Tải bản đầy đủ (.pdf) (24 trang)

Lecture Control system design: The stability of linear feedback systems - Nguyễn Công Phương

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (245.75 KB, 24 trang )

Nguyễn Công Phương

CONTROL SYSTEM DESIGN
The Stability
of Linear Feedback Systems


Contents
I. Introduction
II. Mathematical Models of Systems
III. State Variable Models
IV. Feedback Control System Characteristics
V. The Performance of Feedback Control Systems
VI. The Stability of Linear Feedback Systems
VII. The Root Locus Method
VIII.Frequency Response Methods
IX. Stability in the Frequency Domain
X. The Design of Feedback Control Systems
XI. The Design of State Variable Feedback Systems
XII. Robust Control Systems
XIII.Digital Control Systems
sites.google.com/site/ncpdhbkhn

2


The Stability
of Linear Feedback Systems
1.
2.
3.


4.

The Concept of Stability
The Routh – Hurwitz Stability Criterion
The Stability of State Variable Systems
System Stability Using Control Design
Software

sites.google.com/site/ncpdhbkhn

3


The Concept of Stability (1)
• Stability is of the utmost importance.
• A close – loop feedback system that is unstable
is of little value.
• A stable system is a dynamic system with a
bounded response to a bounded input.

sites.google.com/site/ncpdhbkhn

4


The Concept of Stability (2)

/>
sites.google.com/site/ncpdhbkhn


5


The Concept of Stability (4)
1
Y ( s)  
s

M


i 1

Ai

s  i

Bk s  Ck
 y (t )  1 
2
2
2
k 1 s  2 k s  ( k  k )
N



M

 Ae

i

 i t

i 1



N

D e
k

 k t

sin(k t   k )

k 1

j
1

1

0

0

-1


-1

0

5

10

1

1

0

0

-1

-1

0

5

10

10

1
0


0

-1
0

5

10

0

5

10

0

10

0

5

10

-10

1


1

2

10

0.5

0.5

1

5

0

0

5

10

0

0

5

10


0

5

10

0

5

10

0

-1
5

0

10

1

0

-10

0

sites.google.com/site/ncpdhbkhn


5

10

0



0

5

6

10


The Stability
of Linear Feedback Systems
1.
2.
3.
4.

The Concept of Stability
The Routh – Hurwitz Stability Criterion
The Stability of State Variable Systems
System Stability Using Control Design
Software


sites.google.com/site/ncpdhbkhn

7


The Routh – Hurwitz Stability
Criterion (1)
q( s )  an s n  an 1s n 1  an 2 s n 2  ...  a1s  a0  0

sn

an

an  2

an  4



s n 1

an 1

an  3

an  5




s n 2

bn 1

bn 3

bn 5



s n 3

cn 1

cn 3

cn 5














s

0

hn 1

1 an an 2 an 1an 2  an an 3
bn 1 

,
an 1 an 1 an 3
an 1
bn 3 

1 an an 4
,
an 1 an 1 an 5

cn 1 

1 an 1 an 3
,
bn 1 bn 1 bn 3

The Routh – Hurwitz criterion states that
the number of roots of q(s) with positive real parts is equal to
the number of changes in sign of the first column of the Routh array
sites.google.com/site/ncpdhbkhn

8



The Routh – Hurwitz Stability
Criterion (2)
q( s )  an s n  an 1s n 1  an 2 s n 2  ...  a1s  a0  0

sn

an

an  2

an  4



s n 1

an 1

an  3

an  5



s n 2

bn 1


bn 3

bn 5



s n 3

cn 1

cn 3

cn 5













s0

hn 1


1.
2.

3.
4.

No element in the 1st column is
zero.
There is a zero in the 1st column,
but some other elements of the row
containing the zero in the 1st
column are nonzero.
There is a zero in the 1st column,
and the other elements of the row
containing the zero are also zero.
Repeated roots of the characteristic
equation on the jω – axis.

