Tải bản đầy đủ (.doc) (227 trang)

350 đề thi toán vao THPT co ĐA

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (1.44 MB, 227 trang )

Chỳng tụi tuyn sinh cỏc lp 8, 9, 10, 11, 12 cỏc ngy trong tun. Cỏc em cú th hc ti nh theo nhúm
hoc cỏ nhõn, hoc hc ti trung tõm 40 hc sinh/ 1lp. Cung cp ti liu, thi trc nghim
Phòng GD-ĐT Hải Hậu
Trờng THCS
B
Hải Minh
Đề thi thử vào lớp10 thpt
đề dùng cho hs thi vào trờng chuyên
(Thời gian làm bài 150

)
Bài 1(1đ):
Cho biểu thức
x
x
x
x
xx
xx
P

+
+
+




=
3
3


1
)3(2
32
3
Rút gọn P.
Bài 2(1đ):
Cho a, b, c là độ dài 3 cạnh của một tam giác. Chứng minh rằng
phơng trình:
x
2
+ (a + b + c)x + ab + bc + ca = 0 vô nghiệm.
Bài 3(1đ):
Giải phơng trình sau:
2572654
+=++
xxx
Bài 4(1đ):
Giải hệ phơng trình sau:





=+++
=+++
04
0252
22
22
yxyx

xyxyyx
Bài 5(1đ):
Chứng minh rằng:
6
8
33
3223223
>






++
Bài 6(1đ):
Cho x, y, z> 0 thoả mãn:
3
111
=++
zyx
Tìm giá trị nhỏ nhất của biểu thức:
zx
xz
yz
zy
xy
yx
P
22

2222
2
22
+
+
+
+
+
=
Bài 7(1đ):
Trong mặt phẳng 0xy cho đờng thẳng (d) có phơng trình
2kx + (k - 1)y = 2 (k là tham số)
a) Tìm k để đờng thẳng (d) song song đờng thẳng y = x
3
. Khi
đó tính góc tạo bởi đờng thẳng (d) với 0x.
b) Tìm k để khoảng cách từ gốc toạ độ đến đờng thẳng (d) lớn
nhất.
Bài 8(1đ):
Cho góc vuông x0y và 2 điểm A, B trên Ox (OB > OA >0), điểm M
bất kỳ trên cạnh Oy(M O). Đờng tròn (T) đờng kính AB cắt tia MA,MB lần
lợt tại điểm thứ hai:
C , E . Tia OE cắt đờng tròn (T) tại điểm thứ hai F.
1. Chứng minh 4 điểm: O, A, E, M nằm trên 1 đờng tròn.
2. Tứ giác OCFM là hình gì? Tại sao?
Bài 9(1đ): Cho tam giác ABC nhọn có 3 đờng cao: AA
1
, BB
1
, CC

1
đồng quy tại H.
Giỏo viờn: Trn Hi Nam 01662 843844 TT luyn thi Tm Cao Mi 0532 478138
1
Chỳng tụi tuyn sinh cỏc lp 8, 9, 10, 11, 12 cỏc ngy trong tun. Cỏc em cú th hc ti nh theo nhúm
hoc cỏ nhõn, hoc hc ti trung tõm 40 hc sinh/ 1lp. Cung cp ti liu, thi trc nghim
Chứng minh rằng:
6
111
++
HC
HC
HB
HB
HA
HA
.Dấu "=" xảy ra khi nào?
Bài 10(1đ): Cho 3 tia Ox, Oy, Oz không đồng phẳng, đôi một vuông góc với nhau.
Lấy điểm A, B, C bất kỳ trên Ox, Oy và Oz.
a) Gọi H là trực tâm của tam giác ABC. Chứng minh rằng: OH vuông
góc với mặt phẳng ABC
b) Chứng minh rằng:
OACOBCOABABC
SSSS
2222
++=
.
Đáp án:
Bài Bài giải Điểm
Bài 1

(1 điểm)
Điều kiện:
90
03
032
0









x
x
xx
x
* Rút gọn:
1
8
)3)(1(
2483
)3)(1(
)1)(3()3(23
2
+
+
=

+
+
=
+
++
=
x
x
xx
xxxx
xx
xxxxx
P
0.25
0.25
0.25
0.25
Bài 2
(1 điểm)
Ta có: =(a + b + c)
2
- 4(ab + bc + ca) = a
2
+b
2
+c
2
-2ab-2bc-2ca
* Vì a, b, c là 3 cạnh a
2

< (b + c)a
b
2
< (a + c)b
c
2
< (a + b)c
a
2
+ b
2
+ c
2

< 2ab + 2ac + 2bc
< 0 phơng trình vô nghiệm.
0.25
0.25
0.25
0.25
Bài 3
(1 điểm)
* Điều kiện:
52/7
072
05





+

x
x
x
* Phơng trình
0.25
0.25
0.25
0.25
Giỏo viờn: Trn Hi Nam 01662 843844 TT luyn thi Tm Cao Mi 0532 478138
2
Chúng tôi tuyển sinh các lớp 8, 9, 10, 11, 12 các ngày trong tuần. Các em có thể học tại nhà theo nhóm
hoặc cá nhân, hoặc học tại trung tâm 40 học sinh/ 1lớp. Cung cấp tài liệu, đề thi trắc nghiệm
Bµi 4
(1
®iÓm)
( ) ( )
1
025
0372
025372
0)4545()972672(
22
=⇔






=−−
=−+

=−−+−+⇔
=+−−−+++−+⇔
x
x
x
xx
xxxx
Gi¶i hÖ:





=−+++
=−+−−+
)2(04
)1(0252
22
22
yxyx
yxyxyx
Tõ (1) ⇔ 2x
2
+ (y - 5)x - y
2
+ y + 2 = 0







+
=
−+−
=
−=
−−−
=

−=++−−−=∆
2
1
4
)1(35
2
4
)1(35
)1(9)2(8)5(
222
yyy
x
y
yy
x
yyyy
x

0.25
* Víi: x = 2 - y, ta cã hÖ:
1
012
2
04
2
2
22
==⇔



=+−
−=




=−+++
−=
yx
yy
yx
yxyx
yx
*Víi
2
1
+

=
y
x
, ta cã hÖ:
0.25
0.25
0.25
Giáo viên: Trần Hải Nam – 01662 843844 – TT luyện thi Tầm Cao Mới – 0532 478138
3
Chỳng tụi tuyn sinh cỏc lp 8, 9, 10, 11, 12 cỏc ngy trong tun. Cỏc em cú th hc ti nh theo nhúm
hoc cỏ nhõn, hoc hc ti trung tõm 40 hc sinh/ 1lp. Cung cp ti liu, thi trc nghim















=
=
==





=
=






=+++
+
=
5
13
5
4
1
045
12
04
2
1
2
22
y
x
yx
xx

xy
yxyx
y
x
Vậy hệ có 2 nghiệm: (1;1) và







5
13
;
5
4
Bài 5
(1 điểm)
Đặt a = x + y, với:
33
223;223
=+=
yx
Ta phải chứng minh: a
8
> 3
6
Ta có:


3
cos
3333
33
.1.13.3)11(3
36)(3)(
1.
6
aa
ayxxyyxyxa
yx
yx
y
>++=
+=+++=+=



=
=+
(vì: x > 1; y > 0 a > 1)
a
9
> 9
3
.a a
8
> 3
6
(đpcm).

