Tải bản đầy đủ (.pdf) (112 trang)

Luận án tiến sĩ toán học thác triển phân hình của một số lớp hàm phân hình yếu

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (753.65 KB, 112 trang )

BỘ GIÁO DỤC VÀ ĐÀO TẠO
TRƯỜNG ĐẠI HỌC QUY NHƠN

LIÊN VƯƠNG LÂM

THÁC TRIỂN PHÂN HÌNH CỦA
MỘT SỐ LỚP HÀM
PHÂN HÌNH YẾU

LUẬN ÁN TIẾN SĨ TOÁN HỌC

BÌNH ĐỊNH - NĂM 2017


BỘ GIÁO DỤC VÀ ĐÀO TẠO
TRƯỜNG ĐẠI HỌC QUY NHƠN

LIÊN VƯƠNG LÂM

THÁC TRIỂN PHÂN HÌNH CỦA
MỘT SỐ LỚP HÀM
PHÂN HÌNH YẾU

Chuyên ngành: Toán Giải Tích
Mã số: 62.46.01.02

Phản biện 1: GS. TSKH. Nguyễn Quang Diệu
Phản biện 2: PGS. TS. Kiều Phương Chi
Phản biện 3: TS. Trịnh Đức Tài
NGƯỜI HƯỚNG DẪN KHOA HỌC:
PGS. TS. Thái Thuần Quang



BÌNH ĐỊNH - NĂM 2017


LỜI CAM ĐOAN

Luận án này được hoàn thành tại Trường Đại học Quy Nhơn, dưới sự hướng
dẫn của PGS. TS. Thái Thuần Quang. Tôi xin cam đoan đây là công trình nghiên
cứu của tôi. Các kết quả trong luận án là trung thực, được các đồng tác giả cho
phép sử dụng và chưa từng được ai công bố trước đó.

Tác giả

Liên Vương Lâm


LỜI CẢM ƠN

Luận án được hoàn thành dưới sự hướng dẫn hết sức tận tình và khoa học của
Thầy Thái Thuần Quang. Thầy là người đã giảng dạy, hướng dẫn tôi trong suốt
các bậc học: Đại học, Cao học và Nghiên cứu sinh. Tôi xin được bày tỏ lòng biết
ơn sâu sắc đến Thầy và gia đình.
Tác giả xin gởi lời cảm ơn sâu sắc đến Khoa Toán, Trường Đại học Quy Nhơn,
đây là nơi tôi bắt đầu được học tập, được hướng dẫn và nhận được nhiều sự quan
tâm, động viên khích lệ. Xin bày tỏ lòng biết ơn chân thành đến quý Thầy, Cô
giáo trong Khoa Toán đã giảng dạy tôi trong những năm tháng tôi được học tập,
nghiên cứu.
Tác giả xin gửi lời cảm ơn đến Ban Giám hiệu Trường Đại học Quy Nhơn,
Phòng Đào tạo sau đại học đã tận tình giúp đỡ và tạo mọi điều kiện thuận lợi cho
tác giả trong suốt thời gian học tập và nghiên cứu.

Tác giả xin chân thành cảm ơn TS. Nguyễn Văn Đại, TS. Huỳnh Minh Hiền,
TS. Nguyễn Khắc Tín, TS. Nguyễn Ngọc Quốc Thương đã có những góp ý quý
báu trong quá trình tôi học tập và nghiên cứu.
Tôi xin chân thành cảm ơn đến quý Thầy, Cô trong Tổ Toán, Trường Đại học
Phạm Văn Đồng đã tạo điều kiện thời gian, gánh vác các công việc cho tôi, để tôi
yên tâm học tập và nghiên cứu.
Cuối cùng, tác giả xin dành tình cảm đặc biệt đến gia đình, người thân và các
người bạn của tác giả, những người đã luôn mong mỏi, động viên và tiếp sức cho
tác giả để hoàn thành bản luận án này.


DANH MỤC CÁC KÝ HIỆU
H ♣D, F q

Hs ♣T, F q

: Không gian các hàm chỉnh hình trên D nhận giá trị trong F
: Không gian các hàm chỉnh hình tách biến trên T nhận giá trị
trong F

M ♣D, F q

Ms ♣T, F q
H ✽ ♣D, F q
Hb ♣E, F q

: Không gian các hàm phân hình trên D nhận giá trị trong F
: Không gian các hàm phân hình tách biến trên T nhận giá trị
trong F
: Không gian con tất cả các hàm bị chặn trong H ♣D, F q

: Không gian tất cả các hàm chỉnh hình từ E vào F
mà bị chặn trên các tập bị chặn trong E

HLB ♣D, F q

: Không gian các hàm chỉnh hình bị chặn địa phương trên D

H W ♣D, F q

: Không gian các hàm ♣F, W q-chỉnh hình

W
Hloc
♣D, F q

: Không gian các hàm ♣F, W q-chỉnh hình địa phương

H W,✽ ♣D, F q : Không gian các hàm ♣F, W q-chỉnh hình bị chặn

W,✽
Hloc
W

M

♣D, F q
♣D, F q

: Không gian các hàm ♣F, W q-chỉnh hình bị chặn địa phương


: Không gian các hàm ♣F, W q-phân hình

Dfh

: Miền tồn tại của hàm chỉnh hình f

Dfm

: Miền tồn tại của hàm phân hình f


K
P SH ♣Dq

: Bao đa điều hòa dưới của K trong D

∆nr ♣z0 q

: tz

€ Cn : ⑥z ✁ z0⑥ ➔ r✉
∆1r ♣z0 q
∆nr ♣0q

∆r ♣z0 q

:

∆nr


:

∆n

: ∆n1



: ∆1

Hnt ♣rq

: Miền Hartogs trong Cn

B ♣E q

K ♣E q
Uk

P SH ♣Ωq
U ♣K, Ωq

hK,Ω ♣z q

h✝K,Ω

: Tập tất cả các tập con lồi, cân, đóng, bị chặn trong E
: Tập tất cả các tập con compact, lồi, cân trong E
: tx € E : ⑥x⑥k


➔ 1✉

: Tập các hàm đa điều hòa dưới trên Ω


: tu € P SH ♣Ωq : u ↕ 1, u✞K

: suptu♣z q : u € U ♣K, Ωq✉

↕ 0✉

: Hàm cực trị tương đối của cặp ♣K, Ωq


Mục lục

Danh mục các ký hiệu

ii

Mở đầu

1

Chương 1. Miền tồn tại của hàm phân hình giá trị véctơ
1.1

1.2

1.3


10

Kiến thức tổng quan về không gian lồi địa phương . . . . . . . . . .

