Tải bản đầy đủ (.doc) (5 trang)

ĐỀ THI TUYỂN SINH VÀO LỚP 10 THPT DE 12.doc

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (108.02 KB, 5 trang )

ĐỀ THI TUYỂN SINH VÀO LỚP 10 THPT
MÔN TOÁN – THỜI GIAN 150 PHÚT
Đề 12
PHẦN 1. TRẮC NGHIỆM KHÁCH QUAN : (4 điểm)
1. Tam giác ABC vuông tại A có
3
tg
4
B
=
. Giá trị cosC bằng :
a).
3
cos
5
C
=
; b).
4
cos
5
C
=
; c).
5
cos
3
C
=
; d).
5


cos
4
C
=
2. Cho một hình lập phương có diện tích toàn phần S
1
; thể tích V
1
và một hình
cầu có diện tích S
2
; thể tích V
2
. Nếu S
1
= S
2
thì tỷ số thể tích
1
2
V
V
bằng :
a).
1
2
V 6
V
π
=

; b).
1
2
V
V 6
π
=
; c).
1
2
V 4
V 3
π
=
; d).
1
2
V 3
V 4
π
=
3. Đẳng thức
4 2 2
8 16 4x x x− + = −
xảy ra khi và chỉ khi :
a). x ≥ 2 ; b). x ≤ –2 ; c). x ≥ –2 và x ≤ 2 ; d). x ≥ 2 hoặc x ≤
–2
4. Cho hai phương trình x
2
– 2x + a = 0 và x

2
+ x + 2a = 0. Để hai phương trình
cùng vô nghiệm thì :
a). a > 1 ; b). a < 1 ; c).
1
8
a
>
; d).
1
8
a <
5. Điều kiện để phương trình
2 2
( 3 4) 0x m m x m
− + − + =
có hai nghiệm đối nhau là
:
a). m < 0 ; b). m = –1 ; c). m = 1 ; d). m = – 4
6. Cho phương trình
2
4 0x x
− − =
có nghiệm x
1
, x
2
. Biểu thức
3 3
1 2

A x x
= +
có giá
trị :
a). A = 28 ; b). A = –13 ; c). A = 13 ; d). A = 18
7. Cho góc α nhọn, hệ phương trình
sin cos 0
cos sin 1
x y
x y
α α
α α
− =


+ =

có nghiệm :
a).
sin
cos
x
y
α
α
=


=


; b).
cos
sin
x
y
α
α
=


=

; c).
0
0
x
y
=


=

; d).
cos
sin
x
y
α
α
= −



= −

8. Diện tích hình tròn ngoại tiếp một tam giác đều cạnh a là :
a).
2
a
π
; b).
2
3
4
a
π
; c).
2
3 a
π
; d).
2
3
a
π
PHẦN 2. TỰ LUẬN : (16 điểm)
Câu 1 : (4,5 điểm)
1. Cho phương trình
4 2 2
( 4 ) 7 1 0x m m x m
− + + − =

. Định m để phương trình có
4 nghiệm phân biệt và tổng bình phương tất cả các nghiệm bằng 10.
2. Giải phương trình:
2 2
4 2
3
5 3 ( 1)
1
x x
x x
+ = +
+ +
Câu 2 : (3,5 điểm)
1. Cho góc nhọn α. Rút gọn không còn dấu căn biểu thức :
2 2
cos 2 1 sin 1P
α α
= − − +
2. Chứng minh:
( ) ( )
4 15 5 3 4 15 2
+ − − =
Câu 3 : (2 điểm)
Với ba số không âm a, b, c, chứng minh bất đẳng thức :
( )
2
1
3
a b c ab bc ca a b c
+ + + ≥ + + + + +

