Tải bản đầy đủ (.doc) (5 trang)

Chuyên đề số nguyên Tố

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (73.19 KB, 5 trang )

Chuyên đề: Số nguyên tố
Số nguyên tố
I. Kiến thức cần nhớ:
1. Dịnh nghĩa:
* Số nguyên tố là số tự nhiên lớn hơn 1, chỉ có hai ớc là 1 và chính nó.
* Hợp số là số tự nhiên lớn hơn 1, có nhiều hơn hai ớc.
2. Tính chất:
* Nếu số nguyên tố p chia hết cho số nguyên tố q thì p = q.
* Nếu tích abc chia hết cho số nguyên tố p thì ít nhất một thừa số của tích abc
chia hết cho số nguyên tố p.
* Nếu a và b không chia hết cho số nguyên tố p thì tích ab không chia hết cho số
nguyên tố p .
3. Cách nhận biết một số nguyên tố:
a) Chia số đó lần lợt cho các số nguyên tố đã biết từ nhỏ đến lớn.
- Nếu có một phép chia hết thì số đó không phải là số nguyên tố.
- Nếu chia cho đến lúc số thơng nhỏ hơn số chia mà các phép chia vẫn còn số d
thì ssó đó là số nguyên tố.
b) Một số có 2 ớc số lớn hơn 1 thì số đó không phải là số nguyên tố.
4. Phân tích một số ra thừa số nguyên tố:
* Phân tích một số tự nhiên lớn hơn 1 ra thừa số nguyên tố là viết số đó dới dạng
một tích các thừa số nguyên tố.
- Dạng phân tích ra thừa số nguyên tố của mỗi số nguyên tố là chính số đó.
- Mọi hợp số đều phân tích đợc ra thừa số nguyên tố.
. .....
ới , , à những số nguyên tố.
, , ..., N và , , ..., 1
A a b c
V a b c l

=


5. Số các ớc số và tổng các ớc số của một số:
+1 1 1
ả sử . .....
ới , , à những số nguyên tố.
, , ..., N và , , ..., 1
1. Số các ước số của A là: ( +1)( +1)...( +1).
a 1 1 1
2. Tổng các ước số của A là: . ...
1 1 1
Gi A a b c
V a b c l
b c
a b c

+ +
=




6. Số nguyên tố cùng nhau:
* Hai số nguyên tố cùng nhau là hai số có ƯCLN bằng 1.
Hai số a và b nguyên tố cùng nhau

ƯCLN(a, b) = 1.
Các số a, b, c nguyên tố cùng nhau

ƯCLN(a, b, c) = 1.
Các số a, b, c đôi một nguyên tố cùng nhau


ƯCLN(a, b) = ƯCLN(b, c) =
ƯCLN(c, a) =1.
II. Các ví dụ:
VD1: Ta biết rằng có 25 số nguyên tố nhỏ hơn 100. Tổng của 25 số nguyên tố là số
chẵn hay số lẻ.
HD:
Phạm Hữu Tuân Tr ờng THCS Chu Văn An - ĐT: 0978760769
1
Chuyên đề: Số nguyên tố
Trong 25 số nguyên tố nhỏ hơn 100 có chứa một số nguyên tố chẵn duy nhất là 2, còn
24 số nguyên tố còn lại là số lẻ. Do đó tổng của 25 số nguyên tố là số chẵn.
VD2: Tổng của 3 số nguyên tố bằng 1012. Tìm số nguyên tố nhỏ nhất trong ba số
nguyên tố đó.
HD:
Vì tổng của 3 số nguyên tố bằng 1012, nên trong 3 số nguyên tố đó tồn tại ít nhất
một số nguyên tố chẵn. Mà số nguyên tố chẵn duy nhất là 2 và là số nguyên tố nhỏ
nhất. Vậy số nguyên tố nhỏ nhất trong 3 số nguyên tố đó là 2.
VD3: Tổng của 2 số nguyên tố có thể bằng 2003 hay không? Vì sao?
HD:
Vì tổng của 2 số nguyên tố bằng 2003, nên trong 2 số nguyên tố đó tồn tại 1 số nguyên
tố chẵn. Mà số nguyên tố chẵn duy nhất là 2. Do đó số nguyên tố còn lại là 2001. Do
2001 chia hết cho 3 và 2001 > 3. Suy ra 2001 không phải là số nguyên tố.
VD4: Tìm số nguyên tố p, sao cho p + 2 và p + 4 cũng là các số nguyên tố.
HD:
Giả sử p là số nguyên tố.
- Nếu p = 2 thì p + 2 = 4 và p + 4 = 6 đều không phải là số nguyên tố.
- Nếu p

