Tải bản đầy đủ (.docx) (58 trang)

Lựa chọn và xây dựng hệ thống lí thuyết và bài tập trắc nghiệm sử dụng định luật hess và chu trình born haber để giải ở bậc đại học

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (494.22 KB, 58 trang )

BỘ GIÁO DỤC VÀ ĐÀO TẠO
ĐẠI HỌC HUẾ
TRƯỜNG ĐẠI HỌC SƯ PHẠM
KHOA HÓA HỌC
....................

TIỂU LUẬN
HỌC PHẦN: HÓA HỌC VÔ CƠ
ĐỀ TÀI:
LỰA CHỌN VÀ XÂY DỰNG HỆ THỐNG LÍ
THUYẾT VÀ BÀI TẬP TRẮC NGHIỆM SỬ DỤNG
ĐỊNH LUẬT HESS VÀ CHU TRÌNH BORN- HABER
ĐỂ GIẢI Ở BẬC ĐẠI HỌC

Giáo viên hướng dẫn:
Th.S Đinh Quý Hương
Lớp: Hóa 2B
Khóa: 2016-2020

HUẾ,THÁNG 12/2017


GVHD: ThS. Đinh Quý Hương

LỜI CẢM ƠN
Em xin bày tỏ lòng biết ơn sâu sắc đến cô giáo Th.S Đinh Quý Hương,
người đã tận tình hướng dẫn, giúp đỡ em trong quá trình hoàn thiện tiểu luận
này.
Em cũng xin gửi lời cảm ơn chân thành đến các thầy, các cô trong khoa
Hóa học trường Đại học Sư phạm đã giảng dạy em, cho em nhiều kiến thức và
tư liệu hay cùng toàn thể anh chị em, bạn bè vì đã có những gợi ý, kinh nghiệm


quý báu giúp đỡ em trong quá trình học tập và tạo những điều kiện thuận lợi để
em hoàn thành tiểu luận này.
Em xin gửi lời biết ơn sâu sắc đến những người thân trong gia đình vì đã
luôn ủng hộ và động viên em trong quá trình học tập, nghiên cứu.
Em xin chân thành cảm ơn !

Trang 2


GVHD: ThS. Đinh Quý Hương

MỤC LỤC

A. PHẦN MỞ ĐẦU
1. Lí do chọn đề tài:
Hóa học là môn khoa học thực nghiệm, trong đó hóa học vô cơ là một
ngành hóa học nghiên cứu các thuộc tính, cấu trúc, thành phần, ứng dụng của
các nguyên tố và hợp chất vô cơ cũng như các phản ứng hóa học của chúng. Nội
dung kiến thức hóa vô cơ rất rộng bao gồm rất nhiều mặt, nhiều lĩnh vực cần
khai thác nghiên cứu trong đó nhiệt động hóa học đang rất phát triển và đạt được
nhiều ứng dụng quan trọng trong nhiều lĩnh vực kĩ thuật.
Nhiệt động hóa học là một phần quan trọng của lý thuyết quá trình hóa
học, nghiên cứu hiện tượng nhiệt, xác định hiệu ứng nhiệt của phản ứng hóa học
dùng đến các đại lượng vật lý như entropi, entanpi, nhiệt dung,… để từ đó hình
thành nên những quy luật chung của các quá trình biến đổi hóa học. Lý thuyết
phản ứng hóa học là một trong những nội dung thường gặp trong các kì thi, đặc
biệt các kì thi Olympic, kì thi học sinh giỏi và giải thích được nhiều hiện tượng
hóa học. Chính vì vậy việc sử dụng Định luật Hess và các hệ quả của định luật
này có ứng dụng rất lớn trong Hóa học có thể giúp chúng ta giải quyết được rất
nhiều các vấn đề mà bài tập về hiệu ứng nhiệt yêu cầu và cho phép tính hiệu ứng

nhiệt của nhiều phản ứng mà trong thực tế không thể đo được.
Hiện nay, hệ thống bài tập hoá vô cơ vô cùng đa dạng và phong phú
nhưng chủ yếu là các bài tập mang tính chất lý thuyết và đa số là các bài tập tự
luận chưa phù hợp với việc đổi mới hình thức kiểm tra, đánh giá hiện nay là sử
dụng câu hỏi trắc nghiệm khách quan. Do vậy việc xây dựng hệ thống bài tập
trắc nghiệm hóa vô cơ về hiệu ứng nhiệt nhằm mong muốn bổ sung và làm
phong phú thêm cho hệ thống bài tập trắc nghiệm khách quan Hóa học. Hơn nữa
Trang 3


GVHD: ThS. Đinh Quý Hương

việc biên soạn nội dung bài tập về phản ứng hóa học có sử dụng định luật Hess
và các hệ quả của nó cũng góp phần thúc đẩy học sinh phát triển tư duy, nâng
cao hứng thú học tập bộ môn Hóa học. Chính vì vậy mà em chọn đề tài:
“ Lựa chọn và xây dựng hệ thống lí thuyết và bài tập trắc nghiệm sử
dụng định luật Hess và chu trình Born-Haber để giải ở bậc đại học ”.
2. Đối tượng và phạm vi nghiên cứu:
2.1 Đối tượng nghiên cứu:
- Hệ thống lí thuyết và bài tập hiệu ứng nhiệt sử dụng định luật Hess và
chu trình Born - Haber để giải
2.2 Phạm vi nghiên cứu:
- Nghiên cứu hệ thống lí thuyết và bài tập trắc nghiệm hóa vô cơ ở bậc đại
học.
3. Mục đích nghiên cứu:
- Hệ thống hoá kiến thức lý thuyết liên quan đến Định luật Hess và Chu
trình Born-Haber làm cơ sở để lựa chọn, xây dựng hệ thống câu hỏi trắc
nghiệm khách quan tương ứng.
- Lựa chọn, xây dựng hệ thống câu hỏi trắc nghiệm khách quan liên
quan đến các bài tập hóa vô cơ ở bậc đại học sử dụng Định luật Hess và Chu

trình Born-Haber để giải nhanh và hiệu quả.
4. Phương pháp nghiên cứu:
Căn cứ vào điều kiện và năng lực của bản thân, việc nghiên cứu chủ yếu sử
dụng các phương pháp nghiên cứu lí luận như:
- Nghiên cứu các giáo trình, tài liệu về lý thuyết và bài tập môn Hoá Vô
cơ, đặc biệt là các vấn đề lý thuyết và bài tập trong phạm vi của đề tài.
- Nghiên cứu các phương pháp xây dựng câu hỏi trắc nghiệm khách
quan, đặc biệt là kĩ thuật xây dựng câu hỏi trắc nghiệm khách quan nhiều lựa
chọn.
- Phương pháp phân tích, tổng hợp, phân loại và hệ thống hóa.
5. Nhiệm vụ nghiên cứu:
- Tuyển chọn và xây dựng hệ thống câu hỏi trắc nghiệm khách quan hệ
đại học môn hoá vô cơ ở bậc đại học sử dụng Định luật Hess và Chu trình
Born-Haber để giải nhanh và hiệu quả.

