Tải bản đầy đủ (.doc) (8 trang)

chuyen de BTDS.doc

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (155.33 KB, 8 trang )

Chủ đề 4 : biểu thức đại số
Dạng 1. Tính giá trị biểu thức.
Bài 1. Viết biểu thức đại số biểu diễn:
a. Hiệu của a và lập phơng của b b. Hiệu các lập phơng của a và b c. Lập phơng của hiệu a và b.
Bài 2. Tính giá trị các biểu thức sau :
1) 2x
2
3x +1 tại x = -1 2) 5x
2
3x 16 tại x = 2
3) x
2
y
2
+ xy + x
3
+ y
3
tại x = 1; y = 3 4) 2x 3y
2
+ 4z
3
tại x = 2; y = -1; z = -1
5) 3x
3
y + 6x
2
y
2
+ 3xy
3


tại
1 1
;
2 3
x y= =
6) 5x 7y + 10 tại x =
5
1
; y =
1
7
7) 2x 5y - 8 tại x =
1
4
; y =
1
10

8) x
2
+ 4xy - 3y
3
với |x| = 5; |y| = 1
9) 2x
2
8xy y
2
tại
x
=

2
1
;
y
= 1 10)
yx
yx
3
23


với
y
x
=
3
10
11)
( ) ( ) ( )
10 9 8
x 3 x 3 x 3 x 1+ + + + +
tại x = -3 12)
( )
( )
10 8 2
x 2 x 5x 4 x 6x 13+ + + +
tại x = -2
13)
2
2 3 2

2
x x
M
x
+
=
+
tại: x = -1 14) N =
12
36
2

+
x
xx
với
x
=
2
1
15) P =
13
175
2

+
x
xx
với
x

=
2
1
16) Q =
( ) ( ) ( ) ( )
2 2 4 4 6 6 2
7 7
a b a b a b a 3b
a b
+ + +
+

với a = 6; b = 12
17) M =
( )
( )
( )
12
5100...21
55
+
++++
a
baba

với a =
25
3
; b = 0,6
18)

xy3
9y4
yx3
9x4
B
+
+

+

=

( x -3y; y -3x) Cho x - y = 9
19) A = 3x
3
y + 6x
2
y
2
+ 3xy
3
tại
1 1
;
2 3
x y= =
20) B = x
2
y
2

+ xy + x
3
+ y
3
tại x = 1; y = 3
Bài 3. Tính giá trị của biểu thức sau :
22
22
310
35
yx
yx

+
với
53
yx
=
Bài 4. Cho x, y, z

0 và x - y - z = 0 .Tính giá trị của biểu thức : B =






+

















z
y
y
x
x
z
111
Dạng 2. Đơn thức, tích các đơn thức.
Bài 1. Cho các biểu thức :
( )
2
2 2
2xy 3 1 6
; xy z 1 ; y z ; xyz
z 2 x 7
+

Những biểu thức là đơn thức và những đơn thức nào đồng dạng với nhau nếu :
a. x và y là biến, z là hằng b. z và x là biến, y là hằng c. y là biến, z và x là hằng.
Bài 2. Tính tích các đơn thức sau : ( chỉ ra hệ số, phần biến và bậc của kết quả đối với 6 câu đầu tiên)
1)
( ) ( )
3 2
2 5xy x y
2)
( ) ( )
5 2 3 3
3 4x y x y
3)
( ) ( )
2 3 2
2 4x y x y
4)
( ) ( )
2 3 2 5
7 3x y x y
5)
2 2 3
3 1
5 6
x y x y

ữ ữ

6)
3 2 5
5 3

6 10
x y xy


ữ ữ

7)
2 3 3 2
1 4
2 5
x y z xy z


ữ ữ

8)
2
4 3
9 8
x yz xyz


ữ ữ

9)
( ) ( ) ( )
2 2 2 2 2
2 3 5x y xyz x y z
10)
( ) ( ) ( )

3 2 2 2
3 7x y z xyz xy z
11)
( ) ( ) ( )
2 3 5
5 3xyz x xy
12)
2 3
1 3 10
2 5 21
xy x y xy



