Tải bản đầy đủ (.doc) (8 trang)

DE VA DAP AN MON TOAN THI TUYEN VAO LOP 10 MON TOAN_NAM 2008

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (167.73 KB, 8 trang )

SỞ GIÁO DỤC VÀ ĐÀO TẠO KỲ THI TUYỂN SINH VÀO LỚP 10 THPT
QUẢNG TRỊ Năm học 2008 - 2009
Môn thi: TOÁN
Thời gian: 120 phút (không kể thời gian giao đề)
Bài 1: (2,5 điểm)
a) Rút gọn các biểu thức:
A =
2045

B =
n
nm
nm
+
+

22
C =
1
1
:
1
1
1
1

+









+
+

x
x
xx
(với x

0 ; x
1

)
b) Chứng minh rằng 0

C < 1
Bài 2: (1,5 điểm).
Cho Parabol (P): y = ax
2
(a

0) và điểm A(2;8)
a) Tìm a biết Parabol (P) đi qua A.
b) Tìm điều kiện của a để Parabol (P): y = ax
2
cắt đường thẳng (d): y = x + 1
tại 2 điểm phân biệt.

Bài 3: (2 điểm)
Giải bài toán bằng cách lập phương trình.
Một nhóm học sinh được phân công chuyển 105 bó sách về thư viện của trường. Đến buổi
lao động có hai học sinh bị ốm nên không tham gia được, vì vậy mỗi học sinh phải chuyển thêm 6
bó nữa mới hết số sách cần chuyển. Hỏi lúc đầu nhóm có bao nhiêu học sinh?
Biết số các bó sách mỗi học sinh chuyển là như nhau .
Bài 4: (0,5 điểm)
Với x , y không âm, tìm giá trị nhỏ nhất của biểu thức:
P =
5,2009232
+−+−
xyxyx
Bài 5: (3,5 điểm)
Cho nửa đường tròn tâm O đường kính AB, điểm M thuộc cung AB (M

A ; M

B), điểm
C thuộc đoạn OA. Trên nửa mặt phẳng bờ AB có chứa điểm M kẻ các tiếp tuyến Ax; By của
đường tròn (O). Đường thẳng qua M vuông góc với MC cắt Ax , By lần lượt tại D và E. AM cắt
CD tại P, BM cắt CE tại Q.
a) Chứng minh : Tứ giác ADMC ; BEMC là các tứ giác nội tiếp.
b) Chứng minh DAM + EBM = 90
0
và DC

CE.
c) Chứng minh PQ // AB.
d) Tìm vị trí của điểm C để tứ giác APQC là hình bình hành.
..................... HẾT .......................

Họ và tên thí sinh:.................................. Số báo danh:.........................................
Chữ ký của giám thị 1:.......................... Chữ ký của giám thị 2:.........................
SỞ GIÁO DỤC VÀ ĐÀO TẠO ĐÁP ÁN VÀ BIỂU ĐIỂM
ĐỀ CHÍNH THỨC
QUẢNG TRỊ ĐỀ TUYỂN SINH VÀO LỚP 10 THPT
Năm học 2008 - 2009
MÔN TOÁN
Bài 1: (2,5 điểm)
a)
A =
552535.45.92045
=−=−=−
(0,5đ)
B =
mnnmn
nm
nmnm
n
nm
nm
=+−=+
+
+−
=+
+
− ))((
22
(0,5đ)
C =
1

1
:
1
1
1
1

+








+
+

x
x
xx
(x

0 ; x
1

)
C =
1

1
:
)1)(1(
11

+






+−
−++
x
x
xx
xx
(0,5đ)
=
1
1
.
1
2
+


x
x

x
x
(0,25đ)
=
1
2
+
x
x
(0,25đ)
b) Với x

0 và x
1




x

0 ;
x


1 và x + 1 > 0
Ta có
0)1(
2
>−
x


x - 2
x
+ 1 > 0 (0,25đ)


x + 1 > 2
x

0

0


1
2
+
x
x
< 1

0

C < 1 (0,25đ)
Bài 2: (1,5 điểm)
a) A(2;8)

(P)

8 = a.2

2


8 = 4a

a = 2. (0,5đ)
b) Phương trình hoành độ giao điểm của (P) và (d):
ax
2
= x + 1

ax
2
- x - 1 = 0 (1) (0,5đ)
Để Parabol (P) cắt đường thẳng (d) tại 2 điểm phân biệt thì phương trình (1) có hai
nghiệm phân biệt


> 0 (0,25đ)


1 + 4a > 0

a >
4
1

. (0,25đ)
Bài 3:(2 điểm)
Gọi số học sinh lúc đầu của nhóm là x

Điều kiện x
2;
>∈
xN
(0,25đ)
Theo dự định số bó sách mỗi học cần chuyển lúc đầu:
x
105
(bó). (0,25đ)
Vì có hai học sinh bị ốm nên số bó sách mỗi học sinh cần chuyển:
2
105

x
(bó). (0,25đ)
Theo đề ra ta có phương trình:
2
105

x
-
x
105
= 6 . (0,25đ)

105x - 105(x - 2) = 6x.(x - 2)

6x
2
-12x - 210 = 0 (0,5đ)

Giải phương trình ta được: x
1
= 7 ; x
2
= -5 (không thoả điều kiện) (0,25đ)
Vậy số học sinh lúc đầu của nhóm là 7 học sinh. (0,25đ)
Bài 4 (0,5 điểm)
Đặt
x
= a;
y
= b với x, y