Trang 4


GVHD: ThS. Đinh Quý Hương

- Phát huy khả năng tự học, tìm tòi, sáng tạo của bản thân, từ đó xây dựng
được các bài tập hay phục vụ cho học sinh, sinh viên có nhu cầu tìm hiểu sâu
vào bài tập hóa học.
- Tổng hợp lý thuyết, nắm rõ các tính chất và ứng dụng quan trọng, đưa ra
các bài tập nâng cao, nhằm nâng cao kiến thức và kỹ năng giải bài tập cho sinh
viên bậc đại học.

B. TỔNG QUAN LÝ THUYẾT
I. Định luật Hess
Germain Henri Hess(1802-1850) là một nhà hóa học

Nga, là giáo sư của Viện Hàn lâm Khoa học St. Petersburg,
ông đã có nhiều đóng góp cho khoa học nói chung và hóa
học nói riêng. Ông thường quan tâm đến việc khám phá và
phân tích các chất mới. Tuy nhiên, ông cũng phát triển một
sự quan tâm mạnh mẽ cho các nghiên cứu học thuyết. Đặc
biệt, ông tự hỏi mối liên quan giữa hóa học với nhiệt trong
phản ứng hóa học như thế nào. Cho đến năm 1840, Germain Henri Hess đã đưa
ra một định luật mang tên ông (Định luật Hess) : " Nếu có nhiều cách để chuyển
những chất ban đầu thành những chất sản phẩm cuối cùng thì không phụ thuộc
vào cách chuyển đó, nghĩa là loại phản ứng trung gian, nhiệt tổng cộng của tất
cả các quá trình đó sẽ bằng nhau". Định luật này được ông thiết lập vào đầu tiên
năm 1936 dựa trên cơ sơ thực nghiệm. Đây là một định luật cơ bản của nhiệt hóa
học.
Nhiệt hóa học nghiên cứu hiệu ứng nhiệt của các quá trình như phản ứng
hóa học, quá trình hòa tan, sonvat hóa, hidrat hóa, hấp thụ,…Cơ sở lí thuyết của
nhiệt hóa học là sự vận dụng nguyên lí I nhiệt động học vào hóa học được thể
hiện qua định luật Hess
Hiệu ứng nhiệt là một khái niệm cơ bản trong nhiệt hóa học. Dựa vào
nhiệt của các phản ứng ta có thể xác định được năng lượng liên kết hóa học của
các chất phản ứng, hằng số cân bằng và hiệu suất phản ứng. Về mặt định nghĩa
sẽ không đầy đủ nếu nói hiệu ứng nhiệt là lượng nhiệt thoát ra hay hoặc thu vào
trong phản ứng hóa học, bởi vì lượng nhiệt đó sẽ không cố định mà phụ thuộc
Trang 5


GVHD: ThS. Đinh Quý Hương

vào đường đi của quá trình. Để cho hiệu ứng nhiệt có thể có các giá trị xác định
người ta phải quy định những điều kiện tiến hành phản ứng. Những điều kiện
thường chọn là:

- Thể tích hoặc áp suất không đổi.
- Hệ không thực hiện công nào khác ngoài công giãn nở đẳng áp.
- Nhiệt độ của các chất đầu và sản phẩm như nhau.
Khi thỏa mãn các điều kiện trên, hiệu ứng nhiệt sẽ có giá trị hoàn toàn xác
định và trở thành một đặc trưng của phản ứng hóa học.
Việc xác định trực tiếp hiệu ứng nhiệt phản ứng chỉ thực hiện được trong
một số ít trường hợp, khi phản ứng xảy ra nhanh, phản ứng hoàn toàn và không
đòi hỏi những điều kiện thí nghiệm phức tạp. Trong phần lớn các trường hợp
việc xác định này gặp nhiều khó khăn. Chẳng hạn, không thể xác định trực tiếp
hiệu ứng nhiệt của phản ứng:
2C(r) + O2(k) → 2CO(k)
vì phản ứng giữa C và O2 luôn kèm theo sự tạo thành CO2.
Trong những trường hợp như vậy việc xác định hiệu ứng nhiệt được thực
hiện bằng phương pháp gián tiếp. Việc xác định gián tiếp hiệu ứng nhiệt phản
ứng dựa trên định luật Hess:
"Hiệu ứng nhiệt đẳng áp - đẳng nhiệt hoặc đẳng tích - đẳng nhiệt chỉ phụ
thuộc vào bản chất và trạng thái của các chất phản ứng và sản phẩm phản ứng
chứ không phụ thuộc vào cách tiến triển của quá trình, nghĩa là không phụ thuộc
vào đặc trưng của các giai đoạn trung gian".
Điều này có nghĩa là trong quá trình của một phản ứng đã cho, từ các
chất phản ứng (trạng thái đầu) đến các sản phẩm (trạng thái cuối) có thể đi theo
những con đường khác nhau. Nhưng dù đi theo con đường nào thì hiệu ứng
nhiệt cũng chỉ là một:

Chất phản ứng

Sản phẩm

Trạng thái đầu


Trạng thái cuối

H1 =

H2 =

Theo quan điểm nhiệt động học định luật Hess là hệ quả tất yếu của
nguyên lí I. Vì entanpi là một hàm trạng thái, biến thiên entanpi H, tức hiệu ứng
Trang 6


GVHD: ThS. Đinh Quý Hương

nhiệt của phản ứng, chỉ phụ thuộc vào trạng thái đầu và trạng thái cuối của hệ
phản ứng.
Theo tinh thần này thì định luật Hess chỉ là một trường hợp riêng của
nguyên lí chung, là nguyên lí trạng thái đầu và trạng thái cuối: Biến thiên của
các hàm trạng thái (nội năng U, entanpi H, entropi S, thế đẳng áp - thế đẳng
nhiệt G,...) của một hệ chỉ phụ thuộc vào trạng thái đầu và trạng thái cuối của hệ.