The Routh – Hurwitz criterion states that
the number of roots of q(s) with positive real parts is equal to
the number of changes in sign of the first column of the Routh array
sites.google.com/site/ncpdhbkhn

9


The Routh – Hurwitz Stability
Criterion (3)

Ex. 1


q( s )  a2 s 2  a1s  a0

sn

an

an  2

an  4



s2

a2

a0

s2

a2

a0

s n 1

an 1

an  3


an  5



s1

a1

0

s1

a1

0

s n 2

bn 1

bn 3

bn 5



s0

b1


0

s0

a0

0

s n 3

cn 1

cn 3

cn 5













s0


hn 1

1 an an 2
bn 1 
an 1 an 1 an 3

1 a2
 b1 
a1 a1

a0
 a0
0

The Routh – Hurwitz criterion states that
the number of roots of q(s) with positive real parts is equal to
the number of changes in sign of the first column of the Routh array

The system is stable if a2, a1 & a0 are all positive or all negative
sites.google.com/site/ncpdhbkhn

10


The Routh – Hurwitz Stability
Criterion (4)

Ex. 2


q( s )  s 3  s 2  2 s  50

sn

an

an  2

an  4



s3

1

2

s3

1

2

s n 1

an 1

an  3


an  5



s2

1

50

s2

1

50

s n 2

bn 1

bn 3

bn 5



s1

b1


b0

s1

48

0

s n 3

cn 1

cn 3

cn 5



s0

c1

c0

s0

50

0












s0

hn 1

b1 

1 1 0
1 1 2
 0,
 48, b0 
1 1 0
1 1 50

c1 

1 1 50
1 1 0
 50, c0 
0
48 48 0

48 48 0

The Routh – Hurwitz criterion states that
the number of roots of q(s) with positive real parts is equal to
the number of changes in sign of the first column of the Routh array
sites.google.com/site/ncpdhbkhn

11


The Routh – Hurwitz Stability
Criterion (5)

Ex. 3

q( s )  a3s 3  a2 s 2  a1s  a0

s3

a3

a1

s2

a2

a0

s1


b1

0

s0

c1

0

a3  0
a  0
 2

b1  0
c1  0

b1 

a3  0
a  0
 2
  a2 a1  a0a3
0

a2

a0  0


a2 a1  a0a3
, c1  a0
a2

a3  0
a  0
 2

a2 a1  a0a3  0
a0  0

q( s )  s 3  2 s 2  6s  10, a2 a1  a0a3  2  6  10  1  2
sites.google.com/site/ncpdhbkhn

12


Ex. 4

The Routh – Hurwitz Stability
Criterion (6)

q( s )  s 5  2 s 4  2 s 3  4 s 2  11s  10

s5

1

2


11

s5

1

2

11

s4

2

4

10

s4

2

4

10

s3

0


6

0

s3



6

0

s2

c1

10

0

s2

c1

10

0

s1


d1

0

0

s1

d1

0

0

s0

10

s0

10

c1 

4  12
12
6c  10
 4  , d1  1
 6  10



c1

Two sign changes  two roots with positive real part  the system is unstable
sites.google.com/site/ncpdhbkhn

13


Ex. 5

The Routh – Hurwitz Stability
Criterion (7)

q( s )  s 4  s 3  s 2  s  K

s4

1

1

K

s4

1

1


K

s3

1

1

0

s3

1

1

0

s2

0

K

0

s2




K

0

s1

c1

0

0

s1

c1

0

0

s1

K

s1

K

c1 


 K
K
1



One sign change  one root with positive real part
 the system is unstable for all values of K
sites.google.com/site/ncpdhbkhn

14


Ex. 6

The Routh – Hurwitz Stability
Criterion (8)

3
2
3
q( s )  s 5  s 4  4 s 3  24 s 2  3s  63  ( s  s  s  21)( s  3)

s5

1

4

3


s5  s 4  4 s 3  24 s 2  3s  63 s 2  3

s4

1

24

63

s3

20

60

0

s 4  s 3  24 s 2  3s  63

s2

21

63

0

s4


1

s

0

0

s 3  s 2  s 21

 3s 3

s5

 3s 2

s 3  21s 2  3s  63

0

 3s

s3

 U ( s )  21s 2  63  21( s 2  3)

21s 2

 63


21s 2

 63
0

sites.google.com/site/ncpdhbkhn

15


Ex. 6

The Routh – Hurwitz Stability
Criterion (9)