10

1.1.1

Một số lớp không gian lồi địa phương . . . . . . . . . . . . .

11

1.1.2

Các tập con tách điểm . . . . . . . . . . . . . . . . . . . . .

11

Hàm chỉnh hình, hàm phân hình . . . . . . . . . . . . . . . . . . . .

12

1.2.1

Khái niệm hàm chỉnh hình . . . . . . . . . . . . . . . . . . .

12

1.2.2


Khái niệm hàm phân hình . . . . . . . . . . . . . . . . . . .

14

1.2.3

Các tập đa cực, đa chính quy, hàm cực trị tương đối . . . .

14

1.2.4

Các hàm chỉnh hình, phân hình trên các tập chữ thập . . . .

16

Miền tồn tại của hàm phân hình giá trị véctơ . . . . . . . . . . . .

19

Chương 2. Định lý thác triển Levi đối với hàm phân hình yếu

26

2.1

Các hàm ♣☎, W q-chỉnh hình và các hàm ♣☎, W q-phân hình . . . . . . .

26


2.2

Định lý thác triển Levi đối với hàm nhiều biến giá trị véctơ . . . . .

27

2.2.1

. . . . . . . . . .

27

. . . . . . . . . .

34

. . . . . . . . . .

36

Một số nhận xét và ví dụ . . . . . . . . . . . . . . . . . . . . . . . .

37

2.2.2
2.2.3
2.3

⑨ F ✶ xác định tính bị chặn

Trường hợp W ⑨ F ✶ là tách điểm . . . . .
Trường hợp W ✏ F ✶ . . . . . . . . . . . .

Trường hợp W

i


2.4

Định lý thác triển Levi đối với hàm giá trị véctơ vô hạn chiều . . .

46

2.4.1

Bất biến tôpô tuyến tính . . . . . . . . . . . . . . . . . . . .

46

2.4.2

Thác triển chỉnh hình của hàm ♣☎, W q-chỉnh hình . . . . . .

48

2.4.3

Định lý thác triển Levi đối với hàm giá trị véctơ . . . . . . .


59

Chương 3. Định lý chữ thập đối với các hàm ♣☎, W q-phân hình

62

3.1

Định lý Rothstein cho các hàm ♣☎, W q-phân hình . . . . . . . . . . .

62

3.2

Tổng quát hóa định lý Kazarian

. . . . . . . . . . . . . . . . . . .

65

3.3

Định lý chữ thập cho các hàm ♣☎, W q-phân hình với kỳ dị đa cực . .

69

Chương 4. Thác triển phân hình các hàm ♣☎, W q-phân hình

76


4.1

Tính chất (BB)-Zorn và thác triển chỉnh hình . . . . . . . . . . . .

76

4.2

Thác triển phân hình các hàm ♣☎, W q-phân hình từ các tập gầy . . .

82

4.3

Miền phân hình của các hàm ♣☎, W q-phân hình

. . . . . . . . . . .

88

4.4

Thác triển các hàm ♣☎, W q-phân hình qua các tập con giải tích . . .

91

Kết luận

93


Danh mục công trình của tác giả

95

Tài liệu tham khảo

96

Chỉ mục

104

ii


Mở đầu
Không gian lồi địa phương xuất hiện trong nhiều lĩnh vực của giải tích toán
học như lý thuyết độ đo tích phân, giải tích phức, phương trình vi phân, lý thuyết
xấp xỉ. Các không gian dãy, không gian các hàm chỉnh hình, không gian các hàm
đo được đều có tôpô lồi địa phương. Lý thuyết đối ngẫu trong không gian lồi địa
phương đóng vai trò quan trọng vì đã chuyển bài toán trên không gian lồi địa
phương về nghiên cứu trên các phiếm hàm tuyến tính liên tục. Giải tích phức trên
không gian lồi địa phương là sự kết hợp giữa Giải tích phức và Giải tích hàm. Đầu
tiên, có thể kể đến các kết quả của các tác giả Nachbin, Noverraz, Colombeau,
Mujica, Dineen,... Ở Việt Nam, từ những năm 1970 cũng đã có các kết quả ban
đầu của Nguyễn Văn Khuê, Hà Huy Khoái về lĩnh vực này.
Bài toán về tính chỉnh hình của hàm giá trị véctơ được quan tâm bởi các nhà
toán học từ rất sớm. Trong thực hành người ta giải quyết thông qua tính chỉnh hình

Ñ F, với F là không gian lồi địa phương Hausdorff,

được gọi là chỉnh hình yếu nếu u ✆ f là chỉnh hình với mọi u € F ✶ , không gian
yếu. Ở đây, một hàm f : D

đối ngẫu của F. Các kết quả bước đầu có thể kể đến là của Dunford [24] vào năm
1938 và Grothendieck [31] vào năm 1955. Mở rộng bài toán này, người ta đặt ra
vấn đề “làm nhỏ” không gian chứa các phiếm hàm tuyến tính u mà vẫn đảm bảo
được tính chỉnh hình của hàm f. Các kết quả được xem xét trong các trường hợp
u