Khi nào đẳng thức xảy ra ?
Câu 4 : (6 điểm)
Cho 2 đường tròn (O) và (O’) cắt nhau tại hai điểm A, B phân biệt. Đường
thẳng OA cắt (O), (O’) lần lượt tại điểm thứ hai C, D. Đường thẳng O’A cắt (O),
(O’) lần lượt tại điểm thứ hai E, F.
1. Chứng minh 3 đường thẳng AB, CE và DF đồng quy tại một điểm I.
2. Chứng minh tứ giác BEIF nội tiếp được trong một đường tròn.
3. Cho PQ là tiếp tuyến chung của (O) và (O’) (P ∈ (O), Q ∈ (O’)). Chứng
minh đường thẳng AB đi qua trung điểm của đoạn thẳng PQ.
-----HẾT-----
ĐÁP ÁN
PHẦN 1. TRẮC NGHIỆM KHÁCH QUAN : (4 điểm) 0,5đ × 8
Câu 1 2 3 4 5 6 7 8
a). x x
b). x x
c). x x
d). x x
PHẦN 2. TỰ LUẬN :
Câu 1 : (4,5 điểm)
1.
Đặt X = x
2
(X ≥ 0)
Phương trình trở thành
4 2 2
( 4 ) 7 1 0X m m X m
− + + − =
(1)
Phương trình có 4 nghiệm phân biệt ⇔ (1) có 2 nghiệm phân biệt dương
+


0
0
0
S
P
∆ >


⇔ >


>

2 2
2
( 4 ) 4(7 1) 0
4 0
7 1 0
m m m
m m
m

+ − − >

⇔ + >


− >


(I)+
Với điều kiện (I), (1) có 2 nghiệm phân biệt dương X
1
, X
2
.
⇒ phương trình đã cho có 4 nghiệm x
1, 2
=
1
X
±
; x
3, 4
=
2
X
±
2 2 2 2 2
1 2 3 4 1 2
2( ) 2( 4 )x x x x X X m m
⇒ + + + = + = +
+
Vậy ta có
2 2
1
2( 4 ) 10 4 5 0
5
m
m m m m

m
=

+ = ⇒ + − = ⇒

= −

+
Với m = 1, (I) được thỏa mãn +
Với m = –5, (I) không thỏa mãn.
+
Vậy m = 1.
2.
Đặt
4 2
1t x x
= + +
(t ≥ 1)
Được phương trình
3
5 3( 1)t
t
+ = −
+
3t
2
– 8t – 3 = 0
⇒ t = 3 ;
1
3

t = −
(loại) +
Vậy
4 2
1 3x x
+ + =
⇒ x = ± 1. +
Câu 2 : (3,5 điểm)
1.
2 2 2 2
cos 2 1 sin 1 cos 2 cos 1P
α α α α
= − − + = − +
2
cos 2cos 1P
α α
= − +
(vì cosα > 0) +
2
(cos 1)P
α
= −
+
1 cosP
α
= −
(vì cosα < 1) +
2.
( ) ( ) ( ) ( ) ( )
2

4 15 5 3 4 15 5 3 4 15 4 15+ − − = − + −
+
=
( )
5 3 4 15
− +
=
( ) ( )
2
5 3 4 15− +
+
=
( ) ( )
8 2 15 4 15− +
+
=
2
+
Câu 3 : (2 điểm)
( )
2
0 2a b a b ab
− ≥ ⇒ + ≥
+
Tương tự,
2a c ac
+ ≥
2b c bc
+ ≥
1 2a a

+ ≥
+
1 2b b
+ ≥
1 2c c
+ ≥
Cộng vế với vế các bất đẳng thức cùng chiều ở trên ta được điều phải chứng
minh. +
Đẳng thức xảy ra ⇔ a = b = c = 1
+
Câu 4 : (6 điểm)
+
1.
Ta có : ABC = 1v
ABF = 1v
⇒ B, C, F thẳng hàng. +
AB, CE và DF là 3 đường cao của tam giác ACF nên chúng đồng quy. ++
2.
ECA = EBA (cùng chắn cung AE của (O) +
Mà ECA = AFD (cùng phụ với hai góc đối đỉnh) +
⇒ EBA = AFD hay EBI = EFI +
⇒ Tứ giác BEIF nội tiếp. +
3.
Gọi H là giao điểm của AB và PQ
Chứng minh được các tam giác AHP và PHB đồng dạng +

HP HA
HB HP
=
⇒ HP

2
= HA.HB +
Tương tự, HQ
2
= HA.HB +
⇒ HP = HQ ⇒ H là trung điểm PQ. +
Lưu ý :
- Mỗi dấu “+” tương ứng với 0,5 điểm.
- Các cách giải khác được hưởng điểm tối đa của phần đó.
- Điểm từng phần, điểm toàn bài không làm tròn.
O
O’
B
A
C
D
E
F
I
P
Q
H

×