cho ngữ nghĩa RW của
biểu thức “wA AND wB”. Như đã đề cập ở trên, các tập mờ A và B liên kết với từ
wA và wB tương ứng, nhưng AB{A, B}, không tương thích với ℑCHIỀU_CAO(wA)
 ℑCHIỀU_CAO(wB) = max{ℑCHIỀU_CAO(wA), ℑCHIỀU_CAO(wB)} biểu diễn ngữ nghĩa
RW của “wA AND wB”. Điều này khẳng định rằng đại số tập mờ tiêu chuẩn F𝔸
không phải là giải nghĩa được RWS.
3.3.1.2. Thảo luận về tính giải nghĩa được theo RWS của phương pháp
lập luận mờ Mamdani
Trong phương pháp lập luận mờ Mamdani, ký hiệu là ARMMmd, cơ sở luật
mờ (FRB), 𝔹, của nó bao gồm n luật ở dạng tương tự như được cho trong (1),
nhưng ở vị trí của các từ xjk lại là tập mờ được chuyên gia chấp nhận gán cho các
từ xjk và ký hiệu là f(xj,k):
IF 𝒳1L is f(x1,k)&…&𝒳mL is f(xm,k) THEN 𝒳(m+1)L is x(m+1),k, k = 1…n (3)



22
Luận án đã chứng minh với cơ sở
Bảng 3.1. FRB đơn giản
luật ngôn ngữ (FRB) đơn điệu, 𝔅, được
cho bộ truyền động tầng thứ nhất
đưa ra trong Bảng 3.1 được đơn giản
ẋ2
NS
Z
PS
hóa từ cơ sở luật ngôn ngữ dược đưa ra
x2
trong nghiên cứu [12]12 để chỉ còn bao
NS
NM
NS
Z
gồm 9 luật mờ, một phương pháp lập
Z
NS
Z
PS
luận xấp xỉ mờ Mamdani ARMMmd dựa
trên độ đốt cháy luật là không giải
Z
PS
PS
PM
nghĩa được theo RWS vì không thỏa
mãn điều kiện (2) của Định nghĩa 3.4.

3.3.2. Phương pháp biểu diễn đồ thị của các cơ sở luật ngôn ngữ và
tính giải nghĩa được theo RWS của nó
Câu hỏi đặt ra là liệu có tồn tại một phương pháp lập luận xấp xỉ (ARM)
giải nghĩa được theo RWS? Trong phần này, chúng ta sẽ tiến hành nghiên cứu
theo phương pháp tiếp cận đại số gia tử với các ngữ nghĩa dựa trên thứ tự vốn có
của các từ và các cấu trúc ngữ nghĩa vốn có của các miền từ các biến. Vì cách
tiếp cận này thiết lập một hệ hình thức hoá để xử lý trực tiếp trên các từ của các
biến ngôn ngữ và ngữ nghĩa của chúng, nên chúng ta sử dụng các thuật ngữ như
các luật ngôn ngữ (hoặc cơ sở luật ngôn ngữ (LRBs)) thay vì các luật mờ (hoặc,
cơ sở luật mờ (FRBs) để nhấn mạnh đặc tính ngôn ngữ này.
Có ba ngữ nghĩa định lượng cơ bản của các từ của mỗi biến X, được định
nghĩa chặt chẽ với nhau: độ đo tính mờ, khoảng tính mờ (xem như ngữ nghĩa
khoảng) và ánh xạ định lượng ngữ nghĩa (SQM) của miền từ của biến được xác
định duy nhất khi các giá trị số của tham số mờ độc lập của biến đã được xác
định. Các giá trị SQM của các từ được gọi là ngữ nghĩa số của các từ. Tuy
nhiên, trong phần này, chúng ta chỉ sử dụng các SQMs được đặc trưng bởi tính
chất chúng phải là (ánh xạ) đẳng cấu thứ tự (order isomorphism), nghĩa là chúng
phải bảo toàn các mối quan hệ thứ tự giữa các từ và ảnh của các miền ngôn ngữ
của các biến được xác định bởi các ánh xạ đẳng cấu là các tập trù mật trong các
miền tham chiếu của biến số tương ứng của chúng (tương tự như các số hữu tỷ
đếm được trù mật trong cấu trúc số thực của đường thẳng).
Về mặt phương pháp luận toán học, khi các miền từ được hình thức hóa
thành các cấu trúc toán học, tức là ĐSGT, mỗi luật ngôn ngữ dạng (3) có thể
được coi như là một điểm ngôn ngữ trong không gian tích Đề các của (m+1)
ĐSGT (tức của (m+1) miền ngôn ngữ). Vì vậy, mọi cơ sở luật ngôn ngữ (LRB)
có dạng (3) có thể được coi là một mô hình hoá của một hàm ngôn ngữ nào đó
với m biến đi qua n điểm ngôn ngữ được cho bởi cơ sở luật ngôn ngữ đó.