ữ ữ ữ

13)
( )
2 3 2
3 2
3
4 9
xy x y xy



ữ ữ

14)
( ) ( )

2 2 3
1
10
5
xyz x y y z




15)


ữ ữ ữ

0
2
1 5 1
1 x y xy 2 xy
4 6 2
16)


ữ ữ ữ

2 2 2 3
8 2 4
x z xy z x y
3 3 5
17)


ữ ữ

10 10
2 3 5 4
1 3
2 x y x y
3 7
1
18)


ữ ữ

2
2 3 2
2 1
x y 2 xy
25 2
19)
2
2 3 2
1 6
3 7
x yz xyz



ữ ữ

20)

2 4 4 5 3
1 1
3 . .
3 2
x y y z x zyx



ữ ữ

21)
3 2
2 2
2 1
.
5 3
x y xy


ữ ữ

22)
2
3 2 4
3 2
4 3
xy x y





23)
2 3
2 3 3 2
3 1
5 3
x y x y


ữ ữ

24)
( )
2
2 2 3
1
. 4
2
xy z x yz





25)
2 4
1 3
.
3 5
x y x





26)
2 3
3 2
. . .
4 3
u v uv


ữ ữ

27)
2
2
3 2
4 3
y x y




28)
( )
3
2
2 2
1

3
3
x y xy




29)
3
5 3
1
15 . .
2
x yz xy z




30)
( ) ( )
( )
2 2
2 2
. . .x yx x y
31)
2 2
2 3
2 5 9
. .
3 9 10

abx a x bx


ữ ữ ữ

32)
3
2 2 2
1 15 1
.
2 8 5
ab c a b bc


ữ ữ

Bài 3. Tính tích các đơn thức sau rồi cho biết hệ số và bậc của đơn thức thu đợc ( a, b, c, d là hằng )
a)



5
3 4 2
1
- (a -1)x y z
2
b)
( ) ( )
2 2 2 n 1 3 4 7 n
a b xy z b cx z



c)

ữ ữ

3
3 2 5 2
9 5
- a x y . - ax y z
10 3
Bài 4. Cho 3 đơn thức sau:
zx
2
8
3

;
22
3
2
zxy
;
yx
3
5
4
a. Tính tích của 3 đơn thức trên.
b. Tính giá trị của mỗi đơn thức và giá trị của đơn thức tích tại x= -1, y = -2; z = 3.
Bài 5. Cho các đơn thức :

3
4
A = - x y
9
;
5 3
3
B = x y
8
.
Có các cặp giá trị nào của x và y làm cho A và B cùng có giá trị âm không ?
Bài 6. Cho ba n thc M = -5xy; N = 11xy
2
; P=
2 3
7
5
x y
. Chng minh rng ba n thc ny không thể
cùng có giá trị dơng.
Bài 7. Chứng minh ba đơn thức
2 3 2 5
1 3
x y ; xy ; 16x y
2 4

không thể cùng có giá trị âm (có ít nhất một
đơn thức có giá trị dơng)
Dạng 3. Đơn thức đồng dạng, tổng và hiệu các đơn thức đồng dạng.
Bài 1. Thực hiện phép tính sau :

1)
2 2
2 5x y x y+
2)
( )
3 2 3 2
3 8x y x y+
3)
( ) ( )
2 2
7xy xy +
4)
3 3
4 13x y x y
5)
( )
2 2
3xyz xyz
6)
( )
2 2
5 3x yz x yz
7)
2 5 2 5
2 1
3 6
x y x y

+



8)
3 2 3 2
3 1
5 2
xy z xy z




9)
2 2
3 5
8 6
xy z xy z


ữ ữ

Bài 2. Rút gọn biểu thức :
1)
2 3 2 3
3 5x y x y+ 2)
3 3 3
2 7 4x yz x yz x yz + 3)
2 2 2 2 2 2
5 3xy z xy z xy z
4)
( ) ( )
2 2 2 2

3a b + -a b + 2a b - -6a b
5)
( ) ( ) ( )