€ W ⑨ F ✶, với W

là các tập con tách điểm, xác định tính bị chặn,... được giới

thiệu trong các công trình của Grosse-Erdmann [28], Arendt và Nikolski [7]. Trong
hơn một thập niên gần đây, bài toán thu hút sự quan tâm của nhiều nhóm nghiên
cứu trên thế giới. Năm 2003, Hải [32] đã mở rộng kết quả của Arendt và Nikolski
trong trường hợp không gian Fréchet với các bất biến tôpô tuyến tính. Năm 2013,
Quang, Lâm và Đại [75] đã xem xét bài toán cho trường hợp E, F là các không
gian Fréchet-Schwartz và hàm f xác định trên một tập con mở D trong E mà f
bị chặn trên các tập bị chặn.
Hàm phân hình trên tập con mở của C nhận giá trị trong một không gian
Banach được nghiên cứu bởi nhiều nhà toán học [52,92]. Đến năm 1982, Khuê [48]
đã nghiên cứu hàm phân hình trên một đa tạp phức nhận giá trị trên một không
gian lồi địa phương đầy đủ theo dãy. Cụ thể, Khuê đã chứng minh tập cực của
hàm phân hình giá trị lồi địa phương là rỗng hoặc là tập giải tích có đối chiều
bằng 1 [48, Corollary 1.1]. Cho E, F là các không gian lồi địa phương và hàm f
1


xác định trên một tập con mở, trù mật D0 của một tập mở D trong E, phân hình


€ D tồn tại lân cận Uz trong E và
hUz
⑤U ❳D , trong đó hUz , σUz là các
hàm f có biểu diễn địa phương là f ⑤Uz ❳D0 ✏
σUz z 0
hàm chỉnh hình nhận giá trị tương ứng trong F và trong C. Vấn đề đặt ra là tìm
trên D, nhận giá trị trên F. Khi đó, với mỗi z

điều kiện của các không gian E, F để tồn tại các hàm h € H ♣D, F q và σ € H ♣Dq
h
sao cho f ✏ trên D. Khi đó ta nói f có biểu diễn toàn cục. Đa tạp phức mà mọi
σ
hàm phân hình đều có biểu diễn toàn cục được gọi là có dạng Poincaré [46]. Tiếp
tục nghiên cứu vấn đề này với hàm phân hình nhận giá trị lồi địa phương đầy đủ
theo dãy, năm 1982, Khuê đã chứng minh rằng mỗi hàm phân hình trên một đa
tạp Stein nhận giá trị trong không gian lồi địa phương đầy đủ theo dãy thì có biểu
diễn toàn cục [48, Theorem 2.1].
Chúng ta biết rằng hàm phân hình yếu nhận giá trị trên CN có thể không phân

hình. Vì vậy, khi nghiên cứu về tính phân hình của hàm phân hình yếu người ta
cần chú ý đến tính chất của không gian F. Năm 1997, Đông và Hải [23] đã chứng
minh được rằng một hàm phân hình yếu f : X

Ñ F, trong đó X

là tập con mở

của Cn (tương ứng L-chính quy compact) và F là một không gian Fréchet có nửa
chuẩn liên tục (tương ứng có tính chất ♣DN q) là phân hình.


Bài toán thác triển chỉnh hình và thác triển phân hình được nghiên cứu bởi
nhiều nhà toán học như Grosse-Erdmann [28], Arendt và Nikolski [7], Bonet, Frerick
và Jordá [13],... Năm 1969, Bogdanowicz [11] đã chứng minh rằng nếu D1

⑨ D2 ⑨ C

là các miền và F là một không gian phức lồi địa phương Hausdorff, đầy đủ theo
dãy và f : D1

ÑF

là một hàm sao cho u ✆ f có thác triển chỉnh hình đến D2 với

mọi u € F ✶ thì f có một thác triển chỉnh hình đến D2 . Năm 2004, Grosse-Erdmann
đã mở rộng kết quả trên đối với các hàm nhận giá trị Fréchet từ một tập con

⑨ Ω xác định hội tụ đều địa phương trong H ♣Ωq, với Ω là một miền trong C.
Trong trường hợp này, hàm f xác định trên M thác triển được đến Ω nếu u ✆ f có
thác triển chỉnh hình đến Ω, với mỗi u € W , trong đó W là tập con tách điểm của
F ✶ và f bị chặn trên M ❳ K với K là tập con compact tùy ý của Ω.

M

Trong [33], Hải, Khuê và Nga đã giới thiệu một phiên bản của định lý Bogdanowicz đối với hàm phân hình trong trường hợp hàm f xác định trên một tập

⑨ G ⑨ Cn nhận giá trị trên không gian Banach F. Nếu với mỗi u € F ✶ mà
hàm u ✆ f có một thác triển phân hình đến G thì f được thác triển phân hình đến
mở X


G [33, Theorem 1]. Ngoài ra, các tác giả này còn chứng tỏ được rằng kết quả trên
2


vẫn đúng khi F là một không gian lồi địa phương đầy đủ theo dãy thỏa mãn F ✶ là
không gian Baire [33, Remark 1].
Tiếp tục nghiên cứu bài toán này trong trường hợp hàm một biến nhận giá trị
lồi địa phương, năm 2005, Jordá [45] chứng minh rằng hàm f : Ω1

Ñ E, trong đó

E là không gian lồi địa phương đầy đủ địa phương với đối ngẫu mạnh siêu thùng,
có thác triển phân hình đến Ω2 nếu mỗi hàm u ✆ f có thác triển phân hình đến Ω2
với mọi u

€ E ✶ [45, Theorem 12]. Nhận xét rằng, vì mọi không gian Baire là siêu

thùng [16, Observation 9.1.23] nên kết quả của Jordá là mở rộng của [33, Remark
1]. Sử dụng các kết quả trong [45, Theorem 12], Jordá chứng minh rằng hàm f có
thác triển phân hình đến Ω2 trong các trường hợp E là không gian Fréchet tách

biệt (distinguished) với Eβ✷ có chuẩn liên tục hoặc E là không gian Schwartz thùng