0.25
0.25
0.25
0.25
Bài 6
(1 điểm)
* áp dụng bất đẳng thức Bunhiacopsky cho: 1,
2

yx
2
,
1
)1(
21
3
112
2
2121
)21(
22
22
2
22
2
2









++=
+









+








++
yxxyxy
yx
yxyx
Dấu "=" xảy ra khi và chỉ khi x = y
Tơng tự:

0.25
Giỏo viờn: Trn Hi Nam 01662 843844 TT luyn thi Tm Cao Mi 0532 478138
4
Chỳng tụi tuyn sinh cỏc lp 8, 9, 10, 11, 12 cỏc ngy trong tun. Cỏc em cú th hc ti nh theo nhúm
hoc cỏ nhõn, hoc hc ti trung tõm 40 hc sinh/ 1lp. Cung cp ti liu, thi trc nghim
)3(
21
3
12
)2(
21
3
1
2
22
22






+
+









+
+
xzzx
xz
zyyz
zy
Từ (1), (2), (3)
3
333
3
1
=








++
zyx
P
Suy ra: P
min
= 3 khi: x = y = z =
3
.

0.25
0.25
0.25
Bài 7
(1 điểm)
1).* Với k = 1 suy ra phơng trình (d): x = 1 không song song:
y =
x3
* Với k 1: (d) có dạng:
1
2
.
1
2

+

=
k
x
k
k
y
để: (d) // y =
x3

3
1
2
=



k
k
)32(3
=
k
Khi đó (d) tạo Ox một góc nhọn với: tg =
3
= 60
0
.
2)* Với k = 1 thì khoảng cách từ O đến (d): x = 1 là 1.
* k = 0 suy ra (d) có dạng: y = -2, khi đó khoảng cách từ O đến (d) là 2.
* Với k 0 và k 1. Gọi A = d Ox, suy ra A(1/k; 0)
B = d Oy, suy ra B(0; 2/k-1)
Suy ra: OA =
1
2
;
1

=
k
OB
k
Xét tam giác vuông AOB, ta có :
5
5
2

2
5
4
5
1
5
2
125
2
111
22
222
=
+







=
+
=
+=
k
kk
OH
OBOAOH
Suy ra (OH)

max
=
5
khi: k = 1/5.
Vậy k = 1/5 thì khoảng cách từ O đến (d) lớn nhất.
0.25
0.25
0.25
0.25
Bài 8
(1điểm)
y
M
a) Xét tứ giác OAEM có: F
vEO 2
=+

E
(Vì:
vE 1
=

góc nội tiếp...)
Suy ra: O, A, E, M B
cùng thuộc đờng tròn.
0.25
Giỏo viờn: Trn Hi Nam 01662 843844 TT luyn thi Tm Cao Mi 0532 478138
5
1
1

1
Chỳng tụi tuyn sinh cỏc lp 8, 9, 10, 11, 12 cỏc ngy trong tun. Cỏc em cú th hc ti nh theo nhúm
hoc cỏ nhõn, hoc hc ti trung tõm 40 hc sinh/ 1lp. Cung cp ti liu, thi trc nghim
O A x
C
b) Tứ giác OAEM nội tiếp, suy ra:

=
11
EM
*Mặt khác: A, C, E, F cùng thuộc đờng tròn (T) suy ra:

=
11
CE
Do đó:
=

FCOMCM //
11
Tứ giác OCFM là hình thang.
0.25
0.25
0.25
Bài 9
(1điểm)
b)* Do tam giác ABC nhọn, nên H nằm trong tam giác.
* Đặt S = S

ABC

; S
1
= S
HBC
; S
2
= S
HAC
; S
3
= S
HAB
. A
Ta có: C
1
B
1
11
1
1
1
1
1
..
2
1
..
2
1
HA

HA
HA
AA
BCHA
BCAA
S
S
+===
H
Tơng tự:
12
1
HB
HB
S
S
+=
B A
1
C

13
1
HC
HC
S
S
+=

Suy ra:

3
111
)(
3
111
321
321
321111









++++=









++=++
SSS
SSS

SSS
S
HC
HC
HB
HB
HA
HA
Theo bất đẳng thức Côsy:
639
9
111
)(
111
321
321
=++









++++=
HC
HC
HB

HB
HA
HA
SSS
SSS
Dấu "=" xảy ra khi tam giác ABC đều
0.25
0.25
0.25
0.25
Bài 10
(1điểm)
a) Gọi AM, CN là đờng cao của tam giác ABC.
Ta có: AB CN
AB OC (vì: OC mặt phẳng (ABO)
Suy ra: AB mp(ONC) AB OH (1).
Tơng tự: BC AM; BC OA, suy ra: BC mp (OAM) OH BC (2).
Từ (1) và (2) suy ra: OH mp(ABC)
b) Đặt OA = a; OB = b; OC = c.
0.25
0.25
0.25
Giỏo viờn: Trn Hi Nam 01662 843844 TT luyn thi Tm Cao Mi 0532 478138
6
Chỳng tụi tuyn sinh cỏc lp 8, 9, 10, 11, 12 cỏc ngy trong tun. Cỏc em cú th hc ti nh theo nhúm
hoc cỏ nhõn, hoc hc ti trung tõm 40 hc sinh/ 1lp. Cung cp ti liu, thi trc nghim
Ta có:
)).((
4
1

.
4
1
.
2
1
222222
2
OBOAONOCABCNSABCNS
ABCABC
++===

Mặt khác: Do tam giác OAB vuông, suy ra:
222
22222222
22
22
2
2
22
22
2
22222
4
1
4
1
4
1
)(

4
1
11111
OACOABOBC
ABC
SSS
cabcbaba
ba
ba
cS
ba
ba
ON
baOBOAON
++=
=++=+








+
+=
+
=+=+=

0.25

Đề 3
Bài 1: Cho biểu thức:
( ) ( )( )
yx
xy
xyx
y
yyx
x
P
+

++

+
=
111))1)((
a). Tìm điều kiện của x và y để P xác định . Rút gọn P.
b). Tìm x,y nguyên thỏa mãn phơng trình P = 2.
Bài 2: Cho parabol (P) : y = -x
2
và đờng thẳng (d) có hệ số góc m đi qua điểm M(-1 ;
-2) .
a). Chứng minh rằng với mọi giá trị của m (d) luôn cắt (P) tại hai điểm A , B
phân biệt
b). Xác định m để A,B nằm về hai phía của trục tung.
Bài 3: Giải hệ phơng trình :









=++
=++
=++
27
1
111
9
zxyzxy
zyx
zyx
Bài 4: Cho đờng tròn (O) đờng kính AB = 2R và C là một điểm thuộc đờng tròn
);( BCAC

. Trên nửa mặt phẳng bờ AB có chứa điểm C , kẻ tia Ax tiếp xúc với
đờng tròn (O), gọi M là điểm chính giữa của cung nhỏ AC . Tia BC cắt Ax tại Q , tia
AM cắt BC tại N.
a). Chứng minh các tam giác BAN và MCN cân .
b). Khi MB = MQ , tính BC theo R.
Bài 5: Cho
Rzyx