2 2 2
-7y + -y -8y
6)
( ) ( )
2 2 2 2
-4,2p + - 0,3p +0,5p + 3p
7)
( )

n
n n
5a + - 2a + 6a 8)
2
3
63
xxx
++
9) 3ab.
5
2
ac 2a.abc -
3
1
a
2
bc

10)
2 5 2 5 2 5
1 3 4
2 4 3
y z y z y z +
11)
3 3 3
7
3
axy bxy xy +
Bài 3.
2 2 2 2
2 1 1
Cho A x y; B xy ; C x y; D xy
3 2 3
= = = =
a. Xếp chúng thành nhóm các đơn thức đồng dạng rồi tính tổng của từng nhúm
b. Tính tích của các tổng vừa tìm đợc. Chỉ ra phần hệ số, phần biến, bậc của tích tìm đợc.
c. Tính giá trị của các tích trên tại x = 2 , y = - 3
d. Biểu thức A và biểu thức C có thể cùng có giá trị dơng đợc không ? Vì sao ?
2
Bài 4.
3
2 5 2
1 1
Cho A x y . 1 x y
3 2

=
ữ ữ


a. Viết A dới dạng đơn giản nhất. b. Chứng tỏ A không dơng với
mọi x, y
c. Tính giá trị của A tại
x 2 ; y 1= =
Bài 5. Cho các biểu thức :
2
2 2 2 2
1 1 1 2
A 1 x y ; B 2 xy ; C x y ; D x y
4 2 3 3

= = = =


a. Tính A.B, B.C và chỉ ra phần hệ số, phần biến, và bậc của kết quả tìm đợc.
b. Tính A - D , A + D ; A
2
+ C
c. A và D có thể cùng dơng đợc không ?
Bài 6. Cho n thc A = 5m (x
2
y
3
)
2
;
4 6
2
B = - x y

m
trong ú m l hng s dng.
a/ Hai n thc A v B cú ng
dng khụng ?
b/ Tớnh hiu A - B c/ Tớnh GTNN ca hiu A B
Bài 7. Cho A = 8x
5
y
3
; B = -2x
6
y
3
; C = -6x
7
y
3
. Chng minh rng Ax
2
+ Bx + C = 0
Bài 8. Cho A = (-3x
5
y
3
)
4
; B = (2x
2
z
4

). Tỡm x, y, z bit A + B = 0
Bài 9. Biết A = x
2
yz , B = xy
2
z ; C = xyz
2
và x+ x + z = 1. Chứng tỏ rằng A + B + C = xyz
Bài 10. Cho các đơn thức A = x
2
y và B = xy
2
. Chứng tỏ rằng nếu x, y

Z và x + y chia hết cho 13 thì
A + B chia hết cho 13
Bài 11. Chng minh rng vi nN
*
thì :
a/ 8.2
n
+ 2
n+1
cú tn cựng bng
ch s 0
b/ 3
n+3
- 2.3
n
+ 2

n+5
- 7.2
n
chia ht
cho 25
c/ 4
n+3
+ 4
n+2
- 4
n+1
- 4
n
chia ht
cho 300
Bài 12. Rút gọn các biểu thức sau :
a) 10
n+1
- 66.10
n
b) 2
n+ 3
+ 2
n +2
- 2
n + 1
+ 2
n
c) 90.10
k

- 10
k+2
+ 10
k+1
d)2,5.5
n - 3
.10+5
n
-6.5
n- 1
Bài 13. Rút gọn:
a) M + N - P với M = 2a
2
3a + 1 , N = 5a
2
+ a , P = a
2
- 4
b) 2y - x -
( )
[ ]
{ }
xyxyyx
+
532
với x =a
2
+ 2ab + b
2
, y = a

2
- 2ab + b
2

Dạng 4. Đa thức, cộng trừ đa thức.
Bài 1. Rút gọn đa thức :
1) x
3
y xy + 3y + 6xy x
3
y +y 5 2)
2 2 2 2
1 1 1
5
3 2 3
x y xy xy xy xy x y+ +
1)
2 3 2 3
1 3
4 2
4 4
x y xy x y xy xy
+ +
1)
2 2
1 1 1
3 1 3
4 2 4
x y xy x y xy xy + +
3) 5x