Hệ quả:
1.Nếu phản ứng thuận có hiệu ứng nhiệt H thì phản ứng nghịch có hiệu
ứng nhiệt -H
2. Hiệu ứng nhiệt của một quá trình vòng (chu trình) bằng không.

II. Ứng dụng của định luật Hess
Như vậy dựa vào định luật Hess người ta có thể xác định H của một quá
trình đã cho nào đó bằng hai cách sau:
1. Xác định H của một quá trình nào khác có cùng trạng thái đầu và trạng
thái cuối. Quá trình thứ hai này thường là một quá trình nhiều giai đoạn, trong

đó H của mỗi giai đoạn đều đã biết.
2. Thiết lập một quá trình vòng gồm nhiều giai đoạn trong đó một giai
đoạn là quá trình đang xét và H của tất cả các giai đoạn còn lại đều đã biết.
- Nếu một phản ứng nào đó là tổng đại số của một số phản ứng thành phần
khác thì H của nó cũng bằng tổng đại số tương ứng của các Hcủa các phản ứng
thành phần đó.
*Lưu ý: Chất nào có giá trị H càng âm (<0) thì chất đó càng bền về mặt
nhiệt động
- Khi áp dụng định luật Hess cần giữ đúng những điều kiện dùng làm cơ
sở cho định luật. Đó là trong các quá trình, muốn hiệu ứng nhiệt có giá trị như
nhau thì các trạng thái đầu và các trạng thái cuối phải thực sự giống nhau. Sự
giống nhau này không phải chỉ về mặt bản chất và thành phần hóa học, mà còn
cả về điều kiện tồn tại như nhiệt độ, áp suất,… và trạng thái tập hợp (rắn, lỏng,
khí) của chúng. Đối với những chất có cấu tạo tinh thể, thì dạng tinh thể cũng
phải giống nhau.
Trang 7


GVHD: ThS. Đinh Quý Hương

- Một số đại lượng nhiệt hóa và phương pháp xác định hiệu ứng nhiệt của
một số quá trình quan trọng và phổ biến trong hóa học.
1. Sinh nhiệt (Entanpi sinh)
- Định nghĩa: Sinh nhiệt của một chất là hiệu ứng nhiệt của phản ứng tạo
thành một mol chất đó từ các đơn chất ở trạng thái tiêu chuẩn.
- Sinh nhiệt của các chất được tính ở điều kiện tiêu chuẩn được gọi là sinh
nhiệt tiêu chuẩn, kí hiệu .
Ví dụ:

H2(k) + O2(k) → H2O(k)


= -241,8 kJ/mol

C(gr) + O2(k) → CO2(k)

= -393,5 kJ/mol

- Chú ý: Theo định nghĩa trên sinh nhiệt tiêu chuẩn của các đơn chất như
H2, O2, N2, Cl2,… bằng không. Tuy nhiên, đối với những đơn chất có khả năng
tồn tại ở nhiều dạng thù hình khác nhau, thì sự chuyển hóa giữa các dạng thù
hình luôn luôn kèm theo hiệu ứng nhiệt. Trong trường hợp ấy có thể nói tới sinh
nhiệt của đơn chất ứng với dạng thù hình không bền được hình thành từ dạng
thù hình bền trong các điều kiện cho sẵn.
Ví dụ: Sinh nhiệt của kim cương ( = 0,453 kcal/mol) và ozon ( = 34,0
kcal/mol) ứng với các quá trình sau đây:
Cthan chì → Ckim cương = 0,453 kcal/mol
3O2 → 2O3

= 68,0 kcal/mol

- Trừ một số ít hợp chất như nitơ oxit (NO), etilen, axetilen, benzen,…
tuyệt đại đa số các hợp chất khác khi hình thành từ đơn chất luôn luôn kèm theo
sự tỏa nhiệt (< 0).
- Ứng dụng: Có thể tính hiệu ứng nhiệt của một phản ứng bất kì khi biết
sinh nhiệt tiêu chuẩn của tất cả các chất tham gia vào phản ứng.
Ví dụ: Tính hiệu ứng nhiệt của phản ứng:
CaO(r) + CO2(k) → CaCO3(r)
Cho

-636


-394

-1207

(kJ/mol)
Giải: Theo định nghĩa, sinh nhiệt của các chất là hiệu ứng nhiệt của các
phản ứng sau:
Trang 8


GVHD: ThS. Đinh Quý Hương

Ca(r) + O2(k) → CaO(r)

(1) H1 = -636 kJ/mol

C(gr) + O2(k) → CO2(k)

(2) H2 = -384 kJ/mol

Ca(r) + C(gr) + O2(k) → CaCO3(r) (3) H3 = -1207 kJ/mol

Có thể lập sơ đồ sau:
Ca(r)
O2

+
H1


C(gr) +

O2(k)

H3

+O2 H2

CaO(r)

CaCO3(r)
H

+ CO2(k)

Từ sơ đồ trên, nếu xem (Ca(r) + C(gr) + O2(k)) là trạng thái đầu và CaCO 3(r) là
trạng thái cuối, theo định luật Hess, chúng ta có:
H3 = H1 + H2 + H
Do đó: H = H3 – ( H1 + H2)
= -1207 (636394) = 177 kJ/mol
Như vậy: Hiệu ứng nhiệt của một phản ứng hóa học bằng tổng sinh nhiệt
của các sản phẩm trừ đi tổng sinh nhiệt của các chất phản ứng.
- Cách tính hiệu ứng nhiệt của phản ứng dựa vào sinh nhiệt:
Quy tắc chung:

H =

2.Thiêu nhiệt (Entanpi cháy )
- Định nghĩa: Thiêu nhiệt của một chất là hiệu ứng nhiệt của phản ứng
đốt cháy một mol chất đó bằng oxi ở điều kiện tiêu chuẩn để tạo thành các oxit

bền.
Ví dụ: Hiệu ứng nhiệt của phản ứng:
CH4(k) + O2(k) → CO2(k) + H2O(l)

= -889,9 kJ/mol

được gọi là thiêu nhiệt của CH4.

