Tải bản đầy đủ (.pdf) (71 trang)

Lecture Electric circuit theory: Sinusoidal steady-state analysis - Nguyễn Công Phương

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (474.39 KB, 71 trang )

Nguyễn Công Phương

Electric Circuit Theory
Sinusoidal Steady-State Analysis


Contents
I. Basic Elements Of Electrical Circuits
II. Basic Laws
III. Electrical Circuit Analysis
IV. Circuit Theorems
V. Active Circuits
VI. Capacitor And Inductor
VII. First Order Circuits
VIII.Second Order Circuits
IX. Sinusoid and Phasors
X. Sinusoidal Steady State Analysis
XI. AC Power Analysis
XII. Three-phase Circuits
XIII.Magnetically Coupled Circuits
XIV.Frequency Response
XV. The Laplace Transform
XVI.Two-port Networks

Sinusoidal Steady-State Analysis - sites.google.com/site/ncpdhbkhn

2


Sinusoidal Steady-State Analysis
1.


2.
3.
4.
5.
6.
7.
8.
9.
10.
11.

Sinusoidal Steady-State Analysis
Ohm’s Law
Kirchhoff’s Laws
Impedance Combinations
Branch Current Method
Node Voltage Method
Mesh Current Method
Superposition Theorem
Source Transformation
Thévenin & Norton Equivalent Circuits
Op Amp AC Circuits
Sinusoidal Steady-State Analysis - sites.google.com/site/ncpdhbkhn

3


Sinusoidal Steady-State Analysis (1)
10sin5t V
–+

20i  6

20Ω

di
1

idt  10sin 5t
dt 0.02 

i

di
d 2i
i
 20  6 2 
 50 cos 5t
dt
dt
0.02
i  I m sin(5t   )

6H

0.02F

10 0o

20


–+

 100 I m cos(5t   )  150 I m sin(5t   ) 

I

 50 I m sin(5t   )  50 cos 5t

10 0o

 2 2 I m sin(5t    135 )  sin(5t  90 )
o

 2 2 I m  1
 I m  0.35


o
o
o
  135  90
  45

j 30

o

I

20  j 30 


1
j 0.1

1
j 0.1

 0.35  45o A

 i  0.35sin(5t  45o ) A

 i  0.35sin(5t  45o ) A
Sinusoidal Steady-State Analysis - sites.google.com/site/ncpdhbkhn

4


Sinusoidal Steady-State Analysis (2)
10sin5t V
–+

20Ω

i

1. Transform to phasor
domain
2. Solve the problem using
dc circuit analysis
3. Transform the resulting

phasor to the timedomain.

6H

0.02F

10 0o

j 30

20

–+

1
j 0.1

I
I

10 0o
20  j 30 

1
j 0.1

 0.35  45o A

 i  0.35sin(5t  45o ) A


Sinusoidal Steady-State Analysis - sites.google.com/site/ncpdhbkhn

5


Sinusoidal Steady-State Analysis
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.

Sinusoidal Steady-State Analysis
Ohm’s Law
Kirchhoff’s Laws
Impedance Combinations
Branch Current Method
Node Voltage Method
Mesh Current Method
Superposition Theorem
Source Transformation
Thévenin & Norton Equivalent Circuits
Op Amp AC Circuits
Sinusoidal Steady-State Analysis - sites.google.com/site/ncpdhbkhn


6


Ohm’s Law (1)

VR

R
I

VR  RI

VL
 j L
VL  j LI 
I

VC 

I
jC

VC
1


jC
I


V
 Z  V  ZI
I

Z: impedance (Ω)

1
Admittance (S): Y 
Z
Sinusoidal Steady-State Analysis - sites.google.com/site/ncpdhbkhn

7


Ohm’s Law (2)
V
Z
I

VR
R
I

 ZR  R

VL
 j L  Z L  j L
I

1

j
VC
1

 ZC 

jC
I
jC C

1
YR 
R
1
j
YL 

j L  L
YC  jC

Sinusoidal Steady-State Analysis - sites.google.com/site/ncpdhbkhn

8


Ohm’s Law (3)

 0

 