12


R. Guclu, H. Yazici (2008), Vibration control of a structure with ATMD against earthquake using
fuzzy logic controllers. Journal of Sound and Vibration, 318, 36–49.


23
Phương pháp xây dựng biểu diễn bằng đồ thị của 𝔅: Cho một cơ sở luật
ngôn ngữ 𝔅 mô tả quan hệ hàm của XL,(m+1) vào các biến XL,j, j = 1, .., m. Khi đó,
các bước để xây dựng hàm số fN biểu diễn tính toán cơ sở luật ngôn ngữ 𝔅 gồm
các bước sau
Bước 1) Xác định ngữ nghĩa định tính và định lượng của các biến ngôn
ngữ:
(1.1) Xây dựng ĐSGT của miền từ ngôn ngữ Dom(Xj), j = 1, …, m +1: (1.2)
Lựa chọn giá trị các tham số tính mờ của các biến Xj’s. Việc này ảnh hưởng
lớn đến ngữ nghĩa định lượng của các từ của biến.
Bước 2) Biểu diễn đồ thị của 𝔅 bằng việc xác định lưới các điểm trong
không gian [0, 1]m+1 mà hàm số fN,𝔅 đi qua:
(2.1) Đối với mỗi biến Xj, j = 1, …, m +1, liệt kê tất cả các từ của biến có
mặt trong 𝔅, kí hiệu là xjk, k = 1, …, Kj. Kí hiệu SQMj là ánh xạ định lượng của
Xj được xác định bởi các giá trị của các tham số tính mờ của Xj và tính các giá trị
ngữ nghĩa số của các từ xjk, SQMj(xjk), k = 1, …, Kj.
(2.2) Thiết lập lưới xấp xỉ đồ thị của hàm fN,𝔅 xem như là biểu diễn tính
toán của cơ sở luật ngôn ngữ 𝔅 như sau:
- Đối với mỗi luật ngôn ngữ ri trong 𝔅 có dạng (1), tức có dạng:
ri : IF X1L is x1,i & … &XmL is xm,i, THEN Xm+1,L is xm+1,i, i = 1, …, n,
Ta kí hiệu ri|Xj = xj,i, j = 1, …, m + 1, và thiết lập điểm sau:
(SQM1(ri|X1), …, SQMm+1(ri|Xm+1)) ∈ [0, 1]m+1.
- Thiết lập lưới trong không gian [0, 1]m+1:
Grid(𝔅) = {( SQM1(ri|X1), …, SQMm+1(ri|Xm+1) : i = 1, …, n }.
Vì các ánh xạ định lượng SQMj đều là các đẳng cấu bảo toàn thứ tự của các
từ ngôn ngữ của các biến Xj, nên dễ dàng kiểm chứng tính đúng đắn của định lý

sau:
Định lý 3.2. Biểu diễn đồ thị của các cơ sở luật ngôn ngữ là giải nghĩa được
theo RWS.
Chứng minh: Giả sử 𝔅 chẳng hạn là đơn điệu tăng, nghĩa là nếu sử dụng kí
pháp trên và ta có ri|Xj ≤ ri’|Xj với mọi j = 1, …, m, thì ta cũng có ri|Xm+1 ≤ ri’|Xm+1.
Vì các ánh xạ định lượng SQMj đều là các đẳng cấu bảo toàn thứ tự của các từ
ngôn ngữ của Dom(Xj), nên Grid(𝔅) xác định một hàm fN trên miền hình chiếu
của Grid(𝔅) cũng đơn điệu tăng, đó là điều cần chứng minh.
3.3.3. Phương pháp lập luận xấp xỉ thực hiện trên biểu diễn đồ thị của
các cơ sở luật ngôn ngữ
3.3.3.1. Phương pháp lập luận xấp xỉ nội suy
Bài toán lập luận xấp xỉ: Cho véc tơ số ain = (ain,1, …, ain,m) ∈ UX1  … 
UXm và cơ sở luật ngôn ngữ 𝔅, hãy tính xấp xỉ ngữ nghĩa số của đầu ra ứng với
đầu vào ain, kí hiệu là Out𝔅(ain), dựa trên tri thức được cho bởi 𝔅.
Bài toán trên có thể được giải bằng phương pháp nội suy trong không gian
Euclide sau:


24
Phương pháp nội suy trên cơ sở luật ngôn ngữ 𝔅: Cho các tham số tính mờ
của các biến có mặt trong 𝔅 và phương pháp biểu diễn đồ thị 𝕄Graph. Khi đó,
𝕄Graph(𝔅) xác định một lưới của một siêu mặt S𝔅 trong không gian Euclide [0,
1]m+1. Mỗi phương pháp nội suy (số) INTMd trên mặt S𝔅 xác định cho ta một
phương pháp giải bài toán lập luận xấp xỉ đối với cơ sở tri thức luật ngôn ngữ 𝔅
phát biểu trên.
Cho một INTMd, rõ ràng rằng với mỗi véc tơ đầu vào ain thì Out𝔅(ain) là
tính được như sau: Out𝔅(ain) = INTMdS𝔅(ain), tức là giá trị tính được từ INTMd
trên mặt S𝔅 trong không gian Euclide [0, 1]m+1.
3.3.3.2.Các phương pháp lập luận xấp xỉ nội suy giải nghĩa được RWS
1) Phương pháp lập luận xấp xỉ nội suy tuyến tính: Trong trường hợp hệ

luật ngôn ngữ có hai đầu vào, ta có phương pháp lập luận xấp xỉ nội suy tuyến
tính trên mặt trong không gian [0, 1]3. Ví dụ, cơ sở luật ngôn ngữ 𝔅 được cho
trong Bảng 3.1 với 9 luật ngôn ngữ sẽ xác định cho ta một mặt S𝔅 như biểu thị
trong Hình 3.6.
 Phương pháp lập luận xấp xỉ nội suy theo diện tam giác Li
Phương pháp Li này được mở rộng từ phương pháp được nghiên cứu trong
công trình [13]13, nhưng chưa đề cập đến tính giải nghĩa được, và được mô tả
như sau:
- Với mỗi véc tơ đầu vào ain = (a1, a2), xác định hình chữ nhật nhỏ trong
nhất trên mặt tọa độ x  y chứa điểm (a1, a2).
- Xây dựng một quy tắc
chọn tam giác với ba đỉnh
l (0.73)
của hình chữ nhật được
Ll(0.67
)
xác định ở trên, kí hiệu là
Pk, k = 1, 2, 3, sao cho
W(0.40)
điểm đầu vào (a1, a2) nằm
trong tam giác đó, kể cả
Ls(0.30)
nằm trên cạch của nó.
s(0.18)
Thiết lập phương trình mặt
W (0.40)
s (0.18)
l (0.73)
phẳng đi qua 3 điểm
s(0.18)

S𝔅(Pk), k = 1, 2, 3:
z
=
EQ
(x,
𝔅
𝔅
𝔅
(S
(P1),
S
(P2),
S
(P3))
W
y)
(
l (0.73)

x

0
.
Hình 3.6. Biểu diễn
4 đồ thị số của LRB đi qua 9 điểm
0
)
13

M. Antonelli, P. Ducange, B. Lazzerini, F. Marcelloni (2011), Learning concurrently data and

rule bases of Mamdani fuzzy rule-based systems by exploiting a novel interpretability index. Soft
Comput., 15 pp. 1981–1998.