Trang 9


GVHD: ThS. Đinh Quý Hương

- Lúc đầu khái niệm thiêu nhiệt được áp dụng chủ yếu cho các hợp chất
hữu cơ, trong đó sản phẩm của sự cháy là khí CO 2 và nước ở thể lỏng.Về sau
khái niệm này được mở rộng cả cho các chất khác nữa. Dễ dàng thấy rằng, đối
với các nguyên tố, thiêu nhiệt của một nguyên tố cũng chính là sinh nhiệt của
oxit bền nhất của nó.
- Ứng dụng: Có thể tính hiệu ứng nhiệt của một phản ứng khi biết thiêu
nhiệt của các chất phản ứng và các sản phẩm.
Ví dụ: Xác định hiệu ứng nhiệt của phản ứng:
C2H5OH(l) + CH3COOH(l) → CH3COOC2H5(l) + H2O(l)
Cho biết thiêu nhiệt của các chất như sau:
C2H5OH(l)

Htn1 = -1366,9 kJ/mol

CH3COOH(l)

Htn2 = - 871,1 kJ/mol


CH3COOC2H5(l)

Htn3 = -2284,0 kJ/mol

Giải:
Có thể lập sơ đồ sau:
Trạng thái đầu:
C2H5OH(l)

+

CH3COOH(l)

H

CH3COOC2H5(l) + H2O(l)

+3O2(k)

+2O2(k)

+5O2(k)

Htn1

Htn2

Htn3


2CO2(k) +3H2O(l) + 2CO2(k) + 2H2O(l)
Từ sơ đồ theo định luật Hess, ta có:
H + Htn3 = Htn1 + Htn2
Hay H = Htn1 + Htn2 - Htn3 = 46,00 kJ/mol
Như vây, từ thí nghiệm trên ta thấy: Hiệu ứng nhiệt của một phản ứng
bằng tổng thiêu nhiệt của các chất đầu trừ đi tổng thiêu nhiệt của các sản phẩm.
- Cách tính hiệu ứng nhiệt của phản ứng dựa vào thiêu nhiệt:
Ta có:

H =
Trang 10


GVHD: ThS. Đinh Quý Hương

-Chú ý: + Những chất không cháy trong oxi thì thiêu nhiệt của nó bằng
không
Ví dụ: O2 trong O2; SO3 trong O2 ;...
+ Thiêu nhiệt của đơn chất cũng chính là sinh nhiệt của oxit bền
nhất của nó.
3.Năng lượng liên kết hóa học:
-Định nghĩa: Năng lượng liên kết hóa học là năng lượng cần thiết để phá
vỡ liên kết đó để tạo thành các nguyên tử ở thể khí.
A B → A(k) + B(k)
Ví dụ:

O
H

EA-B


→ 2H(k) + O(k)
H

-Cách tính hiệu ứng nhiệt dựa vào năng lượng liên kết:
A B + C D
E(A-B)

H

EF

E(C-D)

-E(E-F)

A(k) + B(k) C(k) + D(k)
Ta có :

H = EA-B + EC-D EE-F

Ví dụ: Xét phản ứng đốt cháy etan (C2H6) :
C2H6(k) + O2(k) → 2CO2(k) + 3H2O(k)
C2H6(k) + O2(k)

2CO2(k) + 3H2O(k)

EC-C + 6EC-H
2C(k) + 6H(k)
-2

-3EH-H

2
2C(r)
+2O2(k)
3H2(k) + O2(k)
Trang 11


GVHD: ThS. Đinh Quý Hương

Áp dụng định luật Hess cho chu trình này, ta được:
= EC-C + 6EC-H - -3EH-H + 2 +
4. Nhiệt phân li
- Định nghĩa : Nhiệt phân li của một chất là năng lượng cần thiết để phân
hủy 1 mol phân tử của chất đó ( ở thể khí ) thành các nguyên tử ở thể khí.
Ví dụ:

H2(k) → 2H(k)

∆H = 435,9 kJ/mol

O2(k) → 2O(k)

∆H = 489,5 kJ/mol

K(tt)

∆H = 1665,2 kJ/mol


→ K(k)

- Nhiệt phân li của các phân tử hai nguyên tử thường được xác định bằng
phương pháp quang phổ và được cho trong các tài liệu tra cứu.
- Nhiệt phân li còn được gọi là nhiệt nguyên tử hóa.
5. Nhiệt chuyển pha
- Quá trình chuyển pha là quá trình trong đó một chất chuyển từ một trạng
thái tập hợp này sang một trạng thái tập hợp khác.
- Các quá trình chuyển pha thường gặp là:
+ Sự nóng chảy, sự hóa rắn,
+ Sự bay hơi, sự ngưng tụ,
+ Sự thăng hoa,
+ Sự chuyển dạng thù hình.
- Các quá trình chuyển pha cũng thường kèm theo hiệu ứng nhiệt, gọi là
nhiệt chuyển pha.
Ví dụ:

Pđỏ →

∆H = 15,5 kJ/mol

Ptrắng

∆H = 44,0 kJ/mol

H2O(r) → H2O(l)

- Có thể xác định nhiệt chuyển pha của các quá trình khác nhau bằng cách
sử dụng định luật Hess.
Ví dụ : Xác định hiệu ứng nhiệt của quá trình:

C(graphit) →

C(kim cương)

(1)
Trang 12


GVHD: ThS. Đinh Quý Hương

Khi biết:

C(gr) + O2(k) →

CO2(k)

∆H1 = -393,5 kJ/mol (2)

C(kim cương) + O2(k)

→ CO2(k)

∆H2 = -395,4 kJ/mol (3)

Giải:
Lấy (2) – (3) sẽ thu được (1). Do đó:
∆H = ∆H2 - ∆H3 = -393,5 – ( -395,4) = 1,9 kJ/mol
6.Nhiệt hiđrat hóa của các ion :
- Quá trình hiđrat hóa là quá trình tương tác giữa các ion của chất tan với
các phân tử nước, sản phẩm tạo thành được gọi là các ion hiđrat hóa.