,,
thỏa mãn :
zyxzyx
++

=++
1111
Hãy tính giá trị của biểu thức : M =
4
3
+ (x
8
y
8
)(y
9
+ z
9
)(z
10
x
10
) .
Đáp án
Bài 1: a). Điều kiện để P xác định là :;
0;1;0;0
+
yxyyx
.
Giỏo viờn: Trn Hi Nam 01662 843844 TT luyn thi Tm Cao Mi 0532 478138
7
Chỳng tụi tuyn sinh cỏc lp 8, 9, 10, 11, 12 cỏc ngy trong tun. Cỏc em cú th hc ti nh theo nhúm
hoc cỏ nhõn, hoc hc ti trung tõm 40 hc sinh/ 1lp. Cung cp ti liu, thi trc nghim
*). Rút gọn P:
( )

( ) ( ) ( )
(1 ) (1 )
1 1
x x y y xy x y
P
x y x y
+ +
=
+ +
( ) ( )
( ) ( ) ( )
( )
1 1
x y x x y y xy x y
x y x y
+ + +
=
+ +
( ) ( )
( ) ( ) ( )
1 1
x y x y x xy y xy
x y x y
+ + +
=
+ +
( ) ( ) ( ) ( )
( ) ( )
1 1 1 1
1 1

x x y x y x x
x y
+ + + +
=
+
( )
1
x y y y x
y
+
=

( ) ( ) ( )
( )
1 1 1
1
x y y y y
y
+
=

.x xy y= +
Vậy P =
.yxyx
+
b). P = 2

.yxyx
+
= 2


( ) ( )
( )( )
111
111
=+
=++
yx
yyx
Ta có: 1 +
1y

1 1x

0 4x

x = 0; 1; 2; 3 ; 4
Thay vào ta cócác cặp giá trị (4; 0) và (2 ; 2) thoả mãn
Bài 2: a). Đờng thẳng (d) có hệ số góc m và đi qua điểm M(-1 ; -2) . Nên phơng trình
đờng thẳng (d) là : y = mx + m 2.
Hoành độ giao điểm của (d) và (P) là nghiệm của phơng trình:
- x
2
= mx + m 2


x
2
+ mx + m 2 = 0 (*)
Vì phơng trình (*) có

( )
mmmm
>+=+=
04284
2
2
nên phơng trình (*)
luôn có hai nghiệm phân biệt , do đó (d) và (P) luôn cắt nhau tại hai điểm phân biệt A
và B.
b). A và B nằm về hai phía của trục tung

phơng trình : x
2
+ mx + m 2 = 0 có
hai nghiệm trái dấu

m 2 < 0

m < 2.
Bài 3 :
( )
( )







=++

=++
=++
327
)2(1
111
19
xzyzxy
zyx
zyx
ĐKXĐ :
.0,0,0

zyx
Giỏo viờn: Trn Hi Nam 01662 843844 TT luyn thi Tm Cao Mi 0532 478138
8
Chỳng tụi tuyn sinh cỏc lp 8, 9, 10, 11, 12 cỏc ngy trong tun. Cỏc em cú th hc ti nh theo nhúm
hoc cỏ nhõn, hoc hc ti trung tõm 40 hc sinh/ 1lp. Cung cp ti liu, thi trc nghim
Q
N
M
O
C
B
A

( ) ( )
( )
( ) ( )
2
2 2 2

2 2 2 2 2 2
2 2 2 2 2 2
2 2 2
2
2
2
81 2 81
81 2 27
2( ) 2 0
( ) ( ) ( ) 0
( ) 0
( ) 0
( ) 0
x y z x y z xy yz zx
x y z xy yz zx x y z
x y z xy yz zx x y z xy yz zx
x y y z z x
x y
x y
y z y z x y z
z x
z x
+ + = + + + + + =
+ + = + + + + =
+ + = + + + + + + =
+ + =

=
=




= = = =


=
=


Thay vào (1) => x = y = z = 3 .
Ta thấy x = y = z = 3 thõa mãn hệ phơng trình . Vậy hệ phơng trình có nghiệm duy
nhất x = y = z = 3.
Bài 4:
a). Xét
ABM


NBM

.
Ta có: AB là đờng kính của đờng tròn (O)
nên :AMB = NMB = 90
o
.
M là điểm chính giữa của cung nhỏ AC
nên ABM = MBN => BAM = BNM
=>
BAN

cân đỉnh B.

Tứ giác AMCB nội tiếp
=> BAM = MCN ( cùng bù với góc MCB).
=> MCN = MNC ( cùng bằng góc BAM).
=> Tam giác MCN cân đỉnh M
b). Xét
MCB


MNQ

có :
MC = MN (theo cm trên MNC cân ) ; MB = MQ ( theo gt)


BMC =

MNQ ( vì :

MCB =

MNC ;

MBC =

MQN ).
=>
)...( cgcMNQMCB
=
=> BC = NQ .
Xét tam giác vuông ABQ có


BQAC
AB
2
= BC . BQ = BC(BN + NQ)
=> AB
2
= BC .( AB + BC) = BC( BC + 2R)
=> 4R
2
= BC( BC + 2R) => BC =
R)15(

Bài 5:
Từ :
zyxzyx
++
=++
1111
=>
0
1111
=
++
++
zyxzyx
=>
( )
0
=

++
++
+
+
zyxz
zzyx
xy
yx

( )
( )
( )
( )( )
0)(
0
)(
0
11
2
=+++
=








++

+++
+
=








++
++
xzzyyx
zyxxyz
xyzzyzx
yx
zyxzxy
yz
Ta có : x
8
y
8
= (x + y)(x-y)(x
2
+y
2
)(x
4
+ y

4
).=
y
9
+ z
9
= (y + z)(y
8
y
7
z + y
6
z
2
- .......... + z
8
)
Giỏo viờn: Trn Hi Nam 01662 843844 TT luyn thi Tm Cao Mi 0532 478138
9
Chỳng tụi tuyn sinh cỏc lp 8, 9, 10, 11, 12 cỏc ngy trong tun. Cỏc em cú th hc ti nh theo nhúm
hoc cỏ nhõn, hoc hc ti trung tõm 40 hc sinh/ 1lp. Cung cp ti liu, thi trc nghim
z
10
- x
10
= (z + x)(z
4
z
3
x + z

2
x
2
zx
3
+ x
4
)(z
5
- x
5
)
Vậy M =
4
3
+ (x + y) (y + z) (z + x).A =
4
3
Đề 4
Bài 1: 1) Cho đờng thẳng d xác định bởi y = 2x + 4. Đờng thẳng d
/
đối xứng với đ-
ờng thẳng d qua đờng thẳng y = x là:
A.y =
2
1
x + 2 ; B.y = x - 2 ; C.y =
2
1
x - 2 ; D.y = - 2x - 4

Hãy chọn câu trả lời đúng.
2) Một hình trụ có chiều cao gấp đôi đờng kính đáy đựng đầy nớc, nhúng chìm
vào bình một hình cầu khi lấy ra mực nớc trong bình còn lại
3
2
bình. Tỉ số giữa bán
kính hình trụ và bán kính hình cầu là A.2 ; B.
3
2
; C.
3
3
; D. một kết quả khác.
Bìa2: 1) Giải phơng trình: 2x
4
- 11 x
3
+ 19x
2
- 11 x + 2 = 0
2) Cho x + y = 1 (x > 0; y > 0) Tìm giá trị lớn nhất của A =
x
+
y
Bài 3: 1) Tìm các số nguyên a, b, c sao cho đa thức : (x + a)(x - 4) - 7
Phân tích thành thừa số đợc : (x + b).(x + c)
2) Cho tam giác nhọn xây, B, C lần lợt là các điểm cố định trên tia Ax, Ay sao
cho AB < AC, điểm M di động trong góc xAy sao cho
MB
MA

