Lê Đình Thạch
Chơng I CN BC HAI. CN BC BA
Tiết 1 CĂN BậC HAI
Ngày soạn 17/08/2009
I. Mục tiêu
- Hs nắm đợc định nghĩa về căn bậc hai số học của số không âm
- Biết đợc liên hệ của phép khai phơng với quan hệ thứ tự và dùng liên hệ này để so
sánh các số
II. Chuẩn bị
- GV: bảng phụ ghi câu hỏi và bài tập, MTBT
- Hs : Ôn tập khái niệm căn bậc hai, MTBT
III. Ph ơng pháp
- Gợi mỡ nêu vấn đề
IV. Tiến trình dạy - học
1) ổ n định lớp
2) Các hoạt động dạy - học
Hoạt động 1 : GIớI THIệU
GV giới thiệu chơng trình
Đại số 9 gồm 4 chơng :
- Chơng 1: Căn bậc hai, căn bậc ba
- Chơng 2: Hàm số bậc nhất
- Chong 3: Hệ hai phơng trình bậc nhất
- Chơng 4: Hàm số y = ax
2
. Phơng trình bậc hai một ẩn
GV: ở lớp 7, chúng ta đã biết khái niệm căn bậc hai. Trong chơng 1 này
chúng ta sẽ nghiên cứu các tính chất các công thức biến đổi
Hs nghe GV
giới thiệu
Hoạt động 2 : 1. Căn bậc hai số học
- GV: Hãy nêu định nghĩa căn bậc hai của
một số không âm ?
- Với số dơng a, có mấy căn bậc hai ? Cho
VD
- Viết dới dạng kí hiệu
- Số 0 có mấy căn bậc hai ?
- Tại sao số âm không có căn bậc hai
- Cho HS làm ?1
-GV giới thiệu căn bậc hai số học của số a
không âm nh SGK
- GV đa chú ý SGK
x =
=
ax
x
a
2
0
GV: Cho HS làm ?2 SGK
GV giới thiệu phép toán tìm căn bậc hai
-HS : căn bậc hai của một số a không âm là
số x sao cho x
2
= a
- Với số a dơng có đúng hai căn bậc hai là
hai số đối nhau là
a
và -
a
VD: Căn bậc hai của 4 là 2 và -2
4
=2 ; -
4
= -2
- Số 0 có một căn bậc hai là chính nó.
0
=
0
- Vì bình phơng của số nào cũng không âm
- HS trả lời :
Căn bậc hai của 9 là 3 và -3
Căn bậc hai của 4/9 là 2/3 và -2/3
Căn bậc hai của 0,25 là 0,5 và - 0,5
Căn bậc hai của 2 là
2
và -
2
Câu a Hs xem giải mẫu ở SGK, câu b,c,d 3
HS lên bảng làm bài
b)
64
= 8 vì 8 0 và 8
2
= 64
c)
81
= 9 vì 9 0 v 9
2
= 81
d)
21,1
= 1,1 vì 1,1 0 v 1,1
2
= 1,21
Lê Đình Thạch
số học của số không âm là phép khai ph-
ơng
Vậy phép khai phơng là phép toán ngợc
của phép toán nào ?
Cho HS làm ?3 SGK
HS: là phép toán ngợc của phép bình phơng
HS làm ?3 SGK, trả lời miệng
Căn bậc hai của 64 là 8 và -8
Căn bậc hai của 81 là 9 và -9
Căn bậc hai của 1,21là 1,1 và -1,1
Hoạt động 3: 2) so sánh các Căn bậc hai số học
GV:Cho a,b
0
Nếu a < b thì
a
so với
b
nh thế nào?
GV: ta có thể chứng minh điều ngợc lại:
Với a, b
0 nếu
a
<
b
thì a < b
Từ đó ta có định lí sau
GV đa định lý SGK
GV cho HS đọc VD2 SGK
Cho HS làm ?4
GV Yêu cầu HS đọc VD3 SGK
HS Nếu a < b thì
a
<
b
nh lý : Với hai số a, b không âm ta có
a < b
a
<
b
HS đọc VD2 sau đó làm ?4
a) 4 và
15
16 > 15 nên
16
>
15
.Vậy 4 >
15
.
