Tải bản đầy đủ (.doc) (3 trang)

Hệ phương trình đại số

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (59.42 KB, 3 trang )

Chuyên đề 2 : HỆ PHƯƠNG TRÌNH ĐẠI SỐ
TÓM TẮT GIÁO KHOA
I. Hệ phương trình bậc nhất nhiều ẩn
1. Hệ phương trình bậc nhất hai ẩn
a. Dạng :
1 1 1
2 2 2
a x b y c
a x b y c
+ =


+ =

(1)
Cách giải đã biết: Phép thế, phép cộng ...
b. Giải và biện luận phương trình : Quy trình giải và biện luận
Bước 1: Tính các đònh thức :

1221
22
11
baba
ba
ba
D
−==
(gọi là đònh thức của hệ)

1221
22


11
bcbc
bc
bc
D
x
−==
(gọi là đònh thức của x)

1221
22
11
caca
ca
ca
D
y
−==
(gọi là đònh thức của y)
Bước 2: Biện luận
• Nếu
0

D
thì hệ có nghiệm duy nhất








=
=
D
D
y
D
D
x
y
x
• Nếu D = 0 và
0

x
D
hoặc
0

y
D
thì hệ vô nghiệm
• Nếu D = D
x
= D
y
= 0 thì hệ có vô số nghiệm hoặc vô nghiệm

Ý nghóa hình học: Giả sử (d

1
) là đường thẳng a
1
x + b
1
y = c
1

(d
2
) là đường thẳng a
2
x + b
2
y = c
2

Khi đó:
1. Hệ (I) có nghiệm duy nhất

(d
1
) và (d
2
) cắt nhau
2. Hệ (I) vô nghiệm

(d
1
) và (d

2
) song song với nhau
3. Hệ (I) có vô số nghiệm

(d
1
) và (d
2
) trùng nhau

9
II. Hệ phương trình bậc hai hai ẩn:
1. Hệ gồm một phương trình bậc nhất và một phương trình bậc hai hai ẩn:
Cách giải: Giải bằng phép thế
Ví dụ : Giải hệ:



=−+
=+
522
52
22
xyyx
yx
2. Hệ phương trình đối xứng :
1. Hệ phương trình đối xứng loại I:
a.Đònh nghóa: Đó là hệ chứa hai ẩn x,y mà khi ta thay đổi vai trò x,y cho nhau
thì hệ phương trình không thay đổi.
Ví dụ: Hệ phương trinh:




=++
=++
2
4
22
yxxy
yxyx
b.Cách giải:
Bước 1: Đặt x+y=S và xy=P với
2
4S P≥
ta đưa hệ về hệ mới chứa hai ẩn S,P.
Bước 2: Giải hệ mới tìm S,P . Chọn S,P thoả mãn
2
4S P≥
.
Bước 3: Với S,P tìm được thì x,y là nghiệm của phương trình :
2
0X SX P− + = ( đònh lý Viét đảo ).
Chú ý: Do tính đối xứng, cho nên nếu (x
0
;y
0
) là nghiệm của hệ thì (y
0
;x
0

) cũng là nghiệm của hệ
2. Hệ phương trình đối xứng loại II:
a.Đònh nghóa: Đó là hệ chứa hai ẩn x,y mà khi ta thay đổi vai trò x,y cho nhau
thì phương trình nầy trở thành phương trình kia của hệ.
Ví dụ: Hệ phương trinh:
2 2
2 2
2 3 2
2 3 2
x y y
y x x

+ = −


+ = −


b. Cách giải:
• Trừ vế với vế hai phương trình và biến đổi về dạng phương trình tích số.
10
• Kết hợp một phương trình tích số với một phương trình của hệ để suy ra nghiệm của hệ .
III. Hệ phương trình đẳng cấp bậc hai:
a. Dạng :
2 2
1 1 1 1
2 2
2 2 2 2
a x b xy c y d
a x b xy c y d


+ + =


+ + =


b. Cách giải:
Đặt ẩn phụ
x
t
y
=
hoặc
y
t
x
=
. Giả sử ta chọn cách đặt
x
t
y
=
.
Khi đó ta có thể tiến hành cách giải như sau:
Bước 1: Kiểm tra xem (x,0) có phải là nghiệm của hệ hay không ?
Bước 2: Với y

0 ta đặt x = ty. Thay vào hệ ta được hệ mới chứa 2 ẩn t,y .Từ 2 phương trình ta
khử y để được 1 phương trình chứa t .

Bước 3: Giải phương trình tìm t rồi suy ra x,y.
IV. Các hệ phương trình khác:
Ta có thể sử dụng các phương pháp sau:
a. Đặt ẩn phụ:
Ví dụ:



=−−
=−−+
36)1()1(
12
22
yyxx
yxyx

b. Sử dụng phép cộng và phép thế:
Ví dụ:
2 2
2 2
x y 10x 0
x y 4x 2y 20 0

+ − =


+ + − − =


c. Biến đổi về tích số:

Ví dụ:





+=+
+=+
)(3
22
22
yxyx
yyxx

11

Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×