=
2
1
Xác định vị trí điểm M để MB + 2 MC đạt giá trị nhỏ nhất.
Bài 4: Cho đờng tròn tâm O đờng kính AB và CD vuông góc với nhau, lấy điểm I bất
kỳ trên đoan CD.
a) Tìm điểm M trên tia AD, điểm N trên tia AC sao cho I lag trung điểm của
MN.
b) Chứng minh tổng MA + NA không đổi.
c) Chứng minh rằng đờng tròn ngoại tiếp tam giác AMN đi qua hai điểm cố
định.
Hớng dẫn
Bài 1: 1) Chọn C. Trả lời đúng.
2) Chọn D. Kết quả khác: Đáp số là: 1
Bài 2 : 1)A = (n + 1)
4
+ n
4
+ 1 = (n
2
+ 2n + 1)
2
- n
2
+ (n
4
+ n
2
+ 1)
= (n

2
+ 3n + 1)(n
2
+ n + 1) + (n
2
+ n + 1)(n
2
- n + 1)
= (n
2
+ n + 1)(2n
2
+ 2n + 2) = 2(n
2
+ n + 1)
2
Vậy A chia hết cho 1 số chính phơng khác 1 với mọi số nguyên dơng n.
2) Do A > 0 nên A lớn nhất

A
2
lớn nhất.
Giỏo viờn: Trn Hi Nam 01662 843844 TT luyn thi Tm Cao Mi 0532 478138
10
Chỳng tụi tuyn sinh cỏc lp 8, 9, 10, 11, 12 cỏc ngy trong tun. Cỏc em cú th hc ti nh theo nhúm
hoc cỏ nhõn, hoc hc ti trung tõm 40 hc sinh/ 1lp. Cung cp ti liu, thi trc nghim
M
D
C
B

A
x
K
O
N
M
I
D
C
B
A
Xét A
2
= (
x
+
y
)
2
= x + y + 2
xy
= 1 + 2
xy
(1)
Ta có:
2
yx
+

xy


(Bất đẳng thức Cô si)
=> 1 > 2
xy
(2)
Từ (1) và (2) suy ra: A
2
= 1 + 2
xy
< 1 + 2 = 2
Max A
2
= 2 <=> x = y =
2
1
, max A =
2
<=> x = y =
2
1
Bài3 Câu 1Với mọi x ta có (x + a)(x - 4) - 7 = (x + b)(x + c)
Nên với x = 4 thì - 7 = (4 + b)(4 + c)
Có 2 trờng hợp: 4 + b = 1 và 4 + b = 7
4 + c = - 7 4 + c = - 1
Trờng hợp thứ nhất cho b = - 3, c = - 11, a = - 10
Ta có (x - 10)(x - 4) - 7 = (x - 3)(x - 11)
Trờng hợp thứ hai cho b = 3, c = - 5, a = 2
Ta có (x + 2)(x - 4) - 7 = (x + 3)(x - 5)
Câu2 (1,5điểm)
Gọi D là điểm trên cạnh AB sao cho:

AD =
4
1
AB. Ta có D là điểm cố định

AB
MA
=
2
1
(gt) do đó
MA
AD
=
2
1

Xét tam giác AMB và tam giác ADM có MâB (chung)

AB
MA
=
MA
AD
=
2
1
Do đó AMB ~ ADM =>
MD
MB

=
AD
MA
= 2
=> MD = 2MD (0,25 điểm)
Xét ba điểm M, D, C : MD + MC > DC (không đổi)
Do đó MB + 2MC = 2(MD + MC) > 2DC
Dấu "=" xảy ra <=> M thuộc đoạn thẳng DC
Giá trị nhỏ nhất của MB + 2 MC là 2 DC
* Cách dựng điểm M.
- Dựng đờng tròn tâm A bán kính
2
1
AB
- Dựng D trên tia Ax sao cho AD =
4
1
AB
M là giao điểm của DC và đờng tròn (A;
2
1
AB)
Bài 4: a) Dựng (I, IA) cắt AD tại M cắt tia AC tại N
Do MâN = 90
0
nên MN là đờng kính
Vậy I là trung điểm của MN
b) Kẻ MK // AC ta có : INC = IMK (g.c.g)
=> CN = MK = MD (vì MKD vuông cân)
Giỏo viờn: Trn Hi Nam 01662 843844 TT luyn thi Tm Cao Mi 0532 478138

11
Chỳng tụi tuyn sinh cỏc lp 8, 9, 10, 11, 12 cỏc ngy trong tun. Cỏc em cú th hc ti nh theo nhúm
hoc cỏ nhõn, hoc hc ti trung tõm 40 hc sinh/ 1lp. Cung cp ti liu, thi trc nghim
Vậy AM+AN=AM+CN+CA=AM+MD+CA
=> AM = AN = AD + AC không đổi
c) Ta có IA = IB = IM = IN
Vậy đờng tròn ngoại tiếp AMN đi qua hai điểm A, B cố định .

Đề 5
Bài 1. Cho ba số x, y, z thoã mãn đồng thời :
2 2 2
2 1 2 1 2 1 0x y y z z x+ + = + + = + + =
Tính giá trị của biểu thức :
2007 2007 2007
A x y z= + +
.
Bài 2). Cho biểu thức :
2 2
5 4 2014M x x y xy y= + + +
.
Với giá trị nào của x, y thì M đạt giá trị nhỏ nhất ? Tìm giá trị nhỏ nhất đó
Bài 3. Giải hệ phơng trình :
( ) ( )
2 2
18
1 . 1 72
x y x y
x x y y

+ + + =



+ + =


Bài 4. Cho đờng tròn tâm O đờng kính AB bán kính R. Tiếp tuyến tại điểm M bbất kỳ
trên đờng tròn (O) cắt các tiếp tuyến tại A và B lần lợt tại C và D.
a.Chứng minh : AC . BD = R
2
.
b.Tìm vị trí của điểm M để chu vi tam giác COD là nhỏ nhất .
Bài 5.Cho a, b là các số thực dơng. Chứng minh rằng :
( )
2
2 2
2
a b
a b a b b a
+
+ + +
Bài 6).Cho tam giác ABC có phân giác AD. Chứng minh : AD
2
= AB . AC - BD . DC.
Hớng dẫn giải
Bài 1. Từ giả thiết ta có :
2
2
2
2 1 0
2 1 0

2 1 0
x y
y z
z x

+ + =

+ + =


+ + =


Cộng từng vế các đẳng thức ta có :
( ) ( ) ( )
2 2 2
2 1 2 1 2 1 0x x y y z z+ + + + + + + + =

( ) ( ) ( )
2 2 2
1 1 1 0x y z + + + + + =

1 0
1 0
1 0
x
y
z
+ =



+ =


+ =


1x y z = = =


( ) ( ) ( )
2007 2007 2007
2007 2007 2007
1 1 1 3A x y z = + + = + + =
Vậy : A = -3.
Giỏo viờn: Trn Hi Nam 01662 843844 TT luyn thi Tm Cao Mi 0532 478138
12
Chỳng tụi tuyn sinh cỏc lp 8, 9, 10, 11, 12 cỏc ngy trong tun. Cỏc em cú th hc ti nh theo nhúm
hoc cỏ nhõn, hoc hc ti trung tõm 40 hc sinh/ 1lp. Cung cp ti liu, thi trc nghim
Bài 2.(1,5 điểm) Ta có :
( ) ( )
( )
2 2
4 4 2 1 2 2 2007M x x y y xy x y= + + + + + + + +

