Tải bản đầy đủ (.doc) (44 trang)

Tuyển tập 30 đề thi học sinh giỏi toán 7

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (292.33 KB, 44 trang )

Đề số 1:
đề thi học sinh giỏi huyện
Môn Toán Lớp 7
(Thời gian làm bài 120 phút)
Bài 1. Tìm giá trị n nguyên dơng:
a)
1
.16 2
8
n n
=
; b) 27 < 3
n
< 243
Bài 2. Thực hiện phép tính:

1 1 1 1 1 3 5 7 ... 49
( ... )
4.9 9.14 14.19 44.49 89

+ + + +
Bài 3. a) Tìm x biết:
2x3x2
+=+
b) Tìm giá trị nhỏ nhất của A =
x20072006x
+
Khi x thay đổi
Bài 4. Hiện nay hai kim đồng hồ chỉ 10 giờ. Sau ít nhất bao lâu thì 2 kim đồng hồ nằm
đối diện nhau trên một đờng thẳng.
Bài 5. Cho tam giác vuông ABC ( A = 1v), đờng cao AH, trung tuyến AM. Trên tia đối


tia MA lấy điểm D sao cho DM = MA. Trên tia đối tia CD lấy điểm I sao cho CI = CA,
qua I vẽ đờng thẳng song song với AC cắt đờng thẳng AH tại E. Chứng minh: AE = BC
Đề số 2:
đề thi học sinh giỏi huyện
Môn Toán Lớp 7
(Thời gian làm bài 120 phút)
Bi 1:(4 im)
a) Thc hin phộp tớnh:
( )
( )
12 5 6 2 10 3 5 2
6 3
9 3
2 4 5
2 .3 4 .9 5 .7 25 .49
A
125.7 5 .14
2 .3 8 .3

=
+
+
b) Chng minh rng : Vi mi s nguyờn dng n thỡ :
2 2
3 2 3 2
n n n n+ +
+
chia ht cho 10
Bi 2:(4 im)
Tỡm x bit:

a.
( )
1 4 2
3,2
3 5 5
x
+ = +
b.
( ) ( )
1 11
7 7 0
x x
x x
+ +
=
Bi 3: (4 im)
a) S A c chia thnh 3 s t l theo
2 3 1
: :
5 4 6
. Bit rng tng cỏc bỡnh phng ca ba s
ú bng 24309. Tỡm s A.
b) Cho
a c
c b
=
. Chng minh rng:
2 2
2 2
a c a

b c b
+
=
+
Bi 4: (4 im)
Cho tam giỏc ABC, M l trung im ca BC. Trờn tia i ca ca tia MA ly im E sao cho
ME = MA. Chng minh rng:
a) AC = EB v AC // BE
b) Gi I l mt im trờn AC ; K l mt im trờn EB sao cho AI = EK . Chng minh ba
im I , M , K thng hng
c) T E k
EH BC

( )
H BC
. Bit
ã
HBE
= 50
o
;
ã
MEB
=25
o
.
Tớnh
ã
HEM
v

ã
BME
Bi 5: (4 im)
Cho tam giỏc ABC cõn ti A cú
à
0
A 20=
, v tam giỏc u DBC (D nm trong tam giỏc ABC).
Tia phõn giỏc ca gúc ABD ct AC ti M. Chng minh:
a) Tia AD l phõn giỏc ca gúc BAC
b) AM = BC
Ht
Đáp án đề 1toán 7
Bài 1. Tìm giá trị n nguyên dơng: (4 điểm mỗi câu 2 điểm)
a)
1
.16 2
8
n n
=
; => 2
4n-3
= 2
n
=> 4n 3 = n => n = 1
b) 27 < 3
n
< 243 => 3
3
< 3

n
< 3
5
=> n = 4
Bài 2. Thực hiện phép tính: (4 điểm)

1 1 1 1 1 3 5 7 ... 49
( ... )
4.9 9.14 14.19 44.49 89

+ + + +
=
1 1 1 1 1 1 1 1 1 2 (1 3 5 7 ... 49)
( ... ).
5 4 9 9 14 14 19 44 49 12
+ + + + +
+ + + +
=
1 1 1 2 (12.50 25) 5.9.7.89 9
( ).
5 4 49 89 5.4.7.7.89 28
+
= =
Bài 3. (4 điểm mỗi câu 2 điểm)
a) Tìm x biết:
2x3x2
+=+