b)
11
và 3
11> 9 nên
11
>
9
.Vy
11
>3
HS đọc VD3 sau đó làm ?5
a)
x
>1
x
>
1
>
0
1
x
x
x > 1
b)
x
<3
x
<9
<
0
9
x
x
0
x < 9
Hoạt động 4 luyện tập củng cố
a 121 144 169 225 256 324 361 400
a
11 12 13 15 16 18 19 20
Bi 3 SGK (6):
a) x
2
= 3 x =
3
x = 1,732
b) x
2
= 3,5 x =
5,3
x = 1,871
c) x
2
= 4,12 x =
12,4
x = 2,03
HặẽNG DN Vệ NHAè
- Nắm vững định nghĩa căn bậc hai số học của số a không âm, phân biệt căn bậc hai
của a không âm, biết cách viết định nghĩa theo kí hiệu
x =
=
ax
x
a
2
0
- Nắm vững định lí so sánh các căn bậc hai số học, hiểu các ví dụ áp dụng
- BTVN :1,2,4 SGK. 1,4, 7 SBT
Tiết 2
Lê Đình Thạch
CĂN thức BậC HAI và hằng đẳng thức
2
A
=
A
Ngày soạn 20/08/2008
I. Mục tiêu
- Hs biết cách tìm điều kiện xác định của
A
và có kĩ năng thch hiện khi biểu thức
A không quá phức tạp
- Biết cách chứng minh định lí
2
a
=
a
và biết vận dụng hằng đẳng thức
2
A
=
A
để rút gọn biểu thức
II. Chuẩn bị
- GV: bảng phụ ghi câu hỏi và bài tập, MTBT
- Hs : Ôn tập định lí pitago, qui tắc tính giá trị tuyệt đối của một số
III. Phơng pháp
- Gợi mỡ vấn đáp
IV. Tiến trình dạy - học
1 ổ n định lớp
2 Các hoạt động dạy - học
Hoạt động 1: kiểm tra
GV nêu yêu cầu kiểm tra
HS1 Nêu định nghĩa căn bậc hai số học của
số a không âm, viết kí hiệu
- Các khẳng định sau Đ hay S
a) Căn bậc hai của 16 là 4 và -4
b)
16
=
4
c) (
3
)
2
= 3
d)
x
< 2
x < 4
HS2: - Phát biểu và viết định lí so sánh các
căn bậc hai số học
Bài số 4 SGK
Gv nhận xét cho điểm
Hai HS lên bảng kiểm tra
HS1 Phát biểu định nghĩa và viết kí hiệu
x =
=
ax
x
a
2
0
a) Đ b) S c) d) S
HS2- phát biểu định lí và viết kí hiệu
a < b
a
<
b
a)
x
= 15
x = 15
2
= 225
b) 2
x
=14
x
= 7
x = 49
c)
x
< 2
<
4
0
x
x
0
x < 4
Hoạt động 2: 1) căn thức bậc hai
GV: Cho hc sinh lm ?1SGK (8).
GV Ta gi
2
25 x
l cn thc bc hai
ca 25 x
2
, cũn 25 x
2
l biu thc
ly cn.
GV: Gii thiu cn thc bc hai ca A
TQ: SGK (8)
.GV: GV: vy
A
tn ti khi no?
Vy
A
xỏc nh ( hay cú ngha ) khi
A 0
GV cho HS dc VD1 SGK
GV:
x5
xỏc nh khi no ?
HS lm ?1SGK (8).p dng nh lớ pitago
cho tam giỏc vuụng ABC ta cú :
AB
2
= AC
2
BC
2
= 5
2
x
Vy AB =
2
25 x
.
HS A 0
HS: Khi 5x 0
?2
x25
xỏc nh khi : 5 2x 0 5 2x
x
2
5
vy x
2
5
thỡ
x25
xỏc nh
Lê Đình Thạch
GV: Cho hc sinh lm ?2
Hoạt động 3: 2) HNG NG THC
2
A
=
A
GV: Cho hc sinh lm ?3
GV: Em cú nhn xột gỡ v mi quan
h gia
2
a
v a ?
GV: T ú rỳt ra nh lớ
GV: Cho hc sinh chng minh nh lớ
trờn
GV gợi ý
chng minh
2
a
=
a
ta cn
chng minh
=
a
a
a
2
2
0
GV cho HS dc VD2, VD3 SGK
Vớ d
2:Tớnh
Vớ d
3
: Rỳt gn.
a)
( )
13
2
b)
( )
72
2
GV:Vi A l mt biu thc khi ú
2
A
= ?
Nờu chỳ ý SGK
GV gi i thiu VD4
Vớ d 4 :Rỳt gn.
a)
( )
2
2
x
vi x 2
b)
2
a
vi a 0
HS lm ?3
a -2 -1 0 2 3
a
2
4 1 0 4 9
2
a
2 1 0 2 3
Nu a<0 thỡ
2
a
= -a
Nu a>0 thỡ
2
a
= +a
HS nh lớ: Vi mi s a ta cú
2
a
=
a
HS Theo nh ngha giỏ tr tuyt i ta cú
a
0. N u a
0 thỡ
a
= a
a
2
= a
2
- N u a<0 thỡ
a
= -a
a
2
= (-a)
2
= a
2
Vy
a
2
= a
2
v i mi a
Gii:
Vớ d
2: a)
2
3
=
3
= 3
b)
( )
2
5,0
=
5,0
= 0,5.
Vớ d
3
: a)
( )
13
2
=
13
=
13
b)
( )
72
2
=
72
=
7
- 2
HS :
2
A
=
A
=
A
A
Chỳ ý : Vi A l mt biu thc ta cú:
2
A
=
A
=
A
A
HS a)Ta cú
( )
2
2
x
=
2
x
= x 2 (vỡ x
2 ).
b) Ta cú
6
a
=
( )
2
3
a
=
3
a
= -a
3
(a < 0)
Hoạt động 4 luyện tập, củng cố
Gv nờu cõu hi
+
A
cú ngha khi no?
+
2
a
= ?
2
A
=?
GV: Cho hc sinh lm BT 7 SGK (10)
Tính a)
2
1,0
; b)
2
)3,0(
; c)
2
)3,1(
+
A
cú ngha khi A khụng õm
+
2
a
=
a
=
a
a
;
2
A
=
A
=
A
A
BT 7 SGK (10).
a)
1,0
; b)
3,0
; c)
3,1
HặẽNG DN Vệ NHAè
- Học bài, hiểu cách chứng minh định lý
Lª §×nh Th¹ch
- BTVN 8,9,10,11,12, 13 SGK