( ) ( ) ( ) ( )
2 2
2 1 2 1 2007M x y x y= + + +

( ) ( ) ( )

2
2
1 3
2 1 1 2007
2 4
M x y y

= + + +



Do
( )
2
1 0y

( ) ( )
2
1
2 1 0
2
x y

+



,x y

2007M


min
2007 2; 1M x y = = =

Bài 3. Đặt :
( )
( )
1
1
u x x
v y y

= +


= +


Ta có :
18
72
u v
uv
+ =


=




u ; v là nghiệm của phơng
trình :
2
1 2
18 72 0 12; 6X X X X + = = =


12
6
u
v
=


=

;
6
12
u
v
=


=




( )

( )
1 12
1 6
x x
y y

+ =


+ =


;
( )
( )
1 6
1 12
x x
y y

+ =


+ =



Giải hai hệ trên ta đợc : Nghiệm của hệ là :
(3 ; 2) ; (-4 ; 2) ; (3 ; -3) ; (-4 ; -3) và các hoán vị.
Bài 4 . a.Ta có CA = CM; DB = DM

Các tia OC và OD là phân giác của hai góc AOM và MOB nên OC

OD
Tam giác COD vuông đỉnh O, OM là đờng cao thuộc cạnh huyền CD nên :
MO
2
= CM . MD

R
2
= AC . BD
b.Các tứ giác ACMO ; BDMO nội tiếp
ã
ã
ã
ã
;MCO MAO MDO MBO = =

( )
.COD AMB g gV : V
(0,25đ)
Do đó :
1
. .
. .
Chu vi COD OM
Chu vi AMB MH
=
V
V

(MH
1


AB)
Do MH
1


OM nên
1
1
OM
MH



Chu vi
COD V
chu vi
AMBV

Giỏo viờn: Trn Hi Nam 01662 843844 TT luyn thi Tm Cao Mi 0532 478138
13
o
h
d
c
m
b

a
Chỳng tụi tuyn sinh cỏc lp 8, 9, 10, 11, 12 cỏc ngy trong tun. Cỏc em cú th hc ti nh theo nhúm
hoc cỏ nhõn, hoc hc ti trung tõm 40 hc sinh/ 1lp. Cung cp ti liu, thi trc nghim
Dấu = xảy ra

MH
1
= OM

M

O

M là điểm chính giữa của cung

AB

Bài 5 (1,5 điểm) Ta có :
2 2
1 1
0; 0
2 2
a b


ữ ữ



a , b > 0

1 1
0; 0
4 4
a a b b + +

1 1
( ) ( ) 0
4 4
a a b b + + +


a , b > 0
1
0
2
a b a b + + + >
Mặt khác
2 0a b ab+ >

Nhân từng vế ta có :
( ) ( )
( )
1
2
2
a b a b ab a b

+ + + +




( )
( )
2
2 2
2
a b
a b a b b a
+
+ + +

Bài 6. (1 điểm) Vẽ đờng tròn tâm O ngoại tiếp
ABCV

Gọi E là giao điểm của AD và (O)
Ta có:
ABD CEDV : V
(g.g)
. .
BD AD
AB ED BD CD
ED CD
= =

( )
2
. .
. .
AD AE AD BD CD
AD AD AE BD CD

=
=

Lại có :
( )
.ABD AEC g gV : V

2
. .
. .
AB AD
AB AC AE AD
AE AC
AD AB AC BD CD
= =
=

Đè 6
Câu 1: Cho hàm số f(x) =
44
2
+
xx
a) Tính f(-1); f(5)
b) Tìm x để f(x) = 10
c) Rút gọn A =
4
)(
2


x
xf
khi x
2

Câu 2: Giải hệ phơng trình



+=+
+=
)3)(72()72)(3(
)4)(2()2(
yxyx
yxyx
Giỏo viờn: Trn Hi Nam 01662 843844 TT luyn thi Tm Cao Mi 0532 478138
14
d
e
c
b
a
Chỳng tụi tuyn sinh cỏc lp 8, 9, 10, 11, 12 cỏc ngy trong tun. Cỏc em cú th hc ti nh theo nhúm
hoc cỏ nhõn, hoc hc ti trung tõm 40 hc sinh/ 1lp. Cung cp ti liu, thi trc nghim
Câu 3: Cho biểu thứcA =










+












+
1
:
1
1
1
1
x
x
x
x
x
x

xx
với x > 0 và x 1
a) Rút gọn A
b) Tìm giá trị của x để A = 3
Câu 4: Từ điểm P nằm ngoài đờng tròn tâm O bán kính R, kẻ hai tiếp tuyến PA; PB.
Gọi H là chân đờng vuông góc hạ từ A đến đờng kính BC.
a) Chứng minh rằng PC cắt AH tại trung điểm E của AH
b) Giả sử PO = d. Tính AH theo R và d.
Câu 5: Cho phơng trình 2x
2
+ (2m - 1)x + m - 1 = 0
Không giải phơng trình, tìm m để phơng trình có hai nghiệm phân biệt x
1
; x
2
thỏa mãn:
3x
1
- 4x
2
= 11
đáp án
Câu 1a) f(x) =
2)2(44
22
==+
xxxx
Suy ra f(-1) = 3; f(5) = 3
b)




=
=




=
=
=
8
12
102
102
10)(
x
x
x
x
xf
c)
)2)(2(
2
4
)(
2
+

=


=
xx
x
x
xf
A
Với x > 2 suy ra x - 2 > 0 suy ra
2
1
+
=
x
A
Với x < 2 suy ra x - 2 < 0 suy ra
2
1
+
=
x
A
Câu 2
( 2) ( 2)( 4) 2 2 4 8 4
( 3)(2 7) (2 7)( 3) 2 6 7 21 2 7 6 21 0
x y x y xy x xy y x x y
x y x y xy y x xy y x x y
= + = + = =




+ = + + = + + = =

x -2

y 2
Câu 3 a) Ta có: A =









+












+
1

:
1
1
1
1
x
x
x
x
x
x
xx
=









+














+
++
11
)1(
:
1
1
)1)(1(
)1)(1(
x
x
x
xx
x
x
xx
xxx
=
Giỏo viờn: Trn Hi Nam 01662 843844 TT luyn thi Tm Cao Mi 0532 478138
15
Chỳng tụi tuyn sinh cỏc lp 8, 9, 10, 11, 12 cỏc ngy trong tun. Cỏc em cú th hc ti nh theo nhúm
hoc cỏ nhõn, hoc hc ti trung tõm 40 hc sinh/ 1lp. Cung cp ti liu, thi trc nghim










+












+
1
:
1
1
1
1
x
xxx
x

x
x
xx
=
1
:
1
11

++
x
x
x
xxx
=
1
:
1
2

+
x
x
x
x
=
x
x
x
x 1

1
2



+
=
x
x

2
b) A = 3 =>
x
x

2
= 3 => 3x +
x
- 2 = 0 => x = 2/3
Câu 4
Do HA // PB (Cùng vuông góc với BC)
a) nên theo định lý Ta let áp dụng cho CPB ta có

CB
CH
PB
EH
=
; (1)
Mặt khác, do PO // AC (cùng vuông góc với AB)