đầy đủ không chứa CN [45, Theorems 16,17 ].
Bài toán xác định bao chỉnh hình, bao phân hình và các đặc trưng của miền
chỉnh hình, phân hình được quan tâm bởi nhiều nhà toán học như Okuda và
Sakai [61], Siciak [83], Zeriahi [93],... Năm 1910, Levi [53] chứng minh rằng hàm
f ♣z, wq phân hình trên D ✂ ♣∆r ③∆q, với D là tập mở liên thông trong Cn , ∆r




tλ € C : ⑤λ⑤ ➔ r✉, ∆1 ✏ ∆ với r → 1, có thác triển phân hình đến D ✂ ∆r nếu giả
thiết thêm rằng f ♣z, .q có thác triển phân hình đến ∆r với mỗi z € A, với A là tập
con béo trong D.
Định lý Levi được mở rộng bởi Kneser [50] vào năm 1932 và chứng minh đầy
đủ bởi Okuda và Sakai [61] vào năm 1957. Định lý này đóng vai trò quan trọng
trong việc nghiên cứu các đặc trưng của miền phân hình. Năm 1963, Fuks [27] đã
chứng minh rằng mọi miền phân hình trong Cn là giả lồi theo nghĩa Hartogs. Năm
1967, Kajiwara và Sakai [46] đã chứng minh rằng bao phân hình của một miền trên
một đa tạp Stein tương ứng với một họ các hàm phân hình là pτ -lồi theo nghĩa
Docquier và Grauert [22], do đó nó là một đa tạp Stein [46, Lemma 5].
Trong trường hợp vô hạn chiều, Harita [35] có được kết quả tương tự như
trên đối với tích Descartes một họ đếm được các miền trong mặt phẳng phức.
Aurich [8, 9] chứng minh được bao phân hình trên một không gian Banach phức là
giả lồi. Cho Ω là không gian tôpô liên thông và ϕ là đồng cấu địa phương từ Ω vào
E. Khi đó ta sẽ nói cặp ♣Ω, ϕq là một miền trên E. Trong [36], Harita chứng minh
rằng bao phân hình của miền ♣Ω, ϕq trên không gian lồi địa phương Hausdorff đầy

đủ theo dãy trên C là miền giả lồi. Schottenloher [80,81] đã giải quyết bài toán Levi
đối với một miền trên không gian lồi địa phương Lindel¨of với biểu diễn Schauder
3


hữu hạn. Đặc biệt, miền giả lồi trên không gian Fréchet với cơ sở Schauder là miền
chỉnh hình. Do đó bao phân hình trên miền ♣Ω, ϕq trên không gian Fréchet phức
E với cơ sở Schauder là miền chỉnh hình. Đặc biệt, miền phân hình trên E trùng
với miền chỉnh hình.
Bài toán xác định tính chỉnh hình, miền chỉnh hình, phân hình trên các tập chữ
thập (cross sets) được quan tâm bởi nhiều nhà toán học Hartogs [37], Siciak [83],
Shiffman [86],... Kết quả đầu tiên trong vấn đề này là định lý Hartogs cổ điển [37].

Các nhà toán học như Siciak [82], Vân và Zeriahi [57], Shiffman [86]... nghiên cứu

trên các tập con đặc biệt của Cm n . Sau đó, Siciak [83], Vân và Zeriahi [58] có
được các kết quả cho các hàm giải tích thực. Mở rộng vấn đề trên, các nhà toán
¨
học quan tâm đến định lý chữ thập có kỳ dị, đầu tiên là Oktem
[62, 63] với kỳ dị
giải tích, sau đó được Jarnicki và Pflug tổng quát vào các năm 2000, 2001 [41, 42].
Tiếp theo, người ta quan tâm đến các định lý chữ thập có kỳ dị tổng quát hơn
như kỳ dị đa cực, kỳ dị giải tích,... trong các công trình của Jarnicki, Pflug và
Anh [2–6, 43, 65–69].
Đối với hàm phân hình, năm 1950, Rothstein [77] đã chứng minh định lý dạng
Hartogs cho hàm phân hình vô hướng, trong đó điều kiện để hàm phân hình xác
định trên Ω ✂ ∆ được thác triển phân hình đến Ω ✂ ∆r , với r

→ 1 được chỉ ra. Sau

đó, Kazarian [47] và Shiffman [85] mở rộng kết quả của Rothstein trong trường hợp

các tập đặc biệt trên Cn m . Năm 1970, bằng cách sử dụng hàm cực trị tương đối,
Siciak [82] đã thiết lập bao phân hình của hàm phân hình tách biến trong trường
hợp tập chữ thập chứa tích các miền trong C. Sau đó, Quang và Đại [71] đã mở

rộng kết quả của Siciak đối với lớp hàm ♣☎, W q-chỉnh hình. Năm 2003, Jarnicki và
Pflug [41] chứng minh định lý Rothstein đối với hàm phân hình vô hướng f xác
định trên ∆p ✂ ∆q . Sử dụng định lý Rothstein [77] và kết quả của Siu [87], Jarnicki

✂ ∆q
được thác triển phân hình đến một lân cận mở của tập chữ thập chứa ∆p ✂ ∆q .


và Pflug đã đưa ra các điều kiện để hàm phân hình f xác định trên ∆p

Chúng ta biết rằng bao chỉnh hình của một miền Riemann trên Cn trùng với bao
phân hình [40, Theorem 3.6.6]. Vì vậy, trong [41], Jarnicki và Pflug đã đặt ra câu
hỏi rằng vấn đề còn đúng không trong trường hợp hàm phân hình tách biến xác
định trên X ③M, trong đó X là tập chữ thập và M là kỳ dị đa cực? Trước đó, vấn
đề này được nghiên cứu trong trường hợp M

✏ ❍ bởi Sakai [79] vào năm 1957,

Kazarian [47] vào năm 1976 và Shiffman [86] vào năm 1989.
Theo dòng nghiên cứu này, chúng tôi quan tâm đến bài toán thác triển phân
4


hình của một số lớp hàm phân hình yếu. Mục tiêu của luận án là:
• Giải quyết bài toán thác triển phân hình trong một số trường hợp tổng
quát, cụ thể là thay việc xem xét D là tập con của Cn bởi D là tập con
của một không gian Fréchet và không gian F là Fréchet, trong đó fz là hàm

♣F, W q-phân hình.