25
- Tính đầu ra bằng đẳng thức: Out(ain) = EQ(S𝔅(P1), S𝔅(P2), S𝔅(P3))(a1, a2).
Chúng ta dễ dàng kiểm chứng tính đúng đắn của định lý sau:
Định lý 3.3. Phương pháp lập luận xấp xỉ tuyến tính Li là giải nghĩa được
theo thế giới thực.
Chứng minh: Áp dụng ARM nội suy với LRB 𝔅 được đưa ra trong Bảng
3.1, vì 𝔅 mô tả một hàm ngôn ngữ đơn điệu tăng của hai chiều, đồ thị của nó có
thể được biểu diễn như trong Hình 3.6, giá trị cự tiểu ở (0,18, 0,18), và cực đại
nằm ở (0,73, 0,73). ARM đề xuất ở đây được phát triển dựa trên nội suy tuyến
tính thông thường trên biểu diễn đồ thị này bằng cách thiết lập các phương trình
tuyến tính biểu diễn các phần tam giác được vẽ trong Hình 3.6. Rõ ràng, các
phương trình tuyến tính đại diện cho sự phụ thuộc tuyến tính của U vào các biến
đầu vào x và ẋ, và do đó, phương pháp nội suy tuyến tính thông thường đảm bảo
rằng ARM đã phát triển thỏa mãn điều kiện (2) của Định nghĩa 3.4. Do đó là
giải nghĩa được RWS.
2) Phương pháp lập luận xấp xỉ dựa trên cơ sở luật ngôn ngữ với số biến
lớn hơn 3 bằng việc giảm số chiều về 2: Có nhiều phương pháp nội suy với số
chiều n > 3 nhưng rất phức tạp khi số chiều lớn. Trong trường hợp này, ta có thể
sử dụng phép kết nhập (aggregation operator) thường rất hay dùng trong lý
thuyết tập mờ để chuyển bài toán lập luận xấp xỉ trong không gian m + 1 chiều
về không gian 2 chiều.
Định lý 3.4. Cho cơ sở luật ngôn ngữ 𝔅 và giả sử phép kết nhập là phép
trùng bình cộng có véc tơ trọng số w = (w1, …, wm) ứng với m biến tiền đề của
𝔅, được kí hiệu là 𝔤w. Khi đó, phép nội suy tuyến tính cùng với phép kết nhập
𝔤w, kí hiệu là L_IntM2,w là giải nghĩa được theo RWS.
Chứng minh: Giả thử 𝔅 là cơ sở luật ngôn ngữ được biểu diễn bằng đồ thị

với các ánh xạ định lượng SQMj, j = 1, …, m+1 với lưới
Grid2(𝔅)={(𝔤w[SQM1(x1,i), …,SQMm(xm,i)], SQMm+1(xm+1,i)): i = 1, …, n }.
Vì 𝔅 đơn điệu tăng và giả sử rằng có hai luật ri và ri’ có dạng (*) với hai véc
tơ ngôn ngữ được tạo bởi các từ ngôn ngữ xuất hiện trong tiền đề của chúng, kí
hiệu là x(ri) = (x1,i, …, xm,i) và x(ri’) = (x1,i’, …, xm,i’), thỏa mãn điều kiện x(ri) ≤
x(ri’), tức là xj,i ≤ xj,i’ với j = 1, …, m, thì ta phải có ri|Xm+1 = xi,m+1 ≤ ri’|Xm+1 =
xi’,m+1. Vì các SQMj là các đẳng cấu bảo toàn thứ tự nên chúng ta có SQM j(xj,i) ≤
SQMj(xj,i’), j = 1, …, m+1, và do đó chúng ta suy ra 𝔤w(x(ri)) ≤ 𝔤w(x(ri’)).
Xét hai véc tơ đầu vào ain = (ain,1, …, ain,m) ≤ bin = (bin,1, …, bin,m). Khi đó,
tương tự, chúng ta có 𝔤w(ain,1, …, ain,m) ≤ 𝔤w(bin,1, …, bin,m). Có hai trường hợp
sau: Trường hợp 1: Hai giá trị 𝔤w(ain,1, …, ain,m) và 𝔤w(bin,1, …, bin,m) nằm trên
cùng một đoạn thẳng nối 2 điểm của lưới.
Trường hợp 2: Hai giá trị 𝔤w(ain,1, …, ain,m) và 𝔤w(bin,1, …, bin,m) nằm ở hai
đoạn khác nhau I1 = [𝔤w(x(rj1)), 𝔤w(x(rj1*))] và I2 = [𝔤w(x(rj2)), 𝔤w(x(rj2*))] đươc
tạo ra bởi các hoành độ kề nhau của lưới Grid2(𝔅) trong [0, 1]2.


×