=>

POB =

ACB (hai góc đồng vị)
=> AHC

POB
Do đó:
OB
CH
PB
AH
=
(2)
Do CB = 2OB, kết hợp (1) và (2) ta suy ra AH = 2EH hay E là trung điểm của
AH.
b) Xét tam giác vuông BAC, đờng cao AH ta có AH
2
= BH.CH = (2R - CH).CH
Theo (1) và do AH = 2EH ta có
.)2(
2PB
AH.CB
2PB
AH.CB
AH
2
=
R


AH
2
.4PB
2
= (4R.PB - AH.CB).AH.CB

4AH.PB
2
= 4R.PB.CB - AH.CB
2

AH (4PB
2
+CB
2
) = 4R.PB.CB
2
222
222
222
2222
d
Rd.2.R
4R)R4(d
Rd.8R

(2R)4PB
4R.2R.PB
CB4.PB

4R.CB.PB
AH

=
+

=
+
=
+
=
Câu 5 Để phơng trình có 2 nghiệm phân biệt x
1
; x
2
thì > 0
<=> (2m - 1)
2
- 4. 2. (m - 1) > 0
Giỏo viờn: Trn Hi Nam 01662 843844 TT luyn thi Tm Cao Mi 0532 478138
16
O
B
C
H
E
A
P
Chỳng tụi tuyn sinh cỏc lp 8, 9, 10, 11, 12 cỏc ngy trong tun. Cỏc em cú th hc ti nh theo nhúm
hoc cỏ nhõn, hoc hc ti trung tõm 40 hc sinh/ 1lp. Cung cp ti liu, thi trc nghim

Từ đó suy ra m 1,5 (1)
Mặt khác, theo định lý Viét và giả thiết ta có:










=

=

=+
114x3x
2
1m
.xx
2
12m
xx
21
21
21











=



=
=
11
8m-26
77m
4
7
4m-13
3
8m-26
77m
x
7
4m-13
x
1
1

Giải phơng trình

11
8m-26
77m
4
7
4m-13
3 =



ta đợc m = - 2 và m = 4,125 (2)
Đối chiếu điều kiện (1) và (2) ta có: Với m = - 2 hoặc m = 4,125 thì phơng trình
đã cho có hai nghiệm phân biệt thỏa mãn: x
1
+ x
2
= 11
Đề 7
Câu 1: Cho P =
2
1
x
x x
+

+
1
1
x
x x

+
+ +
-
1
1
x
x
+

a/. Rút gọn P.
b/. Chứng minh: P <
1
3
với x

0 và x

1.
Câu 2: Cho phơng trình : x
2
2(m - 1)x + m
2
3 = 0
( 1 )
; m là tham số.
a/. Tìm m để phơng trình (1) có nghiệm.
b/. Tìm m để phơng trình (1) có hai nghiệm sao cho nghiệm này bằng ba lần
nghiệm kia.
Câu 3: a/. Giải phơng trình :
1

x
+
2
1
2 x
= 2
b/. Cho a, b, c là các số thực thõa mãn :
0
0
2 4 2 0
2 7 11 0
a
b
a b c
a b c






+ + =


+ =

Tìm giá trị lớn nhất và giá trị bé nhất của Q = 6 a + 7 b + 2006 c.
Câu 4: Cho
ABCV
cân tại A với AB > BC. Điểm D di động trên cạnh AB, ( D không

trùng với A, B). Gọi (O) là đờng tròn ngoại tiếp
BCDV
. Tiếp tuyến của (O) tại C và D
cắt nhau ở K .
a/. Chứng minh tứ giác ADCK nội tiếp.
b/. Tứ giác ABCK là hình gì? Vì sao?
c/. Xác định vị trí điểm D sao cho tứ giác ABCK là hình bình hành.
Giỏo viờn: Trn Hi Nam 01662 843844 TT luyn thi Tm Cao Mi 0532 478138
17
Chỳng tụi tuyn sinh cỏc lp 8, 9, 10, 11, 12 cỏc ngy trong tun. Cỏc em cú th hc ti nh theo nhúm
hoc cỏ nhõn, hoc hc ti trung tõm 40 hc sinh/ 1lp. Cung cp ti liu, thi trc nghim
Đáp án
Câu 1: Điều kiện: x

0 và x

1. (0,25 điểm)
P =
2
1
x
x x
+

+
1
1
x
x x
+

+ +
-
1
( 1)( 1)
x
x x
+
+
=
3
2
( ) 1
x
x
+

+
1
1
x
x x
+
+ +
-
1
1x
=
2 ( 1)( 1) ( 1)
( 1)( 1)
x x x x x

x x x
+ + + + +
+ +
=
( 1)( 1)
x x
x x x

+ +
=
1
x
x x+ +
b/. Với x

0 và x

1 .Ta có: P <
1
3


1
x
x x+ +
<
1
3

3

x
< x +
x
+ 1 ; ( vì x +
x
+ 1 > 0 )

x - 2
x
+ 1 > 0

(
x
- 1)
2
> 0. ( Đúng vì x

0 và x

1)
Câu 2:a/. Phơng trình (1) có nghiệm khi và chỉ khi



0.

(m - 1)
2
m
2

3

0

4 2m

0

m

2.
b/. Với m

2 thì (1) có 2 nghiệm.
Gọi một nghiệm của (1) là a thì nghiệm kia là 3a . Theo Viet ,ta có:

2
3 2 2
.3 3
a a m
a a m
+ =


=


a=
1
2

m


3(
1
2
m
)
2
= m
2
3

m
2
+ 6m 15 = 0

m = 3

2
6
( thõa mãn điều kiện).
Câu 3:
Điều kiện x

0 ; 2 x
2
> 0

x


0 ;
x
<
2
.
Đặt y =
2
2 x
> 0
Ta có:
2 2
2 (1)
1 1
2 (2)
x y
x y

+ =


+ =


Từ (2) có : x + y = 2xy. Thay vào (1) có : xy = 1 hoặc xy = -
1
2
* Nếu xy = 1 thì x+ y = 2. Khi đó x, y là nghiệm của phơng trình:
X
2

2X + 1 = 0

X = 1

x = y = 1.
Giỏo viờn: Trn Hi Nam 01662 843844 TT luyn thi Tm Cao Mi 0532 478138
18
Chỳng tụi tuyn sinh cỏc lp 8, 9, 10, 11, 12 cỏc ngy trong tun. Cỏc em cú th hc ti nh theo nhúm
hoc cỏ nhõn, hoc hc ti trung tõm 40 hc sinh/ 1lp. Cung cp ti liu, thi trc nghim
* Nếu xy = -
1
2
thì x+ y = -1. Khi đó x, y là nghiệm của phơng trình:
X
2
+ X -
1
2
= 0

X =
1 3
2

Vì y > 0 nên: y =
1 3
2
+



x =
1 3
2

Vậy phơng trình có hai nghiệm: x
1
= 1 ; x
2
=
1 3
2

Câu 4: c/. Theo câu b, tứ giác ABCK là hình thang.
Do đó, tứ giác ABCK là hình bình hành

AB // CK


ã
ã
BAC ACK=

ã
1
2
ACK =


EC
=

1
2


BD
=
ã
DCB
Nên
ã
ã
BCD BAC=
Dựng tia Cy sao cho
ã
ã
BCy BAC=
.Khi đó, D là giao điểm của

AB
và Cy.
Với giả thiết

AB
>

BC
thì
ã
BCA
>

ã
BAC
>
ã
BDC
.