3 thì số nguyên tố p có 1 trong 3 dạng: 3k, 3k + 1, 3k + 2 với k


N*.
+) Nếu p = 3k

p = 3

p + 2 = 5 và p + 4 = 7 đều là các số nguyên tố.
+) Nếu p = 3k +1 thì p + 2 = 3k + 3 = 3(k + 1)

p + 2
M
3 và p + 2 > 3. Do đó
p + 2 là hợp số.
+) Nếu p = 3k + 2 thì p + 4 = 3k + 6 = 3(k + 2)

p + 4
M
3 và p + 4 > 3. Do đó
p + 4 là hợp số.
Vậy với p = 3 thì p + 2 và p + 4 cũng là các số nguyên tố.
VD5: Cho p và p + 4 là các số nguyên tố (p > 3). Chứng minh rằng p + 8 là hợp số.
HD:
Vì p là số nguyên tố và p > 3, nên số nguyên tố p có 1 trong 2 dạng: 3k + 1, 3k + 2 với
k

N*.
- Nếu p = 3k + 2 thì p + 4 = 3k + 6 = 3(k + 2)

p + 4
M
3 và p + 4 > 3. Do đó

p + 4 là hợp số ( Trái với đề bài p + 4 là số nguyên tố).
- Nếu p = 3k + 1 thì p + 8 = 3k + 9 = 3(k + 3)

p + 8
M
3 và p + 8 > 3. Do đó
p + 8 là hợp số.
Vậy số nguyên tố p có dạng: p = 3k + 1 thì p + 8 là hợp số.
VD6: Chứng minh rằng mọi số nguyên tố lớn hơn 2 đều có dạng 4n + 1 hoặc 4n 1.
HD:
Mỗi số tự nhiên n khi chia cho 4 có thể có 1 trong các số d: 0; 1; 2; 3. Do đó mọi số tự
nhiên n đều có thể viết đợc dới 1 trong 4 dạng: 4k, 4k + 1, 4k + 2, 4k + 3
với k

N*.
- Nếu n = 4k

n
M
4

n là hợp số.
- Nếu n = 4k + 2

n
M
2

n là hợp số.
Vậy mọi số nguyên tố lớn hơn 2 đều có dạng 4k + 1 hoặc 4k 1. Hay mọi số nguyên

tố lớn hơn 2 đều có dạng 4n + 1 hoặc 4n 1 với n

N*.
VD7: Tìm ssó nguyên tố, biết rằng số đó bằng tổng của hai số nguyên tố và bằng hiệu
của hai số nguyên tố.
HD:
Phạm Hữu Tuân Tr ờng THCS Chu Văn An - ĐT: 0978760769
2
Chuyên đề: Số nguyên tố
ả sử a, b, c, d, e là các số nguyên tố và d > e.
Theo bài ra: a = b + c = d - e (*).
Từ (*) a > 2 a là số nguyên tố lẻ.
b + c và d - e là số lẻ.
Do b, d là các số nguyên tố b, d là số lẻ c, e
Gi


là số chẵn.
c = e = 2 (do c, e là các số nguyên tố).
a = b + 2 = d - 2 d = b + 4.
Vậy ta cần tìm số nguyên tố b sao cho b + 2 và b + 4 cũng là các số nguyên tố.