0 ta có:
P = a
2
– 2ab + 3b
2
- 2a + 2009,5
= a
2
– 2(b+1)a + 3b
2
+ 2009,5
= a
2
– 2(b+1)a + (b + 1)
2
+ 2b
2

– 2b + 2008,5
= (a – b – 1)
2
+ 2(b
2
– b) + 2008,5
= (a – b – 1)
2
+ 2(b
2
– b +
4
1
) + 2008,5 -
2
1
= (a – b – 1)
2
+ 2(b –
2
1
)
2
+ 2008

2008 (0,25 điểm)
P = 2008








=
=






=
+=

2
1
2
3
2
1
1
b
a
b
ba









=
=








=
=

4
1
4
9
2
1
2
3
y
x
y
x


Vậy P đạt giá trị nhỏ nhất là 2008 khi







=
=
4
1
4
9
y
x
(0,25 điểm)
Bài 5:
a) (1,25điểm)
Ax ; By là các tiếp tuyến của đường tròn (O)
nên: Ax

AB, By

AB

DAC = CBE = 90
0
(0,5đ)
CM


DE (gt)

DMC = CME = 90
0
(0,25đ)
Từ trên ta có: DAC + DMC = 180
0

Nên: Tứ giác ADMC nội tiếp được trong
một đường tròn. (0,25đ)
Ta có: CBE + CME = 180
0

Nên: Tứ giác BEMC nội tiếp (0,25đ)
b) (1 điểm)
Ta có: BAx + ABy = 180
0
.

A
1
+ A
2
+ B
1
+ B
2
= 180
0

.
2
1
2
1
2
1
y
x
Q
P
E
D
A
B
O
M
C
Do tam giác AMB vuông tại M (AB là đường kính)
nên A
2
+ B
1
= 90
0
. (0,25đ)

A
1
+ B

2
= 90
0
(1) (0,25đ)
Tứ giác CMEB nội tiếp nên ta có: B
2
= C
2
Tứ giác ADMC nội tiếp nên ta có: A
1
= C
1
C
1
+ C
2
= A
1
+ B
2
(2) (0,25đ)
Từ (1) và (2) ta có: C
1
+ C
2
= 90
0
hay DC

CE. (0,25đ)

c) (0,75đ)
PMQ + PCQ = 180
0


Tứ giác MPCQ nội tiếp

MPQ = C
2
(3) (0,25đ)
Ta có: C
2
+ C
1
= 90
0
và A
2
+ A
1
= 90
0
mà A
1
= C
1


A
2

= C
2
(4). (0,25đ)
Từ (3) và (4)

MPQ = A
2


PQ // AB. (0,25đ)
d) (0,5đ)
PQ // AB

QCB = PQC mà PQC = PMC (tứ giác PMQC nội tiếp).


QCB = PMC (0,25đ)
PQ // AB nên tứ giác APQC là hình bình hành

AP // CQ

A
2
= QCB

A
2
= PMC



CAM cân tại C

C là giao điểm của AB với đường trung trực của dây AM

C

O. (0,25đ)
Chú ý: Thí sinh làm cách khác đúng vẫn cho điểm tối đa!
SỞ GIÁO DỤC VÀ ĐÀO TẠO KỲ THI THI TUYỂN SINH VÀO LỚP 10 THPT
QUẢNG TRỊ Năm học 2008 – 2009
Môn thi: TOÁN
Thời gian: 120 phút (không kể thời gian giao đề)

Bài 1 (2,5 điểm)
Cho biểu thức: P =
a
a
a
aa
a
aa
+





















+
+
+
1
1
:
1
11
1
(với a

0; a

1)
a) Rút gọn P.
b) Tính giá trị của P khi a = 4.
c) Tìm các giá trị của a để P = 16.
Bài 2 (1,5 điểm)

Cho đường thẳng (D) : y = -4x + 3.
Lập phương trình đường thẳng (D’) qua điểm A(0;2) và song song với đường
thẳng (D).
Bài 3 (2 điểm)
Cho phương trình bậc hai đối với x:
x
2
– 2(m-1)x + 2m – 5 = 0 (1).
a) Chứng minh phương trình (1) luôn có hai nghiệm phân biệt với mọi m.
b) Tìm m để phương trình (1) có hai nghiệm cùng dấu. Khi đó hai nghiệm mang
dấu gì?
Bài 4 (0,5 điểm)
Cho hai số x, y thoả mãn đẳng thức:
8x
2
+ y
2
+
2
4
1
x
= 4
Xác định x, y để tích xy đạt giá trị nhỏ nhất.
Bài 5 (3,5 điểm)
Cho đường tròn (O;R) có hai đường kính AB và CD vuông góc với nhau. Trên
đoạn thẳng AB lấy một điểm M (khác O). Đường thẳng CM cắt đường tròn (O) tại điểm
thứ hai N. Đường thẳng vuông góc với AB tại M cắt tiếp tuyến tại N của đường tròn ở
điểm P. Chứng minh rằng:
a) Tứ giác OMNP nội tiếp được.

b) Tứ giác CMPO là hình bình hành.
c) Tích CM.CN không phụ thuộc vào vị trí của điểm M.
d) Khi M di động trên đoạn thẳng AB thì P Chạy trên một đoạn thẳng cố định.
ĐỀ DỰ BỊ

×