D

AB .
Vậy điểm D xác định nh trên là điểm cần tìm.
Đề 8
Câu 1: a) Xác định x

R để biểu thức :A =
xx
xx
+
+
1
1
1
2
2
Là một số tự nhiên
b. Cho biểu thức: P =
22
2
12

++
+
++
+
++
zzx
z
yyz
y
xxy
x
Biết x.y.z = 4 , tính
P
.
Câu 2:Cho các điểm A(-2;0) ; B(0;4) ; C(1;1) ; D(-3;2)
a. Chứng minh 3 điểm A, B ,D thẳng hàng; 3 điểm A, B, C không thẳng hàng.
b. Tính diện tích tam giác ABC.
Câu3 Giải phơng trình:
521
3
=
xx
Câu 4 Cho đờng tròn (O;R) và một điểm A sao cho OA = R
2
. Vẽ các tiếp tuyến
AB, AC với đờng tròn. Một góc xOy = 45
0
cắt đoạn thẳng AB và AC lần lợt tại D và
E.
Chứng minh rằng:

a.DE là tiếp tuyến của đờng tròn ( O ).
b.
RDER
<<
3
2

đáp án
Câu 1: a.
A =
xxxxx
xxxx
xx
xx 2)1(1
)1).(1(
1
1
22
22
2
2
=+++=
+++
++
+
Giỏo viờn: Trn Hi Nam 01662 843844 TT luyn thi Tm Cao Mi 0532 478138
19
O
K
D

C
B
A
Chỳng tụi tuyn sinh cỏc lp 8, 9, 10, 11, 12 cỏc ngy trong tun. Cỏc em cú th hc ti nh theo nhúm
hoc cỏ nhõn, hoc hc ti trung tõm 40 hc sinh/ 1lp. Cung cp ti liu, thi trc nghim
A là số tự nhiên

-2x là số tự nhiên

x =
2
k
(trong đó k

Z và k

0 )
b.Điều kiện xác định: x,y,z

0, kết hpọ với x.y.z = 4 ta đợc x, y, z > 0 và
2
=
xyz

Nhân cả tử và mẫu của hạng tử thứ 2 với
x
; thay 2 ở mẫu của hạng tử thứ 3 bởi
xyz
ta đợc:
P =

1
2
2
2(
2
22
=
++
++
=
++
+
++
+
++
xxy
xyx
xyxz
z
xxy
xy
xxy
x
(1đ)


1
=
P
vì P > 0

Câu 2: a.Đờng thẳng đi qua 2 điểm A và B có dạng y = ax + b
Điểm A(-2;0) và B(0;4) thuộc đờng thẳng AB nên

b = 4; a = 2
Vậy đờng thẳng AB là y = 2x + 4.
Điểm C(1;1) có toạ độ không thoả mãn y = 2x + 4 nên C không thuộc đờng thẳng AB

A, B, C không thẳng hàng.
Điểm D(-3;2) có toạ độ thoả mãn y = 2x + 4 nên điểm D thuộc đờng thẳng AB


A,B,D thẳng hàn
b.Ta có :
AB
2
= (-2 0)
2
+ (0 4)
2
=20
AC
2
= (-2 1)
2
+ (0 1)
2
=10
BC
2
= (0 1)

2
+ (4 1)
2
= 10


AB
2
= AC
2
+ BC
2


ABC vuông tại C
Vậy S

ABC
= 1/2AC.BC =
510.10
2
1
=
( đơn vị diện tích )
Câu 3: Đkxđ x

1, đặt
vxux
==
3

2;1
ta có hệ phơng trình:



=+
=
1
5
32
vu
vu
Giải hệ phơng trình bằng phơng pháp thế ta đợc: v = 2

x = 10.
Câu 4
a.áp dụng định lí Pitago tính đợc
AB = AC = R

ABOC là hình
vuông (0.5đ)
Kẻ bán kính OM sao cho
BOD = MOD

MOE = EOC (0.5đ)
Chứng minh BOD = MOD

OMD = OBD = 90
0
Tơng tự: OME = 90

0

D, M, E thẳng hàng. Do đó DE là tiếp tuyến của đờng tròn (O).
Giỏo viờn: Trn Hi Nam 01662 843844 TT luyn thi Tm Cao Mi 0532 478138
20
B
M
A
O
C
D
E
Chỳng tụi tuyn sinh cỏc lp 8, 9, 10, 11, 12 cỏc ngy trong tun. Cỏc em cú th hc ti nh theo nhúm
hoc cỏ nhõn, hoc hc ti trung tõm 40 hc sinh/ 1lp. Cung cp ti liu, thi trc nghim
b.Xét ADE có DE < AD +AE mà DE = DB + EC

2ED < AD +AE +DB + EC hay 2DE < AB + AC = 2R

DE < R
Ta có DE > AD; DE > AE ; DE = DB + EC
Cộng từng vế ta đợc: 3DE > 2R

DE >
3
2
R
Vậy R > DE >
3
2
R

Đề 9
Câu 1: Cho hàm số f(x) =
44
2
+
xx
a) Tính f(-1); f(5)
b) Tìm x để f(x) = 10
c) Rút gọn A =
4
)(
2

x
xf
khi x
2

Câu 2: Giải hệ phơng trình



+=+
+=
)3)(72()72)(3(
)4)(2()2(
yxyx
yxyx
Câu 3: Cho biểu thức
A =










+












+
1
:
1
1
1
1
x

x
x
x
x
x
xx
với x > 0 và x 1
a) Rút gọn A
2) Tìm giá trị của x để A = 3
Câu 4: Từ điểm P nằm ngoài đờng tròn tâm O bán kính R, kẻ hai tiếp tuyến PA; PB.
Gọi H là chân đờng vuông góc hạ từ A đến đờng kính BC.
a) Chứng minh rằng PC cắt AH tại trung điểm E của AH
b) Giả sử PO = d. Tính AH theo R và d.
Câu 5: Cho phơng trình 2x
2
+ (2m - 1)x + m - 1 = 0
Không giải phơng trình, tìm m để phơng trình có hai nghiệm phân biệt x
1
; x
2
thỏa mãn:
3x
1
- 4x
2
= 11
đáp án
Câu 1
Giỏo viờn: Trn Hi Nam 01662 843844 TT luyn thi Tm Cao Mi 0532 478138
21

Chúng tôi tuyển sinh các lớp 8, 9, 10, 11, 12 các ngày trong tuần. Các em có thể học tại nhà theo nhóm
hoặc cá nhân, hoặc học tại trung tâm 40 học sinh/ 1lớp. Cung cấp tài liệu, đề thi trắc nghiệm
a) f(x) =
2)2(44
22
−=−=+−
xxxx
Suy ra f(-1) = 3; f(5) = 3
b)



−=
=




−=−
=−
⇔=
8
12
102
102
10)(
x
x
x
x

xf
c)
)2)(2(
2
4
)(
2
+−

=

=
xx
x
x
xf
A
Víi x > 2 suy ra x - 2 > 0 suy ra
2
1
+
=
x
A
Víi x < 2 suy ra x - 2 < 0 suy ra
2
1
+
−=
x

A
C©u 2



=
=




=+
−=−




−+−=−+−
−−+=−




+−=+−
−+=−
2y
-2x


0

4
2167221762
8422
)3)(72()72)(3(
)4)(2()2(
yx
yx
xyxyxyxy
xyxyxxy
yxyx
yxyx
C©u 3a) Ta cã: A =