2
yz +8xyz
2
-3x
2
yz xyz
2
+x
2
yz +xyz
2
4)
3 2 3 3 2
1 1
2 4
2 2
y x y y y x y

+
5) xy
2
-2x
3
y
2
+ xy -3 + x
3
y
2
- 5xy

2
- 2 - 4xy 6)
2 3 2 3 2 2 3 2 2 3
15 7 8 12 11 12+ + x y x x y x x y x y
7)
5 4 2 3 5 4 2 3
1 3 1
3 2
3 4 2
+ + +
x y xy x y x y xy x y
8)
( )
2
3 2 4 3 2 3 3
1 2 5 1
x y x y xy xy xy 5 x y
3 5 6 2
+ +
9) -
2
1
xy
2
z+3x
3
y
2
+2xy
2

z -
3
2
xy
2
z -
3
1
x
3
y
2
+xy
2
z
10)
( ) ( )
2
2 2 2 3 2 2 3
1 2 3
xy x y 3x y 2 xy 3x y xy x y
2 3 2

+
ữ ữ ữ

Bài 2. Thực hiện phép tính :
1)
( ) ( )
2 2 2 2

-5x y + 3xy + 7 + - 6x y + 4xy 5
2)
( ) ( )
3 2 2 3 2
2,4x -10x y + 7x y - 2,4x + 3xy
3)
( ) ( )
2 2 2 2 2 2
15x y - 7xy -6y + 2x - 12x y + 7xy
4)
( ) ( )
3x + y - z - 4x -2y + 6z
5)
( ) ( )
3 2 3 3 3
6 5 2 5 7x x y x x y+ + +
6)
( ) ( )
2 3 2 3
5,7 3,1 8 6,9 2,3 8x y xy y xy x y y + +
7)
( ) ( )
2x. -3x + 5 + 3x 2x 12 + 26x
8)
2 2 7 5 4
3
3 6 9 5 2 5 5
x x x x
x



+
ữ ữ

9) ( 15x + 2y) -
( ) ( )
[ ]
yxx
++
532
10) - (12x + 3y) + (5x 2y) -
( )
[ ]
5213
+
yx
11) (4x
2
+x
2
y -5y
3
)+(
yxxyx
223
6
3
5

)+(

3
3
10
3
y
x
+
)+ (
3223
104156 xyxxyy

)
3
Bài 3. Cho cỏc a thc :
A = 16x
4
- 8x
3
y + 7x
2
y
2
- 9y
4
; B = -15x
4
+ 3x
3
y - 5x
2

y
2
- 6y
4
; C = 5x
3
y + 3x
2
y
2
+ 17y
4
+ 1.
Tớnh A+B-C
Bài 4. Cho các đa thức :
A = 4x
2
- 5xy + 3y
2
; B = 3x
2
+2xy + y
2
C = - x
2
+ 3xy + 2y
2
.
Tính: a. A + B + C; b. B - C - A; c. C - A - B.
Bài 5. Tìm đa tức M , biết:

a. M + ( 5x
2
2xy ) = 6x
2
+ 9xy y
2
b. M - (3xy - 4y
2
) = x
2
- 7xy + 8y
2
c. (25x
2
y - 13 xy
2
+ y
3
) - M = 11x
2
y 2y
2
; d. M + ( 12x
4
- 15x
2
y + 2xy
2
+7 ) = 0
Bài 6. Cho a thc P = 5x

2
- 7y
2
+ y - 1; Q = x
2
- 2y
2
a) Tìm

a th

c M = P - Q
b) Tính giá tr

c

a M t

i x=1/2 v

y=-1/5
Bài 7.
Tìm

a th

c
A
bi


t
A
+ (3
x
2
y
2
xy
3
) = 2
x
2
y
4
xy
3
= + = + +
2 3 3 2 3 2 3 2
13
Cho M x y 0,5xy x y và N xy x y 5,5x y
2
a. Tính M + N, M N, N - M và chỉ ra bậc của KQ tìm đợc.
b. Tìm bậc của M và N. Tính giá trị của M và N tại x = -0,5 , y = 1
c. Tính 2M N , M 2N
d. Tìm đa thức P biết 2P + M = N
e. Tìm đa thức Q biết Q 2M = N
Bài 8. Cho các đa thức:
4 2 3 5 3 5 4 2 3 5
1
A 2x y 7x y ; B 2x y x y ; C 5x y