VD8: Tìm tất cả các số nguyên tố x, y sao cho: x
2
6y
2
= 1.
HD:
2 2 2 2 2

2
2 2
2
ó: x 6 1 1 6 ( 1)( 1) 6
6 2 ( 1)( 1) 2
à x - 1 + x + 1 = 2x x - 1 và x + 1 có cùng tính chẵn lẻ.
x - 1 và x + 1 là hai số chẵn liên tiếp
( 1)( 1) 8 6 8 3 4
2 2 2 5
Ta c y x y x x y
Do y x x
M
x x y y
y y y x
= = + =
+


+
= =
M M
M M M
M M
VD9: Cho p và p + 2 là các số nguyên tố (p > 3). Chứng minh rằng p + 1
M
6.
HD:
Vì p là số nguyên tố và p > 3, nên số nguyên tố p có 1 trong 2 dạng: 3k + 1, 3k + 2 với
k


N*.
- Nếu p = 3k + 1 thì p + 2 = 3k + 3 = 3(k + 1)

p + 2
M
3 và p + 2 > 3. Do đó
p + 2 là hợp số ( Trái với đề bài p + 2 là số nguyên tố).
- Nếu p = 3k + 2 thì p + 1 = 3k + 3 = 3(k + 1) (1).
Do p là số nguyên tố và p > 3

p lẻ

k lẻ

k + 1 chẵn

k + 1
M
2 (2)
Từ (1) và (2)

p + 1
M
6.
II. Bài tập vận dụng:
Bài 1: Tìm số nguyên tố p sao cho các số sau cũng là số nguyên tố:
a) p + 2 và p + 10.
b) p + 10 và p + 20.
c) p + 10 và p + 14.
d) p + 14 và p + 20.

e) p + 2và p + 8.
f) p + 2 và p + 14.
g) p + 4 và p + 10.
h) p + 8 và p + 10.
Bài 2: Tìm số nguyên tố p sao cho các số sau cũng là số nguyên tố:
a) p + 2, p + 8, p + 12, p + 14.
b) p + 2, p + 6, p + 8, p + 14.
c) p + 6, p + 8, p + 12, p + 14.
d) p + 2, p + 6, p + 8, p + 12, p + 14.
e) p + 6, p + 12, p + 18, p + 24.
f) p + 18, p + 24, p + 26, p + 32.
g) p + 4, p + 6, p + 10, p + 12, p+16.
Phạm Hữu Tuân Tr ờng THCS Chu Văn An - ĐT: 0978760769
3
Chuyên đề: Số nguyên tố
Bài 3:
a) Cho p và p + 4 là các số nguyên tố (p > 3). Chứng minh rằng: p + 8 là hợp số.
b) Cho p và 2p + 1 là các số nguyên tố (p > 3). Chứng minh rằng: 4p + 1 là hợp số.
c) Cho p và 10p + 1 là các số nguyên tố (p > 3). Chứng minh rằng: 5p + 1 là hợp số.
d) Cho p và p + 8 là các số nguyên tố (p > 3). Chứng minh rằng: p + 4 là hợp số.
e) Cho p và 4p + 1 là các số nguyên tố (p > 3). Chứng minh rằng: 2p + 1 là hợp số.
f) Cho p và 5p + 1 là các số nguyên tố (p > 3). Chứng minh rằng: 10p + 1 là hợp số.
g) Cho p và 8p + 1 là các số nguyên tố (p > 3). Chứng minh rằng: 8p - 1 là hợp số.
h) Cho p và 8p - 1 là các số nguyên tố (p > 3). Chứng minh rằng: 8p + 1 là hợp số.
i) Cho p và 8p
2
- 1 là các số nguyên tố (p > 3). Chứng minh rằng: 8p
2
+ 1 là hợp số.
j) Cho p và 8p

2
+ 1 là các số nguyên tố (p > 3). Chứng minh rằng: 8p
2
- 1 là hợp số.
Bài 4: Chứng minh rằng:
a) Nếu p và q là hai số nguyên tố lớn hơn 3 thì p
2
q
2