Z L  j L

j
ZC 
C

ZL  0

ZC  

Short circuit

Open circuit

ZL  

ZC  0

Open circuit

Short circuit

Sinusoidal Steady-State Analysis - sites.google.com/site/ncpdhbkhn

9


Ohm’s Law (4)
I

+

Z

V



Z  R  jX
R: resistance
X: reactance

Sinusoidal Steady-State Analysis - sites.google.com/site/ncpdhbkhn

10


Ohm’s Law (5)
L

C
If

L
C

If

j L 


Z  j L 

1
jC

1
 LC  1
0
 0 
jC
jC
2

1
LC

1
L/C
jC
Z

1
1
j L 
j L 
jC
jC

Z0


j L

1
 2 LC  1
j L 
0
 0 
jC
jC

Z
1
LC

Sinusoidal Steady-State Analysis - sites.google.com/site/ncpdhbkhn

11


Sinusoidal Steady-State Analysis
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.

11.

Sinusoidal Steady-State Analysis
Ohm’s Law
Kirchhoff’s Laws
Impedance Combinations
Branch Current Method
Node Voltage Method
Mesh Current Method
Superposition Theorem
Source Transformation
Thévenin & Norton Equivalent Circuits
Op Amp AC Circuits
Sinusoidal Steady-State Analysis - sites.google.com/site/ncpdhbkhn

12


Kirchhoff’s Law (1)
v1  v2  ...  vn  0
 Vm1 sin(t  1 )  Vm 2 sin(t  2 )  ...  Vmn sin(t  n )  0

 V1  V2  ...  Vn  0

Sinusoidal Steady-State Analysis - sites.google.com/site/ncpdhbkhn

13


Kirchhoff’s Law (2)

i1  i2  ...  in  0
 I m1 sin(t  1 )  I m 2 sin(t  2 )  ...  I mn sin(t  n )  0
 I1  I 2  ...  I n  0

Sinusoidal Steady-State Analysis - sites.google.com/site/ncpdhbkhn

14


Sinusoidal Steady-State Analysis
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.

Sinusoidal Steady-State Analysis
Ohm’s Law
Kirchhoff’s Laws
Impedance Combinations
Branch Current Method
Node Voltage Method
Mesh Current Method
Superposition Theorem

Source Transformation
Thévenin & Norton Equivalent Circuits
Op Amp AC Circuits
Sinusoidal Steady-State Analysis - sites.google.com/site/ncpdhbkhn

15


Impedance Combinations (1)
a
b

Z1

Z2

a
b

Z eq  Z1  Z 2

Z1
V1 
Vab
Z1  Z 2
Z eq  Z1  Z 2  ...  Z n

Sinusoidal Steady-State Analysis - sites.google.com/site/ncpdhbkhn

16



Impedance Combinations (2)
a

a
Z1

b

Z2
b

Z1Z 2
Z eq 
Z1  Z 2

Z2
I1 
I ab
Z1  Z 2

1
1
1
1


 ... 
Z eq Z1 Z 2

Zn
Sinusoidal Steady-State Analysis - sites.google.com/site/ncpdhbkhn

17


Impedance Combinations (3)
Zc

a

Z1

Z2

Zb

Z3

Zb Z c
Z1 
Z a  Zb  Z c
Zc Za
Z2 
Z a  Zb  Z c
Z a Zb
Z3 
Z a  Zb  Z c

b


c

Za
Z1Z 2  Z 2 Z3  Z3 Z1
Za 
Z1

Z1Z 2  Z 2 Z3  Z3 Z1
Zb 
Z2
Z1Z 2  Z 2 Z3  Z3 Z1
Zc 
Z3

Sinusoidal Steady-State Analysis - sites.google.com/site/ncpdhbkhn

18


Sinusoidal Steady-State Analysis
1.
2.
3.
4.
5.
6.
7.
8.
9.

10.
11.

Sinusoidal Steady-State Analysis
Ohm’s Law
Kirchhoff’s Laws
Impedance Combinations
Branch Current Method
Node Voltage Method
Mesh Current Method
Superposition Theorem
Source Transformation
Thévenin & Norton Equivalent Circuits
Op Amp AC Circuits
Sinusoidal Steady-State Analysis - sites.google.com/site/ncpdhbkhn

19


Branch Current Method (1)
I1

Ex. 1

+


E1

Z1


a I 3 Z3

+ V1 –

V1
A +
+

1.