Ta có: x + 2


0 => x

- 2.
+ Nếu x

-
2
3
thì
2x3x2
+=+
=> 2x + 3 = x + 2 => x = - 1 (Thoả mãn)
+ Nếu - 2

x < -
2
3
Thì
2x3x2
+=+
=> - 2x - 3 = x + 2 => x = -
3
5
(Thoả mãn)
+ Nếu - 2 > x Không có giá trị của x thoả mãn
b) Tìm giá trị nhỏ nhất của A =
x20072006x
+
Khi x thay đổi
+ Nếu x < 2006 thì: A = - x + 2006 + 2007 x = - 2x + 4013

Khi đó: - x > -2006 => - 2x + 4013 > 4012 + 4013 = 1 => A > 1
+ Nếu 2006

x

2007 thì: A = x 2006 + 2007 x = 1
+ Nếu x > 2007 thì A = x - 2006 - 2007 + x = 2x 4013
Do x > 2007 => 2x 4013 > 4014 4013 = 1 => A > 1.
Vậy A đạt giá trị nhỏ nhất là 1 khi 2006

x

2007
Bài 4. Hiện nay hai kim đồng hồ chỉ 10 giờ. Sau ít nhất bao lâu thì 2 kim đồng hồ nằm
đối diện nhau trên một đờng thẳng. (4 điểm mỗi)
Gọi x, y là số vòng quay của kim phút và kim giờ khi 10giờ đến lúc 2 kim đối nhau trên
một đờng thẳng, ta có:
x y =
3
1
(ứng với từ số 12 đến số 4 trên đông hồ)
và x : y = 12 (Do kim phút quay nhanh gấp 12 lần kim giờ)
Do đó:
33
1
11:
3
1
11
yx

1
y
12
x
1
12
y
x
==

===>=
=> x =
11
4
x)vũng(
33
12
==>
(giờ)
Vậy thời gian ít nhất để 2 kim đồng hồ từ khi 10 giờ đến lúc nằm đối diện nhau trên một
đờng thẳng là
11
4
giờ
Bài 5. Cho tam giác vuông ABC ( A = 1v), đờng cao AH, trung tuyến AM. Trên tia đối
tia MA lấy điểm D sao cho DM = MA. Trên tia đối tia CD lấy điểm I sao cho CI = CA,
qua I vẽ đờng thẳng song song với AC cắt đờng thẳng AH tại E. Chứng minh: AE = BC
(4 điểm mỗi)
Đờng thẳng AB cắt EI tại F



ABM =

DCM vì:
AM = DM (gt), MB = MC (gt),

ã
AMB
= DMC (đđ) => BAM = CDM
=>FB // ID => ID

AC
Và FAI = CIA (so le trong) (1)
IE // AC (gt) => FIA = CAI (so le trong) (2)
Từ (1) và (2) =>

CAI =

FIA (AI chung)
=> IC = AC = AF (3)
và E FA = 1v (4)
Mặt khác EAF = BAH (đđ),
BAH = ACB ( cùng phụ ABC)
=> EAF = ACB (5)
Từ (3), (4) và (5) =>

AFE =

CAB
=>AE = BC

Đề số 2:
đề thi học sinh giỏi huyện
Môn Toán Lớp 7
D
B
A
H
C
I
F
E
M
(Thêi gian lµm bµi 120 phót)
Bài 1:(4 điểm)
a) Thực hiện phép tính:
( )
( )
12 5 6 2 10 3 5 2
6 3
9 3
2 4 5
2 .3 4 .9 5 .7 25 .49
A
125.7 5 .14
2 .3 8 .3
− −
= −
+
+
b) Chứng minh rằng : Với mọi số nguyên dương n thì :

2 2
3 2 3 2
n n n n+ +
− + −
chia hết cho 10
Bài 2:(4 điểm)
Tìm x biết:
a.
( )
1 4 2
3,2
3 5 5
x
− + = − +
b.
( ) ( )
1 11
7 7 0
x x
x x
+ +
− − − =
Bài 3: (4 điểm)
c) Số A được chia thành 3 số tỉ lệ theo
2 3 1
: :
5 4 6
. Biết rằng tổng các bình phương của ba số
đó bằng 24309. Tìm số A.
d) Cho

a c
c b
=
. Chứng minh rằng:
2 2
2 2
a c a
b c b
+
=
+
Bài 4: (4 điểm)
Cho tam giác ABC, M là trung điểm của BC. Trên tia đối của của tia MA lấy điểm E sao cho
ME = MA. Chứng minh rằng:
a) AC = EB và AC // BE
b) Gọi I là một điểm trên AC ; K là một điểm trên EB sao cho AI = EK . Chứng minh ba
điểm I , M , K thẳng hàng
c) Từ E kẻ
EH BC⊥