+













+
1
:
1
1
1
1
x
x
x
x
x
x
xx
=









+














+−
+−+
11
)1(
:
1
1
)1)(1(
)1)(1(
x
x
x
xx
x
x
xx
xxx
=










+−












+−
1
:
1
1
1
1
x

xxx
x
x
x
xx
=
1
:
1
11
−−
+−+−
x
x
x
xxx
Giáo viên: Trần Hải Nam – 01662 843844 – TT luyện thi Tầm Cao Mới – 0532 478138
22
Chỳng tụi tuyn sinh cỏc lp 8, 9, 10, 11, 12 cỏc ngy trong tun. Cỏc em cú th hc ti nh theo nhúm
hoc cỏ nhõn, hoc hc ti trung tõm 40 hc sinh/ 1lp. Cung cp ti liu, thi trc nghim
=
1
:
1
2

+
x
x
x

x
=
x
x
x
x 1
1
2



+
=
x
x

2
b) A = 3 =>
x
x

2
= 3 => 3x +
x
- 2 = 0 => x = 2/3
Câu 4
a) Do HA // PB (Cùng vuông góc với BC)
b) nên theo định lý Ta let áp dụng cho tam giác CPB ta có
CB
CH

PB
EH
=
; (1)
Mặt khác, do PO // AC (cùng vuông góc với AB)
=> POB = ACB (hai góc đồng vị)
=> AHC

POB
Do đó:
OB
CH
PB
AH
=
(2)
Do CB = 2OB, kết hợp (1) và (2) ta suy ra AH = 2EH hay E là trug điểm của
AH.
b) Xét tam giác vuông BAC, đờng cao AH ta có AH
2
= BH.CH = (2R - CH).CH
Theo (1) và do AH = 2EH ta có
.)2(
2PB
AH.CB
2PB
AH.CB
AH
2
=

R

AH
2
.4PB
2
= (4R.PB - AH.CB).AH.CB

4AH.PB
2
= 4R.PB.CB - AH.CB
2

AH (4PB
2
+CB
2
) = 4R.PB.CB
Giỏo viờn: Trn Hi Nam 01662 843844 TT luyn thi Tm Cao Mi 0532 478138
23
O
B
C
H
E
A
P
Chỳng tụi tuyn sinh cỏc lp 8, 9, 10, 11, 12 cỏc ngy trong tun. Cỏc em cú th hc ti nh theo nhúm
hoc cỏ nhõn, hoc hc ti trung tõm 40 hc sinh/ 1lp. Cung cp ti liu, thi trc nghim
2

222
222
222
2222
d
Rd.2.R
4R)R4(d
Rd.8R

(2R)4PB
4R.2R.PB
CB4.PB
4R.CB.PB
AH

=
+

=
+
=
+
=
Câu 5 (1đ)
Để phơng trình có 2 nghiệm phân biệt x
1
; x
2
thì > 0
<=> (2m - 1)

2
- 4. 2. (m - 1) > 0
Từ đó suy ra m 1,5 (1)
Mặt khác, theo định lý Viét và giả thiết ta có:










=

=

=+
114x3x
2
1m
.xx
2
12m
xx
21
21
21











=



=
=
11
8m-26
77m
4
7
4m-13
3
8m-26
77m
x
7
4m-13
x
1
1


Giải phơng trình
11
8m-26
77m
4
7
4m-13
3 =



ta đợc m = - 2 và m = 4,125 (2)
Đối chiếu điều kiện (1) và (2) ta có: Với m = - 2 hoặc m = 4,125 thì phơng trình đã cho
có hai nghiệm phân biệt t
Đề 10
Câu I : Tính giá trị của biểu thức:
A =
53
1
+
+
75
1
+
+
97
1
+
+ .....+

9997
1
+
B = 35 + 335 + 3335 + ..... +

399
35.....3333
số

Câu II :Phân tích thành nhân tử :
1) X
2
-7X -18
2) (x+1) (x+2)(x+3)(x+4)
3) 1+ a
5
+ a
10
Câu III :
1) Chứng minh : (ab+cd)
2


(a
2
+c
2
)( b
2
+d

2
)
Giỏo viờn: Trn Hi Nam 01662 843844 TT luyn thi Tm Cao Mi 0532 478138
24
Chỳng tụi tuyn sinh cỏc lp 8, 9, 10, 11, 12 cỏc ngy trong tun. Cỏc em cú th hc ti nh theo nhúm
hoc cỏ nhõn, hoc hc ti trung tõm 40 hc sinh/ 1lp. Cung cp ti liu, thi trc nghim
2) áp dụng : cho x+4y = 5 . Tìm GTNN của biểu thức : M= 4x
2
+ 4y
2

Câu 4 : Cho tam giác ABC nội tiếp đờng tròn (O), I là trung điểm của BC, M là một điểm
trên đoạn CI ( M khác C và I ). Đờng thẳng AM cắt (O) tại D, tiếp tuyến của đờng tròn
ngoại tiếp tam giác AIM tại M cắt BD và DC tại P và Q.
a) Chứng minh DM.AI= MP.IB
b) Tính tỉ số :
MQ
MP
Câu 5:
Cho P =
x
xx

+
1
34
2
Tìm điều kiện để biểu thức có nghĩa, rút gọn biểu thức.
đáp án
Câu 1 :

1) A =
53
1
+
+
75
1
+
+
97
1
+
+ .....+
9997
1
+

=
2
1
(
35

+
57

+
79

+ .....+

9799

) =
2
1
(
399

)
2) B = 35 + 335 + 3335 + ..... +

399
35.....3333
số
=
=33 +2 +333+2 +3333+2+.......+ 333....33+2
= 2.99 + ( 33+333+3333+...+333...33)
= 198 +
3
1
( 99+999+9999+.....+999...99)
198 +
3
1
( 10
2
-1 +10
3
- 1+10
4

- 1+ ....+10
100
1) = 198 33 +
B =









27
1010
2101
+165
Câu
2: 1)
x
2
-7x -18 = x
2
-4 7x-14 = (x-2)(x+2) - 7(x+2) = (x+2)(x-9) (1đ)
2)(x+1)(x+2)(x+3)(x+4) -3= (x+1)(x+4)(x+2)(x+3)-3
= (x
2
+5x +4)(x
2
+ 5x+6)-3= [x

2
+5x +4][(x
2
+ 5x+4)+2]-3
= (x
2
+5x +4)
2
+ 2(x
2
+5x +4)-3=(x
2
+5x +4)
2
- 1+ 2(x
2
+5x +4)-2
= [(x
2
+5x +4)-1][(x
2
+5x +4)+1] +2[(x
2
+5x +4)-1]
= (x
2
+5x +3)(x
2
+5x +7)
3) a

10
+a
5
+1
= a
10
+a
9
+a
8
+a
7
+a
6
+ a
5
+a
5
+a
4
+a
3
+a
2
+a +1
- (a
9
+a
8
+a

7
)- (a
6
+ a
5
+a
4
)- ( a
3
+a
2
+a )
= a
8
(a
2
+a+1) +a
5
(a
2
+a+1)+ a
3
(a
2
+a+1)+ (a
2
+a+1)-a
7
(a
2

+a+1)
-a
4
(a
2
+a+1)-a(a
2
+a+1)
=(a
2
+a+1)( a
8
-a
7
+ a
5
-a
4
+a
3
- a +1)
Giỏo viờn: Trn Hi Nam 01662 843844 TT luyn thi Tm Cao Mi 0532 478138
25

×