• Mở rộng các định lý Hartogs và định lý chữ thập cho các hàm ♣☎, W q-phân
hình tách biến trong trường hợp hàm nhận giá trị véctơ.
• Nghiên cứu bài toán thác triển phân hình của các hàm ♣☎, W q-phân hình.
Luận án, ngoài lời nói đầu, lời cảm ơn và kết luận, gồm có 4 chương và tài liệu
tham khảo.
Trong Chương 1, chúng tôi trình bày các kiến thức chuẩn bị như các không
gian lồi địa phương và các không gian con tách điểm, các khái niệm về hàm chỉnh
hình, hàm phân hình giá trị véctơ. Mục đích chính của chương này là nghiên cứu

về miền tồn tại của hàm phân hình giá trị véctơ. Ở đây, chúng tôi có được kết quả
là tập

Zfm :✏ tu € F ✶ : Dfm

✏ Dum✆f ✉

trù mật trong F ✶ , trong đó Dfm là miền tồn tại của hàm phân hình f. Ta nhận
xét rằng kết quả này là tương tự như của Hirschowitz [38] đối với lớp hàm chỉnh
hình. Để chứng minh kết quả trên, chúng ta cần một số kết quả bổ trợ. Bổ đề 1.3.2
trình bày về thác triển hàm phân hình giá trị Fréchet qua một tập con S có đối

➙ 2. Dựa vào Bổ đề 1.3.2, chúng tôi chứng minh mọi hàm phân hình f
trên ♣D③S q ❨ G nhận giá trị trên không gian Banach F được thác triển phân hình
đến D với S là tập giải tích trong D với codim S ✏ 1 và G là tập con mở của D
codim S

sao cho mọi nhánh bất khả quy với S đều có giao với G.
Trong Chương 2, dựa vào ý tưởng của Arendt và Nikolski [7], Grosse-Erdmann
[28, 29], chúng tôi nghiên cứu về thác triển phân hình cũng như miền phân hình
của lớp các hàm ♣☎, W q-phân hình tách biến. Để giải quyết bài toán trên, trước hết

chúng tôi mở rộng định lý thác triển Levi đối với các hàm nhận giá trị véctơ f ♣z, tq

xác định trên D ✂ ♣∆r ③∆q và có thác triển ♣☎, W q-phân hình theo biến phức t với
mọi z

€ D✝, một tập con trù mật trong D.
5



Sử dụng các kết quả của Frerick, Jordá và Wengenroth [26] và của GrosseErdmann [29], cải tiến các lập luận trong Siu [87], chúng tôi mở rộng kết quả của
định lý thác triển Levi đối với các hàm nhận giá trị trên một không gian lồi địa
phương đầy đủ theo dãy (hoặc đầy đủ địa phương) và D là tập con mở của Cn .
Chúng tôi khảo sát các mở rộng của định lý thác triển Levi dưới nhiều trường
hợp khác nhau của tập con W. Trong trường hợp W là không gian con xác định
tính bị chặn thì chúng tôi sử dụng kết quả của Frerick, Jordá và Wengenroth [26,
Theorem 2.2] đối với các hàm chỉnh hình yếu giá trị véctơ từ một tập con duy nhất
đối với các tử địa phương và mẫu địa phương của hàm fz . Điều này chỉ ra tính bị
chặn địa phương của các hàm thác triển u④
✆ fz với mọi u

€W

là cần thiết. Trong

trường hợp W yếu hơn, cụ thể W tách điểm nhưng không xác định tính bị chặn
thì chúng tôi cần thêm giả thiết rằng họ tu④
✆ fz ✉u€W thỏa mãn sup ot♣u④
✆ f z q ➔ ✽,
ở đây ot ♣g q là số nguyên không âm N sao cho ♣λ ✁ tqN g ♣λq có thác triển chỉnh hình
đến t.

€ D✝
sao cho tập cực của u③
✆f

Chú ý rằng, trong các kết quả trên chúng tôi cần giả thiết thêm với mỗi z
tồn tại tập Pz


⑨ ∆r

không có điểm giới hạn trong ∆r

chứa trong Pz với mọi u € W. Tuy nhiên, điều kiện này có thể bỏ qua trong trường
hợp W

✏ F✶

và F thỏa mãn một trong các điều kiện: đầy đủ theo dãy sao cho

Fβ✶ siêu thùng; thùng Schwartz đầy đủ mà không chứa CN ; Fréchet tách biệt sao

cho Fβ✷ có chuẩn liên tục (Hệ quả 2.2.9 và Hệ quả 2.2.10). Chúng tôi có được điều
này bởi vì mọi hàm phân hình yếu trên tập con mở khác rỗng trong C nhận giá
trị trong không gian lồi địa phương F là phân hình. Ta nhắc lại hàm f : D
được gọi là phân hình rất yếu nếu u ✆ f là phân hình với mọi u

ÑF

€ F ✶ (xem [45]).