( )
H BC∈
. Biết
·
HBE
= 50
o
;
·
MEB

=25
o
.
Tính
·
HEM

·
BME
Bài 5: (4 điểm)
Cho tam giác ABC cân tại A có
µ
0
A 20=
, vẽ tam giác đều DBC (D nằm trong tam giác ABC).
Tia phân giác của góc ABD cắt AC tại M. Chứng minh:
c) Tia AD là phân giác của góc BAC
d) AM = BC
……………………………… Hết ………………………………
§¸p ¸n ®Ò 2 to¸n 7

Bài 1:(4 điểm):
a) (2 điểm)
( )
( )
( )
( )
( )
( )
( )

10
12 5 6 2 10 3 5 2 12 5 12 4 10 3 4
6 3
12 6 12 5 9 3 9 3 3
9 3
2 4 5
12 4 10 3
12 5
9 3 3
10 3
12 4
12 5 9 3
2 .3 4 .9 5 .7 25 .49 2 .3 2 .3 5 .7 5 .7
2 .3 2 .3 5 .7 5 .2 .7
125.7 5 .14
2 .3 8 .3
2 .3 . 3 1 5 .7 . 1 7
2 .3 . 3 1
5 .7 . 1 2
5 .7 . 6
2 .3 .2
2 .3 .4 5 .7 .9
1 10 7
6 3 2
A
− − − −
= − = −
+ +
+
+

− −
= −
+
+

= −

= − =
b) (2 điểm)

2 2
3 2 3 2
n n n n+ +
− + −
=
2 2
3 3 2 2
n n n n+ +
+ − −
=
2 2
3 (3 1) 2 (2 1)
n n
+ − +
=
1
3 10 2 5 3 10 2 10
n n n n−
× − × = × − ×
= 10( 3

n
-2
n
)
Vậy
2 2
3 2 3 2
n n n n+ +
− + −
M 10 với mọi n là số nguyên dương.
Bài 2:(4 điểm)
a) (2 điểm)
( )
1
2
3
1
2
3
1 7
2
3 3
1 5
2
3 3
1 4 2 1 4 16 2
3,2
3 5 5 3 5 5 5
1 4 14
3 5 5

1
2
3
x
x
x
x
x x
x
x
− =
− =−
= + =

=− + =

− + = − + ⇔ − + = +
⇔ − + =


⇔ − = ⇔










b) (2 điểm)

( ) ( )
( ) ( )
1 11
1 10
7 7 0
7 1 7 0
x x
x
x x
x x
+ +
+
− − − =
 
⇔ − − − =
 

( )
( )
( )
1 10
1
10
7 0
1 ( 7) 0
7 0 7
( 7) 1 8
7 1 7 0

10
x
x
x
x
x x
x x
x x
+
 
 ÷
 
+
− =
− − =
− = ⇒ =
− = ⇒ =
 
⇔ − − − =
 












Bài 3: (4 điểm)
a) (2,5 điểm)
Gọi a, b, c là ba số được chia ra từ số A.
Theo đề bài ta có: a : b : c =
2 3 1
: :
5 4 6
(1)
và a
2
+b
2
+c
2
= 24309 (2)
Từ (1)

2 3 1
5 4 6
a b c
= =
= k

2 3
; ;
5 4 6
k
a k b k c= = =
Do đó (2)


2
4 9 1
( ) 24309
25 16 36
k + + =

k = 180 và k =
180

+ Với k =180, ta được: a = 72; b = 135; c = 30.
Khi đó ta có số A = a + b + c = 237.
+ Với k =
180

, ta được: a =
72

; b =
135

; c =
30

Khi đó ta có só A =
72

+(
135


) + (
30

) =
237

.
b) (1,5 điểm)
Từ
a c
c b
=
suy ra
2
.c a b=
khi đó
2 2 2
2 2 2
.
.
a c a a b
b c b a b
+ +
=
+ +

