BỘ GD&ĐT BỘ ĐỀ ÔN THI VÀO ĐẠI HỌC, CAO ĐĂNG
–––––––––– MÔN: TOÁN
ĐỀ 5
Câu 1: Cho hàm số y=
mx
x
xf
−
+
=
2
)(
(m là tham số)
1) Tìm các giá trị của tham số m sao cho hàm số nghịch biến trong (-4;5)
2) Khảo sát hàm số khi m=1
3) Gọi (D) là đừơng thẳng A(1;0) và có hệ số góc k. Tìm k để (D) cắt (C) tại 2
điểm M,N thuộc 2 nhánh khác nhau của (C) sao cho
ANAM 2
−=
Câu 2: Giải phương trình :
x
x
x
x
27log
9log
3log
log
81
27
9
3
=
Câu 3: Giải phương trình:
xxx
xg
x
xtg
2sin
16
sin
4
cos
cot
sin
422
4
2
4
=++
Câu 4: Cho
24269
34
)(
23
−+−
+
=
xxx
x
xf
1)Tìm A,B,C sao cho
432
)(
−
+
−
+
−
=
x
C
x
B
x
A
xf
2)Tìm họ nguyên hàm của
)(xf
Câu 5: Cho hyperbol (H):
1
916
22
=−
yx
có hai tiêu điểm F
1
,F
2
. Tìm điểm M thuộc (H) sao
cho
°=
∧
120
21
MFF
và tính diện tích tam giác F
1
MF
2
C âu 6: Cho 2 mặt phẳng (P):x+y-5=0 và (Q):y+z+3=0 và điểm A(1;1;0). Tìm phương
trình đừơng thẳng (D) vuông góc với giao tuyến của (P) và (Q), cắt (P) và (Q) tại M,N
sao cho A là trung điểm M,N
Câu 7: Cho hình chóp S.ABCD đáy là ABCD là hình vuông, cạnh a, tâm O. SA vuông
góc với mặt phẳng (ABCD), nhị diện (B,SC,D) có số đo bằng 120
0
. Tính SA
Câu 8: Tìm hệ số của số hạng chứa x
8
trong khai triển Newton của
)0()1
1
()(
124
≠−+=
x
x
xxf
Câu 9: Cho
]1;1[
−∈
x
. Tìm GTLN của
xxxxxf
−+−+=
2242)(
325
ĐỀ 6
Câu 1: Cho hàm số :
x
x
y
−
+
=
1
42
(C)
1)Khảo sát hàm số
2) Tìm các giá trị của tham số m để parabol (P):
mxxy
++−=
6
2
tiếp xúc với (C)
3) Gọi (D) là đừơng thẳng qua A(1;1) có hệ số góc là k.Tìm giá trị của k sao cho
(D) cắt (C) tại hai điểm M,N và
103
=
MN
Câu 2: Cho phương trình:
2
12
23
223
2
12
2
12
log)1738254(log45log23log mxxxxxxx
−−+−
+−+−=+−−+−
(m là tham số khác 0)
1) Giải phương trình khi m=1
2) Tìm các giá trị của tham số m sao cho phương trình đã cho có nghiệm.
Câu 3: Giải phương trình sau:
xx
xgxxtgx
sin
3
cos
2
5)cos(cot3)sin(2
+=+−+−
Câu 4: Trong mặt phẳng Oxy, cho parabol (P):
xy
=
2
và hai điểm A(-2;-2);B(1;-5). Tìm
trên (P) hai điểm M,N sao cho tứ giác ABMN là hình vuông.
Câu 5: Trong không gian Oxyz, tìm phương trình mặt cầu (S) qua 3 điểm A(0;1;2);
B(1;2;4);C(-1;0;6) và tiếp xúc mặt phẳng (P): x+y+z+2=0
Câu 6: Cho lăng trụ tam giác đều ABC.A’B’C’ có cạnh đáy bằng a, khoảng cách từ tâm
O của tam giác ABC đến mặt phẳng (A’BC) bằng
6
a
. Tính thể tích và diện tích toàn
phần của hình lăng trụ ABC.A’B’C’ theo a.