2
= = =
Chứng tỏ có ít nhất một đa thức không âm với mọi x, y.
Bài 9. Cho các đa thức :
2 4 3 2 2 2 2 2 2 4
2 2
A x y 2x y x y và B x y 3x y. x 5x y
5 3

= = +


Chứng minh A và B không thể cùng có giá trị âm với mọi x, y
Bài 10. Cho các đa thức :
2 2 2 2
P 3x 2xy 4y 1, Q x 2xy 5y= + + = +
Chứng minh rằng với mọi x, y thì giá trị của hai đa thức trên không thể đồng thời nhỏ hơn 0
Bài 11. Cho a thc P = 2x(x + y - 1) + y
2
+ 1
a/ Tớnh giỏ tr ca P vi x = -5; y = 3
b/ Chng minh rng P luụn luụn nhn giỏ tr khụng õm vi mi x, y
Bài 12. Tìm x biết :
1)
( ) ( ) ( )
0,4x - 2 - 1,5x + 1 - - 4x - 0,8 = 3,6
2)
3
3
4

x

+


-







4
3
2
x
-






+
1
6
1
x
=







+
4
3
1
x
-







3
3
1
x
3)
6
1
4
1
3
1

2
1
=
xx
4)
( ) ( ) ( )
5 9 2 1 1 2 2 3x x x x + + = +
5)
4
2
3
1

=
+
xx
6)
( ) ( ) ( )
2 7 8 3 12 5 1x x x x = + +
7) 3(x-2)+ 2(x-1)=10 8)
( ) ( ) ( )
3 2 5 2 1 3 2 3 4x x x+ =
9)
( ) ( )
2
2 3 1 5 3 6 1x x x x+ =
10)
( ) ( ) ( )
2 5 2 3 2 2 4x x x x x x + = +
11) x +2x+3x+4x+..+ 100x = -213 12)

x -6 x - 7 x -8 x - 9 x -10 x -11
+ + = + +
7 8 9 10 11 12
13)
x + 32 x + 23 x + 38 x + 27
+ = +
11 12 13 14
14) x
n
2x
n+1
+ 5x
n
4x
n+1
= 0 ( n

N; n

0)
Bài 13. Tớnh tng
S ab abc ba bac= + +
Bài 14. Tớnh giỏ tr ca cỏc a thc sau bit x - y = 0
a/ M = 7x - 7y + 4ax - 4ay - 5
b/ N = x (x
2
+ y
2
) - y (x
2

+ y
2
) + 3
Bài 15. Tớnh giỏ tr ca a thc A = 4x
4
+ 7x
2
y
2
+ 3y
4
+ 5y
2
vi x
2
+ y
2
= 5
Bài 16. Chứng minh các đẳng thức sau :
a) x
2
y
2
= (x+ y) (x- y) b) x
3
+ y
3
= (x+ y) ( x
2
xy + y

2
)
4
c) a(a b) b(b- a) = a
2
b
2
d) a( b- c) b(a + c) + c( a b) = - 2bc
e) a( 1- b) + a( a
2
1) = a (a
2
- b) f) a(b x) + x(a + b) = b( a + x)
Bài 17. Đặt thừa số chung để viết các tổng sau đây thành tích :
a) ab + bd ac cd b) ax + by ay bx c) x
2
xy xy + y
2

Bài 18. Cho đa thức C thỏa mãn :
( )
2 2 2 2
C 3x 5xy 2y 4x 5xy 6y+ + = +
. Chứng minh
C 0 x,y
Bài 19. Hóy vit cỏc a thc di dng tng ca cỏc n thc ri thu gn.
a/ D = 4x(x+y) - 5y(x-y) - 4x
2
b/ E = 3(x
2