=
( )
( )
a a b a

b a b b
+
=
+
Bài 4: (4 điểm)
a/ (1điểm) Xét
AMC


EMB∆
có :
AM = EM (gt )
·
AMC
=
·
EMB
(đối đỉnh )
BM = MC (gt )
Nên :
AMC

=
EMB∆
(c.g.c ) 0,5
điểm

AC = EB

AMC∆

=
EMB∆

·
MAC⇒
=
·
MEB
(2 góc có vị trí so le trong được tạo bởi đường thẳng AC và EB cắt đường thẳng AE )
Suy ra AC // BE . 0,5 điểm
b/ (1 điểm )
Xét
AMI∆

EMK∆
có :
AM = EM (gt )
·
MAI
=
·
MEK
( vì
AMC EMB∆ = ∆
)
AI = EK (gt )
Nên
AMI EMK∆ = ∆
( c.g.c )
Suy ra

·
AMI
=
·
EMK


·
AMI
+
·
IME
= 180
o
( tính chất hai góc kề bù )


·
EMK
+
·
IME
= 180
o


Ba điểm I;M;K thẳng hàng
c/ (1,5 điểm )
Trong tam giác vuông BHE (
µ

H
= 90
o
) có
·
HBE
= 50
o
·
HBE⇒
= 90
o
-
·
HBE
= 90
o
- 50
o
=40
o

·
HEM⇒
=
·
HEB
-
·
MEB

= 40
o
- 25
o
= 15
o

·
BME
là góc ngoài tại đỉnh M của
HEM∆
Nên
·
BME
=
·
HEM
+
·
MHE
= 15
o
+ 90
o
= 105
o
( định lý góc ngoài của tam giác )
Bài 5: (4 điểm)
a) Chứng minh


ADB =

ADC (c.c.c)
suy ra
·
·
DAB DAC=
Do đó
·
0 0
20 : 2 10DAB = =
b)

ABC cân tại A, mà
µ
0
20A =
(gt) nên
·
0 0 0
(180 20 ) : 2 80ABC = − =

ABC đều nên
·
0
60DBC =
K
H
E
M

B
A
C
I
20
0
M
A
B
C
D
Tia BD nằm giữa hai tia BA và BC suy ra
·
0 0 0
80 60 20ABD = − =
.
Tia BM là phân giác của góc ABD
nên
·
0
10ABM =
Xét tam giác ABM và BAD có:
AB cạnh chung ;
·
·
·
·
0 0
20 ; 10BAM ABD ABM DAB= = = =
Vậy:


ABM =

BAD (g.c.g)
suy ra AM = BD, mà BD = BC (gt) nên AM = BC
Đề số 3:
đề thi học sinh giỏi
Môn Toán Lớp 7
(Thời gian làm bài 120 phút)
Câu 1: Tìm tất cả các số nguyên a biết
a 4
Câu 2: Tìm phân số có tử là 7 biết nó lớn hơn
9
10

và nhỏ hơn
9
11

Câu 3. Cho 2 đa thức
P
( )
x
= x
2
+ 2mx + m
2

Q
( )

x
= x
2
+ (2m+1)x + m
2
Tìm m biết P (1) = Q (-1)
Câu 4: Tìm các cặp số (x; y) biết:
=
= =
x y
a / ; xy=84
3 7
1+3y 1+5y 1+7y
b/
12 5x 4x
Câu 5: Tìm giá trị nhỏ nhất hoặc lớn nhất của các biểu thức sau :
A =
1
+
x
+5
B =
3
15
2
2
+
+
x
x


Câu 6: Cho tam giác ABC có Â < 90
0
. Vẽ ra phía ngoài tam giác đó hai đoạn thẳng AD
vuông góc và bằng AB; AE vuông góc và bằng AC.
a. Chứng minh: DC = BE và DC

BE
b. Gọi N là trung điểm của DE. Trên tia đối của tia NA lấy M sao cho NA = NM.
Chứng minh: AB = ME và ABC = EMA
c. Chứng minh: MA