- Hiệu ứng nhiệt của quá trình hiđrat hóa được gọi là nhiệt hiđrat hóa của
ion.
- Quá trình hiđrat hóa về bản chất là một quá trình hóa học phát nhiệt.
- Sinh nhiệt tiêu chuẩn của ion hiđrat hóa là hiệu ứng nhiệt của quá trình
tạo thành một mol ion hiđrat hóa từ đơn chất ở trạng thái chuẩn.
:

Ví dụ: Sinh nhiệt tiêu chuẩn của ion H + .aq là hiệu ứng nhiệt của quá trình
H2(k) → H+.aq
Ca2+(k) + aq → Ca2+.aq = -1575 kJ/mol

- Để xác định sinh nhiệt tiêu chuẩn của các ion người ta quy ước: sinh
nhiệt tiêu chuẩn của H+.aq bằng không. Trên cơ sở này người ta tính sinh nhiệt
tiêu chuẩn và nhiệt hiđrat hóa của các ion khác.
- Chú ý: Khi biết sinh nhiệt tiêu chuẩn của các ion hiđrat hóa, có thể xác
định nhiệt hòa tan của hợp chất tương ứng theo quy tắc tính ∆H theo sinh nhiệt
tiêu chuẩn.
Ví dụ: Quá trình hòa tan của NaCl có thể biểu diễn như sau:
NaCl(r) + aq → Na+.aq + Cl-.aq
( kJ/mol)-410,8

-239,6

-167,4

∆H = -239,6 + (-167,4) – (-410,8) = 3,8 kJ/mol
7.Năng lượng mạng lưới tinh thể(Utt):
- Định nghĩa: Năng lượng mạng lưới tinh thể ion là năng lượng được giải
phóng khi một mol chất tinh thể được hình thành từ các ion ở thể khí.
Trang 13



GVHD: ThS. Đinh Quý Hương

Na+(k) + Cl-(k) → NaCl
Ba2+(k) + 2Cl-(k) → BaCl2
- Ý nghĩa của năng lượng mạng tinh thể: Cho biết độ bền, độ hòa tan và
nhiều tính chất khác của hợp chất ion.
- Phân biệt với năng lượng tương tác E giữa hai ion: Năng lượng mạng
tinh thể U cho biết độ bền của hợp chất ion còn năng lượng tương tác E giữa hai
ion chỉ cho biết độ bền của một phân tử gồm hai ion.
- Đối với mạng tinh thể ion (các phân tử cấu trúc là các ion dương và âm)
có thể tính chính xác năng lượng mạng lưới tinh thể khi biết các đại lượng nhiệt
hóa học khác như sinh nhiệt của chất, nhiệt thăng hoa, nhiệt phân li, năng lượng
ion hóa, ái lực electron,…
- Ái lực electron của một nguyên tố là hiệu ứng nhiệt của quá trình một
mol nguyên tử của nguyên tố đó (ở thể khí) kết hợp với electron tự do để tạo
thành ion âm tương ứng (ở thể khí).
- Phương pháp xác định năng lượng mạng tinh thể U:
+ Nếu biết cấu trúc và thành phần của một hợp chất ion, có thể xác định
U theo định luật Coulomb.
+ Xác định gián tiếp U bằng chu trình Born-Haber (Max Born + Fritz
Haber).
- Chú ý: Trong thực tế năng lượng mạng lưới tinh thể U tt được tính toán lí
thuyết dựa trên cấu trúc hình học của mạng lưới tinh thể. Vì vậy người ta thường
dùng chu trình Born – Haber để xác định ái lực với electron của các nguyên tố,
một đại lượng rất khó xác định bằng thực nghiệm.

III.Chu trình Born – Haber
Fritz Haber (1868 – 1934) là một nhà Hóa

học Đức, người được nhận giải Nobel hóa học vào năm
1918 cho những cống hiến của ông trong việc phát triển
phương thức tổng hợp amonia, đóng vai trò quan trọng
cho tổng hợp phân bón và chất nổ.
Max Born ( 1882 –1970) là một nhà Vật lý và một
nhà Toán học người Đức. Ông được trao thẳng giải Nobel Vật lý vào năm 1954
cho " nghiên cứu cơ bản của ông về Cơ học lượng tử, đặc biệt trong việc giải
Trang 14


GVHD: ThS. Đinh Quý Hương

thích thống kê về chức năng sóng. Max Born cũng có
đóng góp cho vật lý học thể rắn và quang học và giám sát
công việc của một số nhà vật lý nổi tiếng trong những
năm 1920 và 1930.
Với sự cộng tác của Max Born, F.Haber đã đưa
ra chu trình Born–Haber như là một phương pháp ước
tính năng lượng tinh thể của kim loại rắn.
Chu trình nhiệt hóa học hay chu trình Born – Haber (Booc – Habe)
Một phương pháp ứng dụng của định luật Hess thường được dùng để tính
hiệu ứng nhiệt của các quá trình (năng lượng mạng tinh thể, nhiệt hidrat hóa,
nhiệt hóa hơi …) là lập những chu trình nhiệt hóa học trong đó quá trình mà
chúng ta quan tâm là một giai đoạn của chu trình, khi chúng ta đã biết hiệu ứng
nhiệt của các giai đoạn khác trong chu trình. Sau đây là một vài ví dụ.
Ví dụ 1: Tính năng lượng mạng lưới của tinh thể NaCl. Năng lượng mạng
lưới của tinh thể NaCl là hiệu ứng năng lượng của quá trình:
Na+ + Cl- → NaCl (tt)
E NaCl
Lập chu trình nhiệt hóa hơi như sau :

Na+ (k)
INa

Na(k)

+

Cl-(k)

+

ACl
Cl(k)

ENaCl

NaCl(tinh thể)

∆H(tt)

∆Hth Na

Na(r)

+

Cl2 (k)

Trong đó đã biết hiệu ứng nhiệt của các quá trình sau :
- Nhiệt thăng hoa của Na : ∆Hth Na = 25,9 kcal/mol.