Câu 7: Tính các tích phân sau:
a)
∫
+++
5
0
1346 xx
dx
b)
∫
+++
22
3
2
11 xx
dx
Câu 8: Có bao nhiêu cách sắp xếp chỗ ngồi vào 1 bàn tròn có 10 ghế cho 6 chàng trai và
4 cô gái? Biết rằng bất kỳ cô gái nào đều không ngồi cạnh nhau.
Câu 9: Cho 3 số dương x,y,z. Tìm GTNN của biểu thức
yxzxzyzyx
zyxA
2
1
2
1
2
1
++
+
++
+
++
+++=
ĐỀ 7
Câu 1: Cho hàm số
43
23
−+−=
xxy
(C)
1) Khảo sát hàm số
2) Dùng (C), biện luận theo tham số m, số nghiệm của phương trình
2323
33 mmxx
−=−
3) Tìm cặp điểm trên (C) đối xứng qua điểm I(0;-1)
Câu 2: Giải phương trình:
1444
7325623
222
+=+
+++++− xxxxxx
Câu 3: Cho
xxxxxf
222
sincossin1)2cos1()(
−+−=
1) Tìm GTLN,GTNN của f(x)
2) Cho
xxxxg
8
sin82cos44cos3)(
−−+=
. Tìm các giá trị của tham số m sao cho
phương trình g(x)=f(x)+m có nghiệm
Câu 4: Trong mặt phẳng Oxy, cho hyperbol (H):
1
916
22
=−
yx
và hai điểm B(1;2); C(3;6).
Chứng tỏ rằng đừơng thẳng BC và hyperbol (H) không có điểm chung và tìm các điểm
M thuộc (H) sao cho tam giác MBC có diện tích nhỏ nhất
Câu 5: Trong không gian Oxyz, cho 3 điểm A(1;0;1); B(0;2;3) và C(3;3;7). Tìm phương
trình đừơng phân giác trong AD của góc A trong tam giác ABC
Câu 6: Cho hình lăng trụ ABC.A’B’C’ có đáy ABC là tam giác đều cạnh a, hình chiếu
vuông góc của A’ lên mặt phẳng (ABC) trùng với tâm O của tam giác ABC. Một mặt
phẳng (P) chứa BC và vuông góc với AA’, cắt hình lăng trụ ABC.A’B’C’ theo 1 thiết
diện có diện tích bằng
8
3
2
a
. Tính thể tích hình lăng trụ ABC.A’B’C’.
Câu 7: Tính:
a)
∫
+=
+
1
0
3
)32.(
2
dxxeI
xx
b)
∫
+++=
6
0
2
)23(42 dxxxxJ
Câu 8: Cho 1 đa giác lồi có n đỉnh, biết rằng bất kỳ 2 đừơng chéo nào của đa giác cũng
đều cắt nhau và bất kỳ 3 đừơng chéo nào của đa giác cũng không đồng quy. Tìm n sao
cho số giao điểm của các đừơng chéo của đa giác gấp 3 lần số tam giác được tạo thành
từ n đỉnh của đa giác.
Câu 9: Cho tam giác ABC thoả mãn điều kiện:
)cos(cos22sin42cos)cos(cos7 CBAACBA
+≤−−−−
Tính 3 góc của tam giác.
ĐỀ 8
Câu 1: Cho hàm số
1
1
22
+
−+=
x
xy
(C)
1) Khảo sát hàm số. Chứng minh (C) có 1 tâm đối xứng
2) M là một điểm bất kỳ thuộc (C) và (D) là tiếp tuyến của (C) tại M, (D) cắt hai
tiệm cận của (C) tại A và B. Chứng minh:
a. M là trung điểm AB
b. Tam giác IAB có diện tích không đổi (I là giao điểm của 2 tiệm cận)
Câu 2: Cho phương trình:
mxxmxxx
+++−+−=++−
)44(1644
22422
(1)
1) Giải phương trình (1) khi m=0
2) Tìm các giá trị của tham số m để 1 có nghiệm.