BC
Đáp án đề 3 toán 7
Câu 1: Tìm tất cả các số nguyên a biết
a 4
0


a 4
=>
a
= 0; 1; 2; 3 ; 4
*
a
= 0 => a = 0
*
a
= 1 => a = 1 hoặc a = - 1
*

a
= 2 => a = 2 hoặc a = - 2
*
a
= 3 => a = 3 hoặc a = - 3
*
a
= 4 => a = 4 hoặc a = - 4
Câu 2: Tìm phân số có tử là 7 biết nó lớn hơn
9
10

và nhỏ hơn
9
11

Gọi mẫu phân số cần tìm là x
Ta có:
9 7 9
10 11x

< <
=>
63 63 63
70 9 77x
< <

=> -77 < 9x < -70. Vì 9x
M
9 => 9x = -72

=> x = 8
Vậy phân số cần tìm là
7
8

Câu 3. Cho 2 đa thức
P
( )
x
= x
2
+ 2mx + m
2

Q
( )
x
= x
2
+ (2m+1)x + m
2
Tìm m biết P (1) = Q (-1)
P(1) = 1
2
+ 2m.1 + m
2
= m
2
+ 2m + 1
Q(-1) = 1 2m 1 +m

2
= m
2
2m
Để P(1) = Q(-1) thì m
2
+ 2m + 1 = m
2
2m

4m = -1

m = -1/4
Câu 4: Tìm các cặp số (x; y) biết:
=
x y
a / ; xy=84
3 7
=>
2 2
84
4
9 49 3.7 21
x y xy
= = = =
=> x
2
= 4.49 = 196 => x =

14

=> y
2
= 4.4 = 16 => x =

4
Do x,y cùng dấu nên:
x = 6; y = 14
x = -6; y = -14
= =
1+3y 1+5y 1+7y
b/
12 5x 4x
áp dụng tính chất dãy tỉ số bằng nhau ta có:
+ +
= = = = = =

1+3y 1+5y 1+7y 1 7y 1 5y 2y 1 5y 1 3y 2y
12 5x 4x 4x 5x x 5x 12 5x 12
=>
2 2
5 12
y y
x x
=

=> -x = 5x -12
=> x = 2. Thay x = 2 vào trên ta đợc:
1 3 2
12 2
y y

y
+
= =

=>1+ 3y = -12y
=> 1 = -15y
=> y =
1
15

Vậy x = 2, y =
1
15

thoả mãn đề bài
Câu 5: Tìm giá trị nhỏ nhất hoặc lớn nhất của các biểu thức sau :
A =
1
+
x
+5
Ta có :
1
+
x


0. Dấu = xảy ra

x= -1.



A

5.
Dấu = xảy ra

x= -1.
Vậy: Min A = 5

x= -1.
B =
3
15
2
2
+
+
x
x
=
( )
3
123
2
2
+
++
x
x

= 1 +
3
12
2
+
x
Ta có: x
2


0. Dấu = xảy ra

x = 0


x
2
+ 3

3 ( 2 vế dơng )

3
12
2
+
x



3

12



3
12
2
+
x


4

1+
3
12
2
+
x


1+ 4

B

5
Dấu = xảy ra

x = 0
Vậy : Max B = 5


x = 0.
Câu 6:
a/
Xét ADC và BAF ta có:
DA = BA(gt)
AE = AC (gt)
DAC = BAE ( cùng bằng 90
0
+ BAC )
=> DAC = BAE(c.g.c )
=> DC = BE
Xét AIE và TIC
I
1
= I
2
( đđ)
E
1
= C
1
( do DAC = BAE)
=> EAI = CTI
=> CTI = 90
0
=> DC

BE
b/ Ta có: MNE = AND (c.g.c)

=> D
1
= MEN, AD = ME
mà AD = AB ( gt)
=> AB = ME (đpcm) (1)
Vì D
1
= MEN => DA//ME => DAE + AEM = 180
0
( trong cùng phía )
mà BAC + DAE = 180
0
=> BAC = AEM ( 2 )
Ta lại có: AC = AE (gt) ( 3). Từ (1),(2) và (3) => ABC = EMA ( đpcm)
c/ Kéo dài MA cắt BC tại H. Từ E hạ EP

MH
Xét AHC và EPA có:
CAH = AEP ( do cïng phô víi gPAE )
AE = CA ( gt)
PAE = HCA ( do ABC = EMA c©u b)
=> AHC = EPA
=> EPA = AHC
=> AHC = 90
0
=> MA

BC (®pcm)
§Ò sè 4:
đề thi học sinh giỏi

(Thời gian làm bài 120 phút)
Câu 1 ( 2 điểm)
Thực hiện phép tính :
a-
)
1
3
1
(:1
3
1
.3
3
1
.6
2









