Tải bản đầy đủ (.doc) (4 trang)

BỘ DE ON THI VÀO DHCD DE SO 5,6,7,8,9,10.doc

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (93.05 KB, 4 trang )

BỘ GD&ĐT BỘ ĐỀ ÔN THI VÀO ĐẠI HỌC, CAO ĐĂNG
–––––––––– MÔN: TOÁN
ĐỀ 5
Câu 1: Cho hàm số y=
mx
x
xf

+
=
2
)(
(m là tham số)
1) Tìm các giá trị của tham số m sao cho hàm số nghịch biến trong (-4;5)
2) Khảo sát hàm số khi m=1
3) Gọi (D) là đừơng thẳng A(1;0) và có hệ số góc k. Tìm k để (D) cắt (C) tại 2
điểm M,N thuộc 2 nhánh khác nhau của (C) sao cho
ANAM 2
−=
Câu 2: Giải phương trình :
x
x
x
x
27log
9log
3log
log
81
27
9


3
=
Câu 3: Giải phương trình:
xxx
xg
x
xtg
2sin
16
sin
4
cos
cot
sin
422
4
2
4
=++
Câu 4: Cho
24269
34
)(
23
−+−
+
=
xxx
x
xf

1)Tìm A,B,C sao cho
432
)(

+

+

=
x
C
x
B
x
A
xf
2)Tìm họ nguyên hàm của
)(xf
Câu 5: Cho hyperbol (H):
1
916
22
=−
yx
có hai tiêu điểm F
1
,F
2
. Tìm điểm M thuộc (H) sao
cho

°=

120
21
MFF
và tính diện tích tam giác F
1
MF
2

C âu 6: Cho 2 mặt phẳng (P):x+y-5=0 và (Q):y+z+3=0 và điểm A(1;1;0). Tìm phương
trình đừơng thẳng (D) vuông góc với giao tuyến của (P) và (Q), cắt (P) và (Q) tại M,N
sao cho A là trung điểm M,N
Câu 7: Cho hình chóp S.ABCD đáy là ABCD là hình vuông, cạnh a, tâm O. SA vuông
góc với mặt phẳng (ABCD), nhị diện (B,SC,D) có số đo bằng 120
0
. Tính SA
Câu 8: Tìm hệ số của số hạng chứa x
8
trong khai triển Newton của
)0()1
1
()(
124
≠−+=
x
x
xxf
Câu 9: Cho
]1;1[

−∈
x
. Tìm GTLN của
xxxxxf
−+−+=
2242)(
325
ĐỀ 6
Câu 1: Cho hàm số :
x
x
y

+
=
1
42
(C)
1)Khảo sát hàm số
2) Tìm các giá trị của tham số m để parabol (P):
mxxy
++−=
6
2
tiếp xúc với (C)
3) Gọi (D) là đừơng thẳng qua A(1;1) có hệ số góc là k.Tìm giá trị của k sao cho
(D) cắt (C) tại hai điểm M,N và
103
=
MN

Câu 2: Cho phương trình:
2
12
23
223
2
12
2
12
log)1738254(log45log23log mxxxxxxx
−−+−
+−+−=+−−+−
(m là tham số khác 0)
1) Giải phương trình khi m=1
2) Tìm các giá trị của tham số m sao cho phương trình đã cho có nghiệm.
Câu 3: Giải phương trình sau:
xx
xgxxtgx
sin
3
cos
2
5)cos(cot3)sin(2
+=+−+−
Câu 4: Trong mặt phẳng Oxy, cho parabol (P):
xy
=
2
và hai điểm A(-2;-2);B(1;-5). Tìm
trên (P) hai điểm M,N sao cho tứ giác ABMN là hình vuông.