Hơn nữa, chúng tôi xây dựng một ví dụ để chứng tỏ rằng tính bị chặn địa phương
trên D ✂ ♣∆r ③∆q không thể bỏ qua trong trường hợp không gian F là đầy đủ địa
phương nhưng không đầy đủ theo dãy (Ví dụ 2.3.2). Chúng tôi cũng đưa ra một
ví dụ liên quan đến Định lý 2.2.6 trong trường hợp W là tách điểm nhưng không
xác định tính bị chặn (Mệnh đề 2.3.4).
Áp dụng các kết quả trong Mục 2.2, chúng tôi nghiên cứu về định lý thác triển
Levi đối với hàm giá trị véctơ vô hạn chiều. Một vài kết quả bổ trợ như định lý
Hartogs cho các hàm ♣☎, W q-chỉnh hình trên các tập chữ thập (Mệnh đề 2.4.6) và

thác triển chỉnh hình từ tập con trù mật trong không gian Fréchet (Mệnh đề 2.4.7)
cũng được nghiên cứu ở đây để chuẩn bị cho chứng minh kết quả chính mục này.
Các định lý chữ thập đối với các hàm ♣☎, W q-phân hình tách biến là quan tâm
6


chính của Chương 3. Trong [41], Jarnicki và Pflug đã mở rộng định lý Kazarian
trên các tập chữ thập và xét định lý chữ thập đối với kỳ dị đa cực. Một trong những
bước quan trọng trong chứng minh của định lý mở rộng chữ thập là sử dụng định
lý Rothstein. Định lý Rothstein cổ điển nói rằng hàm phân hình f xác định trên
Ω ✂ ∆, trong đó Ω là một miền trong Cn được thác triển phân hình đến Ω ✂ ∆r ,
với r

→ 1 nếu với mỗi z € Ω thì fz được thác triển phân hình đến ∆r hoặc tz ✉ ✂ ∆

được chứa trong tập cực của f. Do đó, dựa vào các kết quả trong Chương 2, chúng
tôi xây dựng các định lý mở rộng kết quả của Rothstein (Định lý 3.1.1), Kazarian
(Định lý 3.2.1) và định lý chữ thập với kỳ dị đa cực cho lớp hàm ♣☎, W q-phân hình
nhận giá trị trên không gian lồi địa phương đầy đủ địa phương.
Sử dụng các kết quả này, chúng tôi mở rộng định lý chữ thập cho các hàm
phân hình tách biến với kỳ dị đa cực đối với lớp các hàm ♣☎, W q-phân hình tách
biến. Để thực hiện điều đó, trước tiên chúng tôi mở rộng các kết quả về thác triển
chỉnh hình của các hàm ♣☎, W q-chỉnh hình trên các tập chữ thập với kỳ dị đa cực
(Định lý 3.3.1 và Định lý 3.3.2). Như trong [41], với sự trợ giúp của các kết quả
này, chúng tôi nhận được định lý chữ thập cho các hàm ♣☎, W q-phân hình với kỳ dị
đa cực (Định lý 3.3.4).
Trong Chương 4, chúng tôi trình bày một số điều kiện yếu để một hàm ♣☎, W qphân hình là phân hình và nghiên cứu bài toán thác triển phân hình cho lớp hàm
này. Để chuẩn bị cho kết quả chính trong chương này, chúng tôi cần một số kết
quả tương tự như định lý Zorn (ta sẽ gọi là các định lý kiểu Zorn). Định lý được
chứng minh vào năm 1945 bởi Max Zorn, người nổi tiếng bởi Bổ đề Zorn. Zorn

đã chứng minh với mọi tập mở D trong không gian Banach E, mọi hàm chỉnh
hình Gâteaux mà liên tục tại một điểm trong D thì chỉnh hình trên D (Định lý
Zorn). Định lý này không được nghiên cứu mở rộng trong thời gian dài, mãi cho
đến những năm 1960 khi một số nhà toán học người Pháp công bố các kết quả về
vấn đề này trên các không gian lồi địa phương. Hơn nữa, nhóm tác giả này còn
trình bày một số ví dụ để trả lời câu hỏi liệu các kết quả này còn đúng với mọi
không gian lồi địa phương hay không. Không gian lồi địa phương E được gọi là có
tính chất Zorn (không gian Zorn) nếu trên không gian đó định lý Zorn thỏa mãn.
Trong [18], Dineen đã mở rộng định lý Zorn đối với các lớp không gian khác nhau
và các định nghĩa khác của tính chỉnh hình. Bên cạnh đó, Dineen đã giới thiệu các
không gian F -Zorn mạnh và F -Zorn yếu mà trên đó các hàm chỉnh hình Gâteaux
giá trị véctơ thỏa mãn và không thỏa mãn định lý Zorn. Với kết quả này, Dineen
7


đã chỉ ra được nhiều ví dụ về không gian thỏa mãn định lý Zorn. Dineen cũng đã
mở rộng định lý Zorn đối với tính liên tục tại một điểm bất kỳ, cũng như mở rộng
định lý Hartogs cho các hàm chỉnh hình tách biến.
Bài toán về tính chất Zorn có tính hấp dẫn riêng, tuy nhiên trong Chương 4
chúng tôi chỉ nghiên cứu nó như một công cụ để giải quyết vấn đề đang quan tâm
trong luận án. Chúng tôi sẽ khảo sát định lý kiểu Zorn cho lớp hàm chỉnh hình
Gâteaux mà chúng bị chặn trên các tập bị chặn. Không gian lồi địa phương E thỏa
mãn tính chất này được gọi là không gian BB-Zorn hay có tính chất BB-Zorn.
Trong Mục 4.1, chúng tôi giới thiệu các không gian (BB)-Zorn trù mật trong
một không gian Fréchet. Với không gian Fréchet-Schwartz E có cơ sở Schauder