3
2
3
q( s )  s 5  s 4  4 s 3  24 s 2  3s  63  ( s  s  s  21)( s  3)

s5

1

4

3

s4


1

24

63

s

3

s

2

1

s

20

21

0

60

63
0


0

0
0

s3

1

1

s2

1

21

s1

20

0

s0

21

0

Two sign changes  two roots with positive real part  the system is unstable

sites.google.com/site/ncpdhbkhn

16


The Routh – Hurwitz Stability
Criterion (10)

Ex. 7

K (s  a)
1
G( s) 
s  1 s( s  2)( s  3)
T ( s) 

R( s )
( )

1
s( s  2)( s  3)

G( s)
K (s  a)
 4
1  G ( s ) s  6s 3  11s 2  ( K  6) s  Ka

 q( s )  s  6s  11s  ( K  6) s  Ka
4


3

2

s4

1

11

Ka

s3

6

K 6

0

s2

b3

Ka

0

s1


c3

0

0

s1

Ka

b3 

K (s  a)
s 1

 60  K
 6 0

 b3 ( K  6)  6 Ka
0

b
3

 Ka  0

0  K  60


(60  K )( K  6)

a


36 K

b ( K  6)  6 Ka
60  K
, c3  3
6
b3

sites.google.com/site/ncpdhbkhn

17

Y ( s)


The Stability
of Linear Feedback Systems
1.
2.
3.
4.

The Concept of Stability
The Routh – Hurwitz Stability Criterion
The Stability of State Variable Systems
System Stability Using Control Design
Software


sites.google.com/site/ncpdhbkhn

18


Ex. 1

The Stability of State Variable
Systems (1)

3

1

 x1  3x1  x2

 x2  x2  Kx1  Ku

1

K

1

U ( s)

1/ s

L1  s 1 , L2  3s 1 , L3   Ks 2


 1

N

L

n

n 1





Ln Lm 

n ,m
nontouching



X 2 ( s)
1

X1 ( s)

1/ s
X2


Ln Lm Lp  ...

n ,m , p
nontouching

 1  ( L1  L2  L3 )  ( L1L2 )  1  2s 1  ( K  3) s 2

 q( s )  s 2  2 s  ( K  3)
 K 3 0 K  3
sites.google.com/site/ncpdhbkhn

19


Ex. 2

The Stability of State Variable
Systems (2)

 a  
dx 
  
dt 
 


0
1 0
u 
0 x   0 1   1 



 u2 
0 0
0

  0 0   a  

det( I  A )  det  0  0     

 
 0 0    

 


0    


0   

0 




0

 


0





  [ 2  (   )  (   2 )]
 q( )   [ 2  (   )  (   2 )]
    0

2
    0
sites.google.com/site/ncpdhbkhn

20


The Stability
of Linear Feedback Systems
1.
2.
3.
4.

The Concept of Stability
The Routh – Hurwitz Stability Criterion
The Stability of State Variable Systems
System Stability Using Control Design
Software


sites.google.com/site/ncpdhbkhn

21


Ex. 1

System Stability Using Control
Design Software (1)
R( s )
( )

sites.google.com/site/ncpdhbkhn

10( s  2)
s 1

1
s( s  2)( s  3)

22

Y ( s)


Ex. 2

System Stability Using Control
Design Software (2)


q( s )  s 3  2 s 2  3s  K

sites.google.com/site/ncpdhbkhn

23


Ex. 3

System Stability Using Control
Design Software (3)

Given a characteristic equation q(s) = s4 + 8s3 + 17s2 + (K + 10)s + aK = 0.
Find a & K such that the system is stable.
s4

1

17

aK

s3

8

K  10

0


s2

b3

b1

0

s1

c3

0

0

s1

d3

1
126  K
b3   [( K  10)  8  17] 
8
8
1
b1   (1  0  8aK )  aK
8

c3  


1
(126  K )( K  10)
[8b1  b3 ( K  10)] 
 8aK
b3
8

126  K
0
 8
b3  0


 (126  K )( K  10)
 8aK  0
c3  0  
8
d  0 
 3
aK  0


sites.google.com/site/ncpdhbkhn

d3  

1
(b3  0  b1c3 )  b1  aK
c3


24



×