Câu 5: Trong không gian Oxyz, tìm phương trình mặt cầu (S) qua 3 điểm A(0;1;2);
B(1;2;4);C(-1;0;6) và tiếp xúc mặt phẳng (P): x+y+z+2=0
Câu 6: Cho lăng trụ tam giác đều ABC.A’B’C’ có cạnh đáy bằng a, khoảng cách từ tâm
O của tam giác ABC đến mặt phẳng (A’BC) bằng
6
a
. Tính thể tích và diện tích toàn
phần của hình lăng trụ ABC.A’B’C’ theo a.
Câu 7: Tính các tích phân sau:
a)

+++
5
0
1346 xx
dx
b)

+++
22
3
2
11 xx
dx
Câu 8: Có bao nhiêu cách sắp xếp chỗ ngồi vào 1 bàn tròn có 10 ghế cho 6 chàng trai và
4 cô gái? Biết rằng bất kỳ cô gái nào đều không ngồi cạnh nhau.
Câu 9: Cho 3 số dương x,y,z. Tìm GTNN của biểu thức
yxzxzyzyx
zyxA
2

1
2
1
2
1
++
+
++
+
++
+++=
ĐỀ 7
Câu 1: Cho hàm số
43
23
−+−=
xxy
(C)
1) Khảo sát hàm số
2) Dùng (C), biện luận theo tham số m, số nghiệm của phương trình
2323
33 mmxx
−=−
3) Tìm cặp điểm trên (C) đối xứng qua điểm I(0;-1)
Câu 2: Giải phương trình:
1444
7325623
222
+=+
+++++− xxxxxx

Câu 3: Cho
xxxxxf
222
sincossin1)2cos1()(
−+−=
1) Tìm GTLN,GTNN của f(x)
2) Cho
xxxxg
8
sin82cos44cos3)(
−−+=
. Tìm các giá trị của tham số m sao cho
phương trình g(x)=f(x)+m có nghiệm
Câu 4: Trong mặt phẳng Oxy, cho hyperbol (H):
1
916
22
=−
yx
và hai điểm B(1;2); C(3;6).
Chứng tỏ rằng đừơng thẳng BC và hyperbol (H) không có điểm chung và tìm các điểm
M thuộc (H) sao cho tam giác MBC có diện tích nhỏ nhất
Câu 5: Trong không gian Oxyz, cho 3 điểm A(1;0;1); B(0;2;3) và C(3;3;7). Tìm phương
trình đừơng phân giác trong AD của góc A trong tam giác ABC
Câu 6: Cho hình lăng trụ ABC.A’B’C’ có đáy ABC là tam giác đều cạnh a, hình chiếu
vuông góc của A’ lên mặt phẳng (ABC) trùng với tâm O của tam giác ABC. Một mặt
phẳng (P) chứa BC và vuông góc với AA’, cắt hình lăng trụ ABC.A’B’C’ theo 1 thiết
diện có diện tích bằng
8
3

2
a
. Tính thể tích hình lăng trụ ABC.A’B’C’.
Câu 7: Tính:
a)

+=
+
1
0
3
)32.(
2
dxxeI
xx
b)

+++=
6
0
2
)23(42 dxxxxJ
Câu 8: Cho 1 đa giác lồi có n đỉnh, biết rằng bất kỳ 2 đừơng chéo nào của đa giác cũng
đều cắt nhau và bất kỳ 3 đừơng chéo nào của đa giác cũng không đồng quy. Tìm n sao
cho số giao điểm của các đừơng chéo của đa giác gấp 3 lần số tam giác được tạo thành
từ n đỉnh của đa giác.
Câu 9: Cho tam giác ABC thoả mãn điều kiện:
)cos(cos22sin42cos)cos(cos7 CBAACBA
+≤−−−−
Tính 3 góc của tam giác.

ĐỀ 8
Câu 1: Cho hàm số
1
1
22
+
−+=
x
xy
(C)
1) Khảo sát hàm số. Chứng minh (C) có 1 tâm đối xứng
2) M là một điểm bất kỳ thuộc (C) và (D) là tiếp tuyến của (C) tại M, (D) cắt hai
tiệm cận của (C) tại A và B. Chứng minh:
a. M là trung điểm AB
b. Tam giác IAB có diện tích không đổi (I là giao điểm của 2 tiệm cận)
Câu 2: Cho phương trình:
mxxmxxx
+++−+−=++−
)44(1644
22422
(1)
1) Giải phương trình (1) khi m=0
2) Tìm các giá trị của tham số m để 1 có nghiệm.
Câu 3: Giải hệ phương trình:








+=+
+−=+
yx
gygxtgxy
xyy
sin.2sin
1
cot)cot(sin
)2sin21)(
2
1
(cos
2
1
2cos
Câu 4: Trong mặt phẳng với hệ toạ độ Oxy, cho parabol (P):
xy 4
2
=
. Tìm hai điểm A,B
thuộc (P) sao cho tam giác OAB là tam giác đều.
Câu 5: Trong không gian Oxyz, cho hình hộp ABCD.A’B’C’D’ có các đỉnh A(2;1;0);
C(4;3;0); B’(6;2;4); D’(2;4;4). Tìm toạ độ các đỉnh còn lại của hình hộp đã cho
Chứng minh rằng các mặt phẳng (BA’C’) và (D’AC) song song và tính khoảng cách
giữa 2 mặt phẳng này.
Câu 6: Cho tứ diện ABCD có AB vuông góc với CD, đoạn nối 2 trung điểm I,J của AB,
CD là đoạn vuông góc chung của chúng. Xác định tâm và bán kính mặt cầu ngoại tiếp tứ
diện ABCD biết AB=CD=IJ=a
Câu 7: Cho parabol (P):

2
xy
=
. (D) là tiếp tuyến của (P) tại điểm có hoành độ x=2. Gọi
(H) là hình phẳng giới hạn bởi (P),(D) và trục hoành. Tính thể tích vật thể tròn xoay sinh
ra khi (H) quay quanh trục Ox, trục Oy
Câu 8: Tính theo n (
Ν∈
n
):

=
++++++==
n
k
nn
n
kk
nnnn
kk
nn
CCCCCCS
0
2210
6....6....6.6.6
Câu 9: Giải hệ:






=+++
=+++
=+++
03322
03322
03322
23
23
23
xxz
zzy
yyx
ĐỀ 9
Câu 1: Cho hàm số
43
23
+−=
xxy
(C)
1) Khảo sát hàm số
2) Gọi (D) là đừơng thẳng qua điểm A(3;4) và có hệ số góc là m. Định m để (D)
cắt (C) tại 3 điểm phân biệt A,M,N sao cho 2 tiếp tuyến của (C) tại M và N
vuông góc với nhau.
3) Phương trình:
223
2343 xxxx
−+=+−
có bao nhiêu nghiệm ?
Câu 2: Cho hệ phương trình




=+−+
=−−
4)(2
)2)(2(
22
yxyx
myxxy
1) Giải hệ khi m=4
2) Tìm các giá trị của tham số m để hệ có nghiệm
Câu 3: Giải các phương trình sau:
1)
xxx cos2sinsin
3
=−
2)
xxtgxxx cos12sin.sin
2
1
sin2
22
+−−=−
Câu 4: Trong mặt phẳng Oxy, cho đường tròn (C):
4)4()4(
22
=−+−
yx
và điểm A(0;3)

1) Tìm phương trình đừơng thẳng (D) qua A và cắt đừơng tròn (C) theo 1 dây
cung có độ dài bằng
32
2) Gọi M
1
,M
2
là hai tiếp điểm của (C) với hai tiếp tuyến của (C) vẽ từ gốc tọa độ
O. Tính diện tích hình tròn ngoại tiếp tam giác OM
1
M
2
Câu 5: Trong không gian Oxyz, cho 2 đừơng thẳng:
3
1
2
4
2
:)(
1
+
=−=

z
y
x
D
;
13
1

2
3
:)(
2
zyx
D
=
+
=

Tìm phương trình đừơng vuông góc chung của (D
1
) và (D
2
)
Câu 6: Cho tam giác đều ABC cạnh a. Trên 2 tia Bx và Cy cùng chiều và cùng vuông
góc mặt phẳng (ABC) lần lượt lấy 2 điểm M,N sao cho BM=a; CN=2a. Tính khảong
cách từ C đến mặt phẳng (BMN).
Câu 7: Chứng minh:
10
31242
1
)23(2
3
2
5
2

<


<−

x
x
Câu 8: Cho n là số tự nhiên,
2

n
. Hãy tính:
nn
n
kk
nn
n
k
n
kk
n
CnCkCCCkS 2....2....2.22..12.
22222
1
122
+++++==

=
Câu 9: Giải phương trình:
82315
22
++−=+
xxx

×