+















b-
( )
32
2003
23
12
5
.
5
2
1.
4
3
.
3
2




























Câu 2 ( 2 điểm)
a- Tìm số nguyên a để
1
3
2
+
++

a
aa
là số nguyên
b- Tìm số nguyên x,y sao cho x-2xy+y=0
Câu 3 ( 2 điểm)
a- Chứng minh rằng nếu a+c=2b và 2bd = c (b+d) thì
d
c
b
a
=
với b,d
khác 0
b- Cần bao nhiêu số hạng của tổng S = 1+2+3+ để đ ợc một số có ba chữ số
giống nhau .
Câu 4 ( 3 điểm)
Cho tam giác ABC có góc B bằng 45
0
, góc C bằng 120
0
. Trên tia đối của tia CB lấy
điểm D sao cho CD=2CB . Tính góc ADE
Câu 5 ( 1điểm)
Tìm mọi số nguyên tố thoả mãn : x
2
-2y
2
=1
Đáp án đề 4
Câu Hớng dẫn chấm Điểm

1.a Thực hiện theo từng bớc đúng kết quả -2 cho điểm tối đa 1Điểm
1.b Thực hiện theo từng bớc đúng kết quả 14,4 cho điểm tối đa 1Điểm
2.a
Ta có :
1
3
2
+
++
a
aa
=
1
3
1
3)1(
+
+=
+
++
a
a
a
aa
vì a là số nguyên nên
1
3
2
+
++

a
aa
là số nguyên khi
1
3
+
a
là số
nguyên hay a+1 là ớc của 3 do đó ta có bảng sau :
a+1 -3 -1 1 3
a -4 -2 0 2
Vậy với a
{ }
2,0,2,4

thì
1
3
2
+
++
a
aa
là số nguyên
0,25
0,25
0,25
0,25
2.b Từ : x-2xy+y=0
Hay (1-2y)(2x-1) = -1

Vì x,y là các số nguyên nên (1-2y)và (2x-1) là các số nguyên
do đó ta có các trờng hợp sau :



=
=




=
=
0
0
112
121
y
x
x
y
Hoặc



=
=





=
=
1
1
112
121
y
x
x
y
Vậy có 2 cặp số x, y nh trên thoả mãn điều kiện đầu bài
0,25
0,25
0,25
0,25
3.a Vì a+c=2b nên từ 2bd = c (b+d) Ta có: (a+c)d=c(b+d)
Hay ad=bc Suy ra
d
c
b
a
=
( ĐPCM)
0,5
0,5
3.b Giả sử số có 3 chữ số là
aaa
=111.a ( a là chữ số khác 0)
Gọi số số hạng của tổng là n , ta có :

aa
nn
.37.3111
2
)1(
==
+
Hay n(n+1) =2.3.37.a
Vậy n(n+1) chia hết cho 37 , mà 37 là số nguyên tố và n+1<74
( Nếu n = 74 không thoả mãn )
Do đó n=37 hoặc n+1 = 37
Nếu n=37 thì n+1 = 38 lúc đó
703
2
)1(
=
+
nn
không thoả mãn
Nếu n+1=37 thì n = 36 lúc đó
666
2
)1(
=
+
nn
thoả mãn
Vậy số số hạng của tổng là 36
0,25
0,25

0,5
4
B C
D
H
A
Kẻ DH Vuông góc với AC vì ACD =60
0
do đó CDH = 30
0
Nên CH =
2
CD


CH = BC
Tam giác BCH cân tại C

CBH = 30
0


ABH = 15
0
Mà BAH = 15
0
nên tam giác AHB cân tại H
Do đó tam giác AHD vuông cân tại H Vậy ADB = 45
0
+30

0
=75
0
0,5
0,5
1,0
1,0
5 Từ : x
2
-2y
2
=1suy ra x
2
-1=2y
2
Nếu x chia hết cho 3 vì x nguyên tố nên x=3 lúc đó y= 2
nguyên tố thoả mãn
Nếu x không chia hết cho 3 thì x
2
-1 chia hết cho 3 do đó 2y
2
chia hết cho 3 Mà(2;3)=1 nên y chia hết cho 3 khi đó x
2
=19
không thoả mãn
Vậy cặp số (x,y) duy nhất tìm đợc thoả mãn điều kiện đầu bài
là (2;3)
0,25
0,25
0,25

0,25

×