Find:
nKCL = n – 1, and
nKVL = b – n + 1

2.
3.
4.

I4
Z4

J



E2
c

I2+ V3 –

+
Z2
B V4


b

Apply KCL at nKCL nodes
Apply KVL at nKVL loops
Solve simultaneous equations

I1 + I2 – I3 = 0
I3 – I4 = –J
Z1I1 – Z2I2 = E1 – E2
Z2I2 + Z3I3 + Z4I4 = E2

Sinusoidal Steady-State Analysis - sites.google.com/site/ncpdhbkhn

20


Branch Current Method (2)
+–

b : Ic  I 2  I3  0
c : I1  I 3  J  0
A : Z1I1  Z3I 3  Z 2 I 2  E  0

I c   I1


E

Z2

Ex. 2

I2

a
Z1

βI1
Ic

I1

I3

b
Z3

J c

  I1  I 2  I 3  0

 I1  I 3  J  0
Z I  Z I  Z I  E  0
3 3
2 2
 11

Sinusoidal Steady-State Analysis - sites.google.com/site/ncpdhbkhn

21


Branch Current Method (3)

Ex. 3

Z1  10; Z 2  j 20; Z 3  5  j10;

Z1

E1  30 V; E3  45 15 V; J  2  30 A;
o

o

E1

I3

I1
I2

– +

E3

+


Find currents?



I1  I 2  I 3  J  0

Z2

J

Z3

Z1I1  Z 2I 2  E1
Z 2I 2  Z3I3  E3
 I1
 I2
 I3  2  30o

 10I1  j 20I 2
 30

o
15
j
20
I

(5


j
10)
I

45
2
3




I1  1 ; I 2  2 ; I3  3



Sinusoidal Steady-State Analysis - sites.google.com/site/ncpdhbkhn

22


Branch Current Method (4)

Ex. 3

Z1  10; Z 2  j 20; Z 3  5  j10;

Z1

E1  30 V; E3  45 15 V; J  2  30 A;
o


o

I2

E3



 I1
 I2
 I3  2  30o

 30
10I1  j 20I 2

o
j
20
I

(5

j
10)
I

45
15
2

3

1
2
3
I1  ; I 2 
; I3 



1

– +

+

Find currents?

1

E1

I3

I1

1

  10  j 20
0

j 20 5  j10
0

Z2

J

Z3

 j 20
0
1
1
1
1
1
 10
0
j 20 5  j10
j 20 5  j10
 j 20 0

 250  j 200
Sinusoidal Steady-State Analysis - sites.google.com/site/ncpdhbkhn

23


Branch Current Method (5)


Ex. 3

Z1  10; Z 2  j 20; Z 3  5  j10;

Z1

E1  30 V; E3  45 15 V; J  2  30 A;
o

o

E1

I2

– +

E3

+

Find currents?



 I1
 I2
 I3  2  30o

 30

10I1  j 20I 2

o
j
20
I

(5

j
10)
I

45
15
2
3


I1 

I3

I1

2  30o
30

1
 j 20


1
0

45 15o

j 20

5  j10

250  j 200

Z2

I1 

J

Z3

1


; I2  2 ; I3  3




 1.04  j 3.95  4.09 75.2o A


 i1  4.09sin(t  75.2o ) A
Sinusoidal Steady-State Analysis - sites.google.com/site/ncpdhbkhn

24


Branch Current Method (6)

Ex. 3

Z1  10; Z 2  j 20; Z 3  5  j10;

Z1

E1  30 V; E3  45 15 V; J  2  30 A;
o

o

E1

I2

– +

E3

+

Find currents?




 I1
 I2
 I3  2  30o

 30
10I1  j 20I 2

o
j
20
I

(5

j
10)
I

45
15
2
3


I2 

I3


I1

1

2  30o

1

10

30

0

0

45 15o

5  j10

250  j 200

Z2

I1 

J

Z3


1


; I2  2 ; I3  3




 1.98  j 0.98  2.20 26.4o A

 i2  2.20sin(t  26.4o ) A
Sinusoidal Steady-State Analysis - sites.google.com/site/ncpdhbkhn

25


×