- Nhiệt phân ly của Cl2 thành nguyên tử : = 57,2 kcal/mol.
- Năng lượng ion hóa của Na : INa = 117,8 kcal/mol.
- Ái lực electron của Clo : ACl = - 88,0 kcal/mol.
- Nhiệt tạo thành của muối NaCl tinh thể (từ các đơn chất) : ∆H(tt) NaCl =
98,2 kcal/mol.
Từ đó theo định luật Hess ta có thể tính được năng lượng mạng lưới của
NaCl :
ENaCl = ∆H(tt NaCl) – (∆HthNa + ½ + INa + ACl)
Thay các giá trị vào ta được : ENaCl = - 182,5 kcal/mol.

Trang 15


GVHD: ThS. Đinh Quý Hương

Ví dụ 2 : Tính năng lượng phân li ∆Hlk HCl giữa các nguyên tử H và Cl
trong phân tử HCl, nghĩa là năng lượng được giải phóng khi tạo thành phân tử
HCl từ các nguyên tử H và Cl. Biết Nhiệt phân li Cl 2 và H2 thành nguyên tử :
103,4 kcal/mol,. Nhiệt tạo thành khí HCl : ∆HHCl = - 22,1 kcal/mol.
Ta lập chu trình nhiệt hóa sau :
H(k)

+

∆Hlk HCl

Cl(k)

HCl(k)
∆HHCl


½ H2

+

½ Cl2

Từ chu trình trên khi áp dụng định luật Hess ta có :
∆Hlk HCl + ∆HHCl = ½ + ½

∆Hlk HCl = -22,1 –



∆Hlk HCl = ∆HHCl – (½ + ½ )

(103,4 + 57,2)
2

= -102,4 kcal/mol

Trang 16


GVHD: ThS. Đinh Quý Hương

C. HỆ THỐNG CÂU HỎI TRẮC NGHIỆM KHÁCH
QUAN
Câu 1: [14] Cho biết hiệu ứng nhiệt đẳng áp tiêu chuẩn của ba phản ứng:
N2(k) + 3O2(k) + H2(k)




2HNO3(k)

= -414,8 kJ

N2O5(k) + H2O(k) →

2HNO3(k)

= +218,4 kJ

2H2O(k)



2H2(k) + O2(k)

= +483,6 kJ

Vậy, hiệu ứng nhiệt đẳng áp tiêu chuẩn của phản ứng sau:
2N2O5(k)

→ 2N2(k) + 5O2(k)

có giá trị bằng:
A. +149,6 kJ

B. -90,8 kJ


C. +782,8 kJ

D.-1750 kJ

Đáp án: C
Hướng dẫn giải:
Lập chu trình chuỗi các phản ứng sau:
N2(k)
H

+ H2(k) + 3O2(k)
H3

H1

2HNO3(k)

H2

N2O5(k) + H2O(k)
Theo định luật Hess, ta có:
∆H = ∆H2 - ∆H1 - ∆H3
Vậy hiệu ứng nhiệt của phản ứng cần tìm là: 2∆H = +782,8 kJ/ mol
Câu 2: Trộn 50ml dung dịch CuSO4 0,40 M với 50 ml dung dịch KOH 0,60 M
trong một nhiệt lượng kế đẳng áp. Biết biến thiên entanpi tiêu chuẩn của Cu 2+;

Trang 17



GVHD: ThS. Đinh Quý Hương

SO42-; K+; OH-; Cu(OH)2 lần lượt là: 64,4 ; -907,5 ; -251,2 ; -229,99 ; -451,98 kJ/
mol.
Chọn số câu đúng trong các câu sau:
1, Nhiệt lượng kế và dung dịch đã hấp thụ 56,4 kJ nhiệt lượng.
2, Tổng hàm lượng nhiệt của các chất phản ứng nhỏ hơn tổng hàm lượng
nhiệt của các chất sản phẩm.
3, Sau khi phản ứng kết thúc cho lượng dư dung dịch Ba(OH) 2 vào dung
dịch nước lọc thì xuất hiện 5,15 g kết tủa.
4, Thực tế hiệu ứng nhiệt của phản ứng là 0,846 kJ
5, Hiệu suất phản ứng là 100 %
6, Lọc kết tủa cho vào lượng dư dung dịch H2SO4 loãng phản ứng thoát ra
0,8295 kJ nhiệt thì hiệu ứng nhiệt của phản ứng tạo 1 mol nước từ ion H + và OHtrong dung dịch là -285,84 kJ/ mol.
A. 2

B. 3

C.4

D.5

Đáp án A : câu 3, 4 đúng
Hướng dẫn giải:
CuSO4(dd) + 2NaOH(dd) → Cu(OH)2(r) + Na2SO4(dd)
0,015 ←
hay

0,03


(mol)

Cu2+ + 2OH-



Cu(OH)2

= -56,4 kJ/ mol

Suy ra : ∆H = -56,4 x 0,015 = 0,846 kJ/ mol
+

Ba2+ + SO42- → BaSO4
0,02

0,02

0,02

(mol)

Cu2+ + 2OH- → Cu(OH)2
0,005

0,01

0,005

(mol)


Khối lượng kết tủa là: m = 0,02 x 233 + 0,005 x 98 = 5,15 (g)
+

Cu(OH)2 + 2H+
0,015



Cu2+ + 2H2O

0,03
Trang 18


GVHD: ThS. Đinh Quý Hương

= = -55,3 kJ/ mol
Cộng (1) và (2) ta được
2H+ + 2OH- → 2H2O
∆H = ( ) : 2 = -55,85 kJ/mol.
Câu 3: Đốt cháy hoàn toàn 15,5 g cacbon bằng một lượng vừa đủ không khí có
thể tích 25,0 lít ở 250C và 5,50 atm (không khí chứa 19% thể tích oxi). Thu được
sản phẩm là CO2 và CO. Tính lượng nhiệt tỏa ra ở điều kiện đẳng áp? Cho nhiệt
tạo thành tiêu chuẩn của CO 2 và CO lần lượt là -94,05 kcal/mol và -26,41
kcal/mol.
A. +91,2 kcal/mol
B. -91,2 kcal/mol
C. -156,6 kcal/mol
D. -156,6 kcal/mol