€ ♣Ωr B q với B € K♣E q, họ tất cả các
r € K♣E q với B
r ⑩B
tập lồi, cân, compact trong E thì tồn tại tập không đa cực B

sao cho ♣EBr , τE q có tính chất (BB)-Zorn (Định lý 4.1.5). Hơn nữa, chúng tôi khẳng
r q được thác
định rằng mọi hàm chỉnh hình bị chặn trên các tập bị chặn trong D♣B
tuyệt đối, chúng tôi chứng minh rằng nếu E

triển chỉnh hình đến D, trong đó D là một miền trong không gian E.
Chúng tôi trình bày trong Mục 4.2 các mở rộng kết quả của Bonet, Jordá và
Maestre [14, Theorem 5] và của Grosse-Erdmann [29, Theorem 4] đối với miền trên
C. Ở đây, chúng tôi nghiên cứu bài toán đối với lớp các hàm ♣F, W q-phân hình
trong cả hai trường hợp bị chặn địa phương và không bị chặn địa phương trên Cn ,
n

➙ 2, bằng cách xem xét một số điều kiện của không gian F

và không gian con

W (Định lý 4.2.6). Dựa vào các kết quả trên và tính chất (BB)-Zorn của ♣EB , τE q
chúng tôi nghiên cứu bài toán thác triển phân hình lên toàn bộ miền D từ một
tập con trù mật D♣B q ✏ D ❳ EB cho các hàm ♣F, W q-phân hình nhận giá trị trên
một không gian Fréchet F, trong đó E là một không gian Fréchet có chứa một tập
con compact không đa cực (Định lý 4.2.8 và Định lý 4.2.9). Trong các trường hợp
này, chúng tôi cần thêm vào tính chất “bị chặn trên các tập bị chặn” của các hàm

♣☎, W q-phân hình.
Ở Mục 4.3, bằng cách sử dụng công cụ các bó đính, chúng tôi nghiên cứu miền
phân hình của các hàm ♣☎, W q-phân hình. Một số điều kiện của không gian F và

tập con W được chúng tôi đưa ra để mỗi hàm ♣F, W q-phân hình có thể được thác
triển phân hình từ một miền Hartogs trong Cn đến bao chỉnh hình (Định lý 4.3.1).
Tiếp đó, trên cơ sở định lý này, chúng tôi nhận được một số lớp hàm ♣☎, W q-phân


hình giá trị Fréchet trên một miền Riemann trên một không gian Fréchet E có
r của D trong trường hợp E
thể được thác triển phân hình đến bao chỉnh hình D

8


là không gian hạch có tính chất Levi (Định lý 4.3.3) hoặc có cơ sở Schauder tuyệt
đối và chứa một tập con compact lồi, cân không đa cực (Định lý 4.3.4).
Trong phần cuối của Chương 4, bằng cách sử dụng các kết quả của Mục 4.3,
chúng tôi tổng quát kết quả của Ramis đối với lớp các hàm ♣☎, W q-phân hình giá
trị Fréchet. Giả sử W

⑨ F ✶ là không gian con tách điểm và không gian Fréchet E

chứa một tập con compact lồi cân, không đa cực và thỏa mãn một trong hai điều
kiện: hạch hoặc có cơ sở Schauder tuyệt đối. Khi đó mỗi hàm ♣F, W q-phân hình

bị chặn trên các tập bị chặn trong D♣B q③S có một thác triển phân hình đến D,
trong đó B là tập con không đa cực của E và S là tập con giải tích của D với

codim S

➙ 2 (Định lý 4.4.1 và Định lý 4.4.2).

Luận án được viết dựa trên các công trình [72–74]. Các kết quả của luận án
được báo cáo tại:
• Seminar Khoa Toán, Trường Đại học Quy Nhơn;
• Hội nghị Toán học Miền Trung-Tây Nguyên tại Quy Nhơn, 12-14/08/2015;

• Hội nghị Toán học phối hợp Việt-Hàn tại Đà Nẵng, 20-24/02/2017.

9


Chương 1

MIỀN TỒN TẠI CỦA HÀM
PHÂN HÌNH GIÁ TRỊ VÉCTƠ
Trong chương này, chúng tôi trình bày một số kết quả về miền tồn tại của hàm
phân hình giá trị véctơ.
Phần đầu của chương này là một số quy ước, ký hiệu và một số kiến thức về
không gian lồi địa phương mà chúng sẽ được sử dụng trong luận án, chẳng hạn các
không gian đầy đủ địa phương, đầy đủ theo dãy, các tập con tách điểm. Tiếp sau
đó, chúng tôi giới thiệu các khái niệm về hàm chỉnh hình, hàm phân hình giá trị
véctơ. Ở phần cuối của chương là các kết quả về miền tồn tại của hàm phân hình
giá trị véctơ . Một số bổ đề về thác triển phân hình qua các tập con giải tích cũng
được trình bày ở đây.
Các kết quả chính của chương này được trích từ hai công trình [72, 73].

1.1

Kiến thức tổng quan về không gian lồi địa
phương

Trong suốt luận án này, nếu không giải thích gì thêm thì ta quy ước không gian
lồi địa phương là một không gian véctơ phức với tôpô lồi địa phương Hausdorff.
Đối với không gian Fréchet E, ta luôn giả thiết rằng cấu trúc lồi địa phương

t⑥ ☎ ⑥k ✉. Khi đó ta ký hiệu Ek là bổ

sung đầy đủ của không gian định chuẩn chính tắc E ④ ker ⑥ ☎ ⑥k và ωk : E Ñ Ek là
ánh xạ chính tắc và Uk ✏ tx € E : ⑥x⑥k ➔ 1✉. Đôi khi để thuận tiện ta giả thiết

của nó được sinh bởi dãy tăng các nửa chuẩn

10


tUk ✉k€N là cơ sở lân cận của 0 và ta ký hiệu U ♣E q. Tập các tập con lồi, cân, đóng, bị
chặn trong E được ký hiệu là B ♣E q và K♣E q là tập tất cả các tập lồi, cân, compact
trong E.
Nếu B là tập con lồi, cân của E ta xác định chuẩn
đối ngẫu của E, với giá trị trong r0,  ✽s như sau

⑥ ☎ ⑥✝B

trên E ✶ , không gian

⑥u⑥✝B ✏ supt⑤u♣xq⑤ : x € B ✉.
Thay cho

⑥ ☎ ⑥✝U

k

ta viết

⑥ ☎ ⑥✝k . Ký hiệu EB

là bao tuyến tính của B và nó sẽ trở


thành không gian định chuẩn một cách chính tắc nếu B bị chặn.

