Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (80.84 KB, 1 trang )
Toán học, Olympic toán toàn quốc - Việt
nam 2003
Bài từ Tủ sách Khoa học VLOS.
Currently 5.00/5
Bài viết xuất sắc: 5.0/5 (1 vote)
Jump to: navigation, search
A1. Let R be the reals and f: R ’! R a function such that f( cot x ) = cos 2x + sin 2x for all 0
< x < À�. Define g(x) = f(x) f(1-x) for -1 d" x d" 1. Find the maximum and minimum
values of g on the closed interval [-1, 1].
A2. The circles C1 and C2 touch externally at M and the radius of C2 is larger than that of
C1. A is any point on C2 which does not lie on the line joining the centers of the circles. B
and C are points on C1 such that AB and AC are tangent to C1. The lines BM, CM
intersect C2 again at E, F respectively. D is the intersection of the tangent at A and the line
EF. Show that the locus of D as A varies is a straight line.
Bài này là bài sơ thảo. Bạn có thể hoàn thiện bằng cách viết bổ sung vào đây. (Xin xem
phần trợ giúp để biết thêm về cách sửa đổi bài.)
A3. Let Sn be the number of permutations (a1, a2, ... , an) of (1, 2, ... , n) such that 1 d" |ak
- k | d" 2 for all k. Show that (7/4) Sn-1 < Sn < 2 Sn-1 for n > 6.
B1. Find the largest positive integer n such that the following equations have integer
solutions in x, y1, y2, ... , yn: (x + 1)2 + y12 = (x + 2)2 + y22 = ... = (x + n)2 + yn2.
B2. Define p(x) = 4x3 - 2x2 - 15x + 9, q(x) = 12x3 + 6x2 - 7x + 1. Show that each
polynomial has just three distinct real roots. Let A be the largest root of p(x) and B the
largest root of q(x). Show that A2 + 3 B2 = 4.
B3. Let R+ be the set of positive reals and let F be the set of all functions f : R+ ’! R+ such
that f(3x) e" f( f(2x) ) + x for all x. Find the largest A such that f(x) e" A x for all f in F and
all x in R+.