Đáp án: B
Hướng dẫn giải:
nC = 1,3 mol
nkk = 5,63 mol suy ra = 5,63 0,19 = 1, 07 mol.
C(gr) + O2(k) → CO(k)
H1 = -26,41 kcal/mol
a
0,5a
(mol)
C(gr) + O2(k) → CO2(k)
H2 = -94,05 kcal/mol
b
b
(mol)
Ta có hệ phương trình sau:
a + b = 1,3
a = 0,46
0,5a + b = 1,07
b = 0,84
H = H1 0,46 + H2 0,84 = -91,1506 kcal/mol.
Câu 4: [14] Biến thiên entanpi tiêu chuẩn của phản ứng trung hòa trong dung
dịch 1 mol CsOH với 1 mol axit mạnh HCl là -56, 0 kJ. Biến thiên entanpi tiêu
chuẩn của phản ứng trung hòa trong dung dịch 1 mol CsOH với 1mol axit yếu
HF là -68,6 kJ. Xác định biến thiên entanpi tiêu chuẩn của quá trình ion hóa 1
mol HF trong nước.
A.-12,6 kJ/mol

B. +12,6 kJ/mol

C. -124,6 kJ/mol D. +124,6 kJ/mol


Đáp án: A
Hướng dẫn giải:
OH- (dd) + H+(dd) → H2O(l)

H0 = -56,0 kJ

OH-(dd) + HF(dd) → H2O(l) + F-(dd)

H0 = -68,6 kJ
Trang 19


GVHD: ThS. Đinh Quý Hương

HF(dd) →

H+(dd) + F-(dd)

H0 = -68,6 – (-56,0)= -12,6 kJ

Câu 5: [14] Hòa tan muối CuSO4.5H2O vào nước là một quá trình thu nhiệt. Khi
hòa tan 1 mol muối CuSO4.5H2O trong một lượng lớn nước tại áp suất không
đổi, lượng nhiệt thu vào là 5,44 kJ. Trái lại khí hòa tan 1 mol muối CuSO 4 khan
vào một lượng lớn nước tại áp suất không đổi lượng nhiệt tỏa ra là 74,89 kJ.
Tính hiệu ứng nhiệt đẳng áp của phản ứng:
CuSO4(r) + 5H2O(l) → CuSO4.5H2O(r)
A. +80,33 kJ

B. -69,45 kJ


H0 = ?

C. +69,45 kJ

D. -80,33 kJ

Đáp án: D
→ Cu2+(dd) + SO42-(dd)

H0 = -74,89 kJ

CuSO4.5H2O(r) → Cu2+(dd) + SO42-(dd)

H0 = +5,44 kJ

CuSO4(r)

H0 = -74,89 - 5,44 = -80,33 kJ
Câu 6: Hiệu ứng nhiệt của quá trình cho 10 -2 kg Na(r) phản ứng với nước lấy rất
dư là 79910 J. Hiệu ứng nhiệt của quá trình cho 2.10 -2 kg Na2O(r) phản ứng với
nước lấy rất dư là 76755 J. Tính nhiệt tạo thành tiêu chuẩn của Na 2O biết thiêu
nhiệt của H2 là -285,84.103 J/mol.
A. - 415,4855 kJ/mol

B. +415,4855 kJ/mol

C. - 231,6925 kJ/mol

D. +231,6925 kJ/mol


Đáp án: A
Hướng dẫn giải:
Na(r) + H2O(l) → NaOH(l) + H2(k)

H1 = -183,793 kJ/mol

Na2O(r) + H2O(l) → NaOH(l)

H2 = -237,9405 kJ/mol

H2(k) + O2(k) → H2O(l)

H3 = -285,84 kJ/mol

Na(r) + O2(k) → Na2O(r)

H

Ta có sơ đồ sau:
Na(r) + H2O(l)

H1

NaOH(l) + H2(k)

+ O2(k)
H

+ O2(k)

H2

H3
Trang 20


GVHD: ThS. Đinh Quý Hương

Na2O(r) + 2H2O(l)

NaOH(l) + H2O(l)

Theo định luật Hess ta có:
H = 2 H1 H2 + H3 = - 415,4855 kJ/mol
Câu 7: [14] Phản ứng giữa bột nhôm với oxi có phương trình nhiệt hóa học như
sau:
4Al(r) + 3O2(k) → 2Al2O3(r)

H = -3352 kJ

Tìm nhiệt lượng thoát ra khi có 24,2 g bột nhôm bị oxi hóa ở 250C, 1 atm ?
A. -751 kJ

B. +1502

C. -1502

D.+751

Đáp án: A

Hướng dẫn giải:
4Al(r) + 3O2(k) →

2Al2O3(r)

Nhiệt lượng thoát ra là: H = (24,2:27) x (-3352) : 4 = -751 kJ
Câu 8:[14] Ở 250C, 1atm, 27g bột nhôm tác dụng với một lượng vừa đủ khí oxi
trong điều kiện nhiệt độ áp suất không đổi, tỏa ra một nhiệt lượng 834,9 kJ.
Nhiệt tạo thành mol tiêu chuẩn của nhôm oxit là:
A. (Al2O3, r) = +834,9 kJ mol-1

B.(Al2O3, r) = +1669,8 kJ mol-1

C. (Al2O3, r) = -834,9 kJ mol-1

D. (Al2O3, r) = -1669,8 kJ mol-1

Đáp án : D
Hướng dẫn giải: nAl = 1 mol
2Al(r) + 3O2(k) → Al2O3(r)
H = -834,9 x 2 = -1669,8 kJ/mol
Câu 9: Ở 250C, 1atm, 1 mol khí Hidro cháy thoát ra nhiệt lượng 245,17 kJ
H2(k) + O2(k) → H2O(l)
Phát biểu nào dưới đây đúng:
A. Nhiệt đốt cháy tiêu chuẩn của khí Hidro là -245,17 kJ mol-1
B. Nhiệt tạo thành tiêu chuẩn của nước lỏng là -245,17 kJ mol-1
Trang 21


GVHD: ThS. Đinh Quý Hương


C. Hiệu ứng nhiệt đẳng áp tiêu chuẩn của phản ứng là -245,17 kJ mol-1
D. Cả ba phát biểu trên đều đúng.
Đáp án : D
Câu 10: [6] Cho dữ kiện sau:
- Sinh nhiệt của BaCl2 tinh thể -860,23 kJ/ mol
- Nhiệt phân li của clo: 238,49 kJ/ mol
- Nhiệt thăng hoa của Ba kim loại: 192,46 kJ/ mol
- Thế ion hóa thứ nhất của Ba: 501,24 kJ/ mol
- Thế ion hóa thứ hai của Ba: 962,32 kJ/ mol
- Ái lực với electron của clo: -357,73 kJ/ mol
Năng lượng mạng lưới tinh thể của BaCl2 là:
A.+2039,28 kJ/ mol