M
24.
b) Nếu a, a + k, a + 2k (a, k

N
*
) là các số nguyên tố lớn hơn 3 thì k
M
6.
Bài 5:
a) Một số nguyên tố chia cho 42 có số d r là hợp số. Tìm số d r.
b) Một số nguyên tố chia cho 30 có số d r. Tìm số d r biết rằng r không là số
nguyên tố.
Bài 6: Hai số nguyên tố gọi là sinh đôi nếu chúng là hai số nguyên tố lẻ liên tiếp.
Chứng minh rằng một số tự nhiên lớn hơn 3 nằm giữa hai số nguyên tố sinh đôi thì chia
hết cho 6.
Bài 7: Cho 3 số nguyên tố lớn hơn 3, trong đó số sau lớn hơn số trớc là d đơn vị. Chứng
minh rằng d chia hết cho 6.
Bài 8: Tìm số nguyên tố có ba chữ số, biết rằng nếu viết số đó theo thứ tự ngợc lại thì ta
đợc một số là lập phơng của một số tự nhiên.

Bài 9: Tìm số tự nhiên có 4 chữ số, chữ số hàng nghìn bằng chữ số hàng đơn vị, chữ số
hàng trăm bằng chữ số hàng chục và số đó viết đợc dới dạng tích của 3 số nguyên tố
liên tiếp.
Bài 10: Tìm 3 số nguyên tố lẻ liên tiếp đều là các số nguyên tố.
Bài 11: Tìm 3 số nguyên tố liên tiếp p, q, r sao cho p
2
+ q
2
+ r
2
cũng là số nguyên tố.
Bài 12: Tìm tất cả các bộ ba số nguyên tố a, b, c sao cho a.b.c < a.b + b.c + c.a.
Bài 13: Tìm 3 số nguyên tố p, q, r sao cho p
q
+ q
p
= r.
Bài 14: Tìm các số nguyên tố x, y, z thoả mãn x
y
+ 1 = z.
Bài 15: Tìm số nguyên tố
2
, à các số nguyên tố và b .abcd sao cho ab ac l cd b c= +
B i 16: Cho các số p = b
c
+ a, q = a
b
+ c, r = c
a
+ b (a, b, c


N*) là các số nguyên tố.
Chứng minh rằng 3 số p, q, r có ít nhất hai số bằng nhau.
Bài 17: Tìm tất cả các số nguyên tố x, y sao cho:
a) x
2
12y
2
= 1.
b) 3x
2
+ 1 = 19y
2
.
c) 5x
2
11y
2
= 1.
d) 7x
2
3y
2
= 1.
e) 13x
2
y
2
= 3.
f) x

2
= 8y + 1.
Bài 18: Tìm 3 số nguyên tố sao cho tích của chúng gấp 5 lần tổng của chúng.
Bài 19: Chứng minh rằng điều kiện cần và đủ để p và 8p
2
+ 1 là các số nguyên tố là
Phạm Hữu Tuân Tr ờng THCS Chu Văn An - ĐT: 0978760769
4
Chuyên đề: Số nguyên tố
p = 3.
Bài 20: Chứng minh rằng: Nếu a
2
b
2
là một số nguyên tố thì a
2
b
2
= a + b.
Bài 21: Chứng minh rằng mọi số nguyên tố lớn hơn 3 đều có dạng 6n + 1 hoặc
6n 1.
Bài 22: Chứng minh rằng tổng bình phơng của 3 số nguyên tố lớn hơn 3 không thể là
một số nguyên tố.
Bài 23: Cho số tự nhiên n

2. Gọi p
1
, p
2
, ..., p

n
là những số nguyên tố sao cho
p
n


n + 1. Đặt A = p
1
.p
2
...p
n
. Chứng minh rằng trong dãy số các số tự nhiên liên tiếp:
A + 2, A + 3, ..., A + (n + 1). Không chứa một số nguyên tố nào.
Bài 24: Chứng minh rằng: Nếu p là số nguyên tố thì 2.3.4...(p 3)(p 2) - 1
M
p.
Bài 25: Chứng minh rằng: Nếu p là số nguyên tố thì 2.3.4...(p 2)(p 1) + 1
M
p.

Phạm Hữu Tuân Tr ờng THCS Chu Văn An - ĐT: 0978760769
5

Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×