Câu 3: Giải hệ phương trình:
+=+
+−=+
yx
gygxtgxy
xyy
sin.2sin
1
cot)cot(sin
)2sin21)(
2
1
(cos
2
1
2cos
Câu 4: Trong mặt phẳng với hệ toạ độ Oxy, cho parabol (P):
xy 4
2
=
. Tìm hai điểm A,B
thuộc (P) sao cho tam giác OAB là tam giác đều.
Câu 5: Trong không gian Oxyz, cho hình hộp ABCD.A’B’C’D’ có các đỉnh A(2;1;0);
C(4;3;0); B’(6;2;4); D’(2;4;4). Tìm toạ độ các đỉnh còn lại của hình hộp đã cho
Chứng minh rằng các mặt phẳng (BA’C’) và (D’AC) song song và tính khoảng cách
giữa 2 mặt phẳng này.
Câu 6: Cho tứ diện ABCD có AB vuông góc với CD, đoạn nối 2 trung điểm I,J của AB,
CD là đoạn vuông góc chung của chúng. Xác định tâm và bán kính mặt cầu ngoại tiếp tứ
diện ABCD biết AB=CD=IJ=a
Câu 7: Cho parabol (P):
2
xy
=
. (D) là tiếp tuyến của (P) tại điểm có hoành độ x=2. Gọi
(H) là hình phẳng giới hạn bởi (P),(D) và trục hoành. Tính thể tích vật thể tròn xoay sinh
ra khi (H) quay quanh trục Ox, trục Oy
Câu 8: Tính theo n (
Ν∈
n
):
∑
=
++++++==
n
k
nn
n
kk
nnnn
kk
nn
CCCCCCS
0
2210
6....6....6.6.6
Câu 9: Giải hệ:
=+++
=+++
=+++
03322
03322
03322
23
23
23
xxz
zzy
yyx
ĐỀ 9
Câu 1: Cho hàm số
43
23
+−=
xxy
(C)
1) Khảo sát hàm số
2) Gọi (D) là đừơng thẳng qua điểm A(3;4) và có hệ số góc là m. Định m để (D)
cắt (C) tại 3 điểm phân biệt A,M,N sao cho 2 tiếp tuyến của (C) tại M và N
vuông góc với nhau.
3) Phương trình:
223
2343 xxxx
−+=+−
có bao nhiêu nghiệm ?
Câu 2: Cho hệ phương trình
=+−+
=−−
4)(2
)2)(2(
22
yxyx
myxxy
1) Giải hệ khi m=4
2) Tìm các giá trị của tham số m để hệ có nghiệm
Câu 3: Giải các phương trình sau:
1)
xxx cos2sinsin
3
=−
2)
xxtgxxx cos12sin.sin
2
1
sin2
22
+−−=−
Câu 4: Trong mặt phẳng Oxy, cho đường tròn (C):
4)4()4(
22
=−+−
yx
và điểm A(0;3)
1) Tìm phương trình đừơng thẳng (D) qua A và cắt đừơng tròn (C) theo 1 dây
cung có độ dài bằng
32
2) Gọi M
1
,M
2
là hai tiếp điểm của (C) với hai tiếp tuyến của (C) vẽ từ gốc tọa độ
O. Tính diện tích hình tròn ngoại tiếp tam giác OM
1
M
2
Câu 5: Trong không gian Oxyz, cho 2 đừơng thẳng:
3
1
2
4
2
:)(
1
+
=−=
−
z
y
x
D
;
13
1
2
3
:)(
2
zyx
D
=
+
=
−
Tìm phương trình đừơng vuông góc chung của (D
1
) và (D
2
)
Câu 6: Cho tam giác đều ABC cạnh a. Trên 2 tia Bx và Cy cùng chiều và cùng vuông
góc mặt phẳng (ABC) lần lượt lấy 2 điểm M,N sao cho BM=a; CN=2a. Tính khảong
cách từ C đến mặt phẳng (BMN).
Câu 7: Chứng minh:
10
31242
1
)23(2
3
2
5
2
−
<
−
<−
∫
x
x
Câu 8: Cho n là số tự nhiên,
2
≥
n
. Hãy tính:
nn
n
kk
nn
n
k
n
kk
n
CnCkCCCkS 2....2....2.22..12.
22222
1
122
+++++==
∑
=
Câu 9: Giải phương trình:
82315
22
++−=+
xxx