+ 1) - x(y+3x) + (xy +y
2
+ 1)
Bài 20. Cho a thc A = 2x
2
+ | 7x - 1| - (5 - x +2x
2
)
a/ Thu gn A b/ Tỡm x A = 2
Dạng 5. Đa thức một biến, nghiệm của đa thức một biến.
Bài 1. Viết các đa thức sau dới dạng luỹ thừa giảm của biến rồi tìm hệ số cao nhất, hệ số tự do và bậc của
chúng:
3x
5
+ 5x
3
( x
2
- x +1 ) - 2x
2
( 4x
3
+ 2x
2
+ 3x - 4 ) ( x
3
+3x +2 ) ( x- 2 ) -
2
1
x ( 2x

2
4x 7 )
Bài 2. Cho đa thức P(x) =
2 3 3 2
2 2 1 2
3 4 1 5
3 3 4 3
x x x x x x + + + +
a) Thu gọn P(x) và sắp xếp theo lũy thừa giảm của biến.
b) Tính P(x) với x = -1
Bài 3. Cho P(x) = 2x
3
2x 5 ; Q(x) = x
3
+ x
2
+ 1 x.
Tính: a. P(x) +Q(x); b. P(x) - Q(x).
Bài 4. Cho đa thức :
A(x) = 3x
4
3/4x
3
+ 2x
2
3 B(x) = 8x
4
+ 1/5x
3
9x + 2/5

Tính : A(x) + B(x); A(x) - B(x); B(x) - A(x);
Bài 5. Cho các đa thức:
f(x) = x
3
- 2x
2
+ 3x + 1 g(x) = x
3
+ x - 1 h(x) = 2x
2
- 1
a) Tính: f(x) - g(x) + h(x)
b) Tìm x sao cho f(x) - g(x) + h(x) = 0
Bài 6. Cho các đa thức :
A(x) = 3x
6
5x
4
+2x
2
- 7 B(x) = 8x
6
+ 7x
4
x
2
+ 11 C(x) = x
6
+ x
4

8x
2
+ 6
Tính :
1) A(x) + B(x); 2) B(x) + C(x); 3) A(x) + C(x); 4) A(x) + B(x)- C(x);
5) B(x) + C(x) A(x); 6) C(x) + A(x) - B(x); 7) A(x) + 2B(x); 8) A(x) -2 C(x)
Bài 7. Cho 2 đa thức f(x) = x
2
3x
3
-5x + 5x
3
x +x
2
+ 4x +1
g(x) = 2x
2
x
3
+3x +3x
3
+x
2
x -9x +5
a) Thu gọn hai đa thức trên và sắp xếp theo lũy thừa giảm của biến, tìm hệ số cao nhất, hệ số tự do
và bậc của chúng.
b) Tính f(x) + g(x) và f(x) g(x).
Bài 8.
Cho các đa thức :
M

=
x
2

+
5x
4


3x
3

+
x
2

+
4x
4

+
3x
3


x
+
5 N
=
x


5x
3


2x
2


8x
4

+
4 x
3


x
+
5
a. Thu gọn và sắp xếp các đa thức theo lũy thừa giảm dần của biến.
b. Tính M+N; M - N
Bài 9.
Cho các đa thức :
f(x) = 3x
2

+ x 1 + x
4


x
3
x
2

+ 3x
4
g(x) = x
4

+ x
2

x
3

+ x 5 + 5x
3

x
2
a. Thu gọn và sắp xếp các đa thức theo lũy thừa giảm dần của biến.
b. Tính f(x) g(x); f(x) + g(x)
c. Tính g(x) tại x = -1.
Bài 10. Cho P(x) =
2x
3

+ 2x - 3x
2


+ 1
; Q(x) = 2x
2

- 2x
2

+ x - 5. Tính : a) P(x) + Q(x); b) P(x)-Q(x)
Bài 11. Cho f(x) = -7x
2
+ 6x
3
-
3
1
+8x
4
+ 7x
2
-
5
1
x và g(x) = 28 5x
4
7x
3
3x
2
3x

4
-
5
2
-2x
Tính f(x) + g(x); g(x) f(x)
Bài 12. Cho các đa thức : P(x) = x
4
+ 2x
2
+ 1 và Q(x) = x
4
+ 4x
3
+ 2x
2
4x + 1;
5

Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×