B.-2397.01 kJ/ mol

C.+2397,01 kJ/ mol

D.-2039,28 kJ/ mol

Đáp án: D
Hướng dẫn giải:
Ba2+(k) +

2Cl- Utt

BaCl2

Ba+(k)
2Cl(k)

Ba(k)

ECl-Cl

Hth

Ba(r )

+

Cl2(k)

Utt = + Hth + + ECl-Cl) =-2039,28 kJ/ mol
Câu 11: [6] Cho các dữ kiện sau:
- Nhiệt phân li của hidro là 435,14 kJ/mol
- Nhiệt phân li của oxi là 493,71 kJ/mol
Trang 22


GVHD: ThS. Đinh Quý Hương

- Sinh nhiệt của nước lỏng là -285,77 kJ/mol
- Nhiệt bay hơi của nước là 43,93 kJ/mol
Xác đinh năng lượng liên kết O-H trong phân tử nước.
A.+923,835 kJ/mol

B.+461,92 kJ/mol

C. +585,345 kJ/mol


D. -585,345 kJ/mol

Đáp án: B
Hướng dẫn giải:
2H(k)

+

Hpli,H2

H2(k)

+

Hpli = 2EO-H

O(k)

H2O(k)

HpliO2

Hth

O2(k)

H2O(l)
H

EO-H = (- Hhh - H + Hpli,H2 + Hpli,O2 ) = 461,9175 kJ/mol


Câu 12: Tính lượng nhiệt tỏa ra ở 25 0C trong sự hình thành 32g Fe 2O3 từ các
nguyên tố ở điều kiện đẳng tích, biết rằng trong sự hình thành FeO H = -268,77
kJ và sự oxi hóa FeO thành Fe 2O3 tỏa ra 2027,30 J, đối với 1g FeO ở điều kiện
đẳng áp; những nhiệt lượng này đều được xác định ở 250C.
A. -535,5127 kJ

B. -107,1 kJ

C. +535,5127 kJ

D.+107,1 kJ

Đáp án: B
Hướng dẫn giải:
Fe + O2



FeO

H1 = -268,77 kJ

2FeO + O2 → Fe2O3

H2 = 2027,30 J

2Fe + O2

H


→ Fe2O3

Số mol Fe2O3 là: n = 0,2 mol
H = 2H1 + H2 = -535,5127 k J
Câu 13: [6] Cho các dữ kiện sau
- Nhiệt hòa tan của BaCl2 : -10,17 kJ/ mol
- Nhiệt hidrat hóa của ion Ba2+: -1343,98 kJ/ mol
- Nhiệt hidrat hóa của ion Cl-: -362,98 kJ/mol
Trang 23


GVHD: ThS. Đinh Quý Hương

Năng lượng mạng lưới tinh thể của BaCl2 là:
A. -1696.79 k J/mol

B. +1696.79 k J/mol

C. -2059,77 k J/mol

D. +2059,77 k J/mol

Đáp án: C
Hướng dẫn giải:
Ba2+

+

2Cl-


BaCl2
-Ehòa tan

Ba(OH)2 + 2HCl
Utt = 2 x (-362,98) + (-1343,98) – (-10,17)
= -2059,77 kJ/mol
Câu 14: Cho 2 phản ứng sau:

2NH3 +

3
2

O2 → N2 + 3 H2O (1)

5
2

2NH3 + O2 → 2NO + 3H2O (2)
Cho năng lượng liên kết của:
kJ/mol

N−H
393

O=O
498,7

N≡N

941,4

H−O
460

N=O
629,7

Có bao nhiêu câu đúng trong các câu sau:
1, Hiệu ứng nhiệt của phản ứng 1 lớn hơn hiệu ứng nhiệt của phản ứng 2.
2, Phản ứng 2 là phản ứng tỏa nhiệt, phản ứng 1 là phản ứng thu nhiệt.
3, Hiệu ứng nhiệt của phản ứng N2 + O2 → 2NO là 180,7 kJ.
4, Khả năng phản ứng 1 xảy ra chậm hơn so với phản ứng 2.
5, Phản ứng 1 cần thêm xúc tác vào để xảy ra nhanh hơn.
6, Cả hai phản ứng đều có tổng hàm lượng nhiệt của các chất phản ứng lớn
hơn tổng hàm lượng nhiệt của chất sản phẩm.
Trang 24


GVHD: ThS. Đinh Quý Hương

7, Không thể xác định được biến thiên entanpy của 2 phản ứng đã cho.
A.4

B. 5

C.3

D.1


Đáp án: D
H 2 = − 414,65 kJ

1 sai vì H1 = -595,35 kJ.
2.sai vì cả hai phản ứng tỏa nhiệt

3.sai vì H = (H2 - H1) : 2 = 90,35 k J
4. sai vì phản ứng 2 xảy ra chậm hơn phản ứng 1
5. sai vì phản ứng 2 cần xúc tác để xảy ra nhanh hơn
6. đúng
7. sai
Câu 15:Hãy xác định năng lượng nguyên tử hóa của NaF (ENaF), biết:
- Năng lượng phân ly NaF (Ei) = 6,686 eV;
- Thế ion hóa của Na (INa) = 5,139 eV;
- Ái lực electron của F (EF) = -3,447 eV.
A. 4,994 eV

B. -1,9 eV

C. 8,378 eV

D. 15,272 eV

Đáp án: A
Hướng dẫn giải :
Ta có chu trình sau đây:
NaF
Ei

ENaF


Na

+

F

INa

Na+ +

EF

F-

ENaF = Ei − INa − EF =

4,994 eV

Câu 16: [15] Tính nhiệt phản ứng ở 250C của phản ứng sau:
CO(NH2)2(r) + H2O(l) → CO2(k) + 2NH3(k)
Biết trong cùng điều kiện có các đại lượng nhiệt sau đây:
CO (k) + H2O (h) → CO2 (k) + H2 (k)
∆H1 = - 41,13 kJ/mol
Trang 25


×