1.1.1

Một số lớp không gian lồi địa phương

Định nghĩa 1.1.1 ([16]). Không gian lồi địa phương E được gọi là
(i) đầy đủ địa phương nếu không gian EB là Banach với mọi B

€ B♣E q;

(ii) đầy đủ theo dãy nếu mọi dãy Cauchy trong E đều hội tụ;
(iii) thùng nếu mọi thùng trong E là lân cận của 0 trong E;
(iv) siêu thùng nếu với mỗi dãy tăng các không gian con ♣En qn của E phủ E thì
tồn tại p sao cho Ep là một không gian thùng trù mật trong E.
Nhận xét 1.1.2.

(i) Mọi không gian lồi địa phương đầy đủ theo dãy thì đầy

đủ địa phương và tồn tại không gian đầy đủ địa phương nhưng không đầy
đủ theo dãy (xem [16, Example 5.1.12]).
(ii) Mọi không gian Baire là siêu thùng (xem [16, Definition 9.1.22]).
(iii) Mọi không gian có đối ngẫu mạnh siêu thùng thì không chứa không gian các
dãy số phức ω (xem [12, Proposition 4]).

1.1.2

Các tập con tách điểm


Trong phần này, ta nhắc lại các khái niệm về các tập con tách điểm như: xác
định tính bị chặn, xác định tôpô trên một không gian lồi địa phương.

11


Định nghĩa 1.1.3 ([7]). Cho F là không gian lồi địa phương và W

⑨ F ✶. Tập W

được gọi là
(i) tách điểm nếu u♣xq ✏ 0 với mọi u € W suy ra x ✏ 0;
(ii) xác định tính bị chặn nếu mọi tập con B
trong C với mọi u € W ;

⑨F

là bị chặn khi u♣B q là bị chặn

(iii) xác định tôpô của F nếu tôpô của F là tôpô hội tụ đều trên các tập bị chặn
của F ✶ chứa trong W.

Nhận xét 1.1.4.

(i) Nếu W

⑨ F ✶ xác định tính bị chặn trên F

hoặc xác định


tôpô của F thì W là tách điểm.
(ii) W

⑨ F ✶ tách điểm nếu và chỉ nếu spanW

(iii) W



trù mật trong F ✶ theo tôpô ✝ yếu.

F ✶ xác định tính bị chặn nếu và chỉ nếu mọi tập bị chặn theo tôpô

σ ♣F, W q thì bị chặn.
Ví dụ 1.1.5.

(i) Cho X là một không gian Banach thì W

✏ X ✶ là xác định tính

bị chặn.
(ii) Cho X

✏ C r0; 1s và W ✏ span tδt : t € r0; 1s✉ ⑨ X ✶, với δt là hàm Dirac sinh

bởi t, là tập xác định tôpô nhưng không xác định tính bị chặn.

1.2
1.2.1


Hàm chỉnh hình, hàm phân hình
Khái niệm hàm chỉnh hình

⑨E
là mở, D ✘ ❍. Hàm f : D Ñ F được gọi là hàm chỉnh hình nếu f liên tục và u ✆ f
là hàm chỉnh hình Gâteaux với mọi u € F ✶ , trong đó F ✶ là không gian các phiếm

Định nghĩa 1.2.1 ([19]). Cho E và F là các không gian lồi địa phương và D

hàm tuyến tính liên tục trên F.
Định nghĩa 1.2.2 ([19]). Một miền Riemann (hay mặt Riemann) trên một không
gian lồi địa phương E là một cặp ♣D, pq, trong đó D là không gian tôpô Hausdorff
và p : D

Ñ E là đồng phôi địa phương.

12


Nếu U là tập con mở trong D và p⑤U : U

Ñ E là một đẳng cấu thì ta gọi ♣U, pq
✕ p♣U q. Do đó

1
✁1 và ký hiệu U
hoặc U là bản đồ trong D và viết p✁
U thay cho ♣pU q

miền Riemann trên E có dạng là một đa tạp trên E với phép chiếu p xác định tọa

độ địa phương trên toàn bộ D.
Định nghĩa 1.2.3 ([19]). Cho E, F là các không gian lồi địa phương và ♣D, pq là

Ñ F được gọi là chỉnh hình tại điểm z € D
✕ p♣V q và hàm chỉnh hình g trên p♣V q sao cho

một miền Riemann trên E. Hàm f : D
nếu tồn tại lân cận V của z với V
f

✏ g ✆ p trên V.

Định nghĩa 1.2.4 ([25]). Cho X và Y là các đa tạp phức có số chiều tương ứng

€X
tồn tại bản đồ địa phương ♣U, φq trên X và ♣V, ψ q trên Y sao cho p € U, f ♣U q ⑨ V
và ánh xạ fr ✏ ψ ✆ f ✆ φ✁1 : ϕ♣U q Ñ ψ ♣V q ⑨ Cm chỉnh hình trên tập mở ϕ♣U q ⑨ Cn .

là n và m. Ánh xạ liên tục f : X

ÑY

được gọi là chỉnh hình nếu với mỗi p

Ta ký hiệu H ♣D, F q là không gian véctơ các hàm chỉnh hình trên D nhận giá
trị trên F và trang bị trên đó tôpô compact mở τ0 . Trong trường hợp F

✏ C ta

viết H ♣Dq thay cho H ♣D, Cq. Ký hiệu H ✽ ♣D, F q là không gian con tất cả các hàm

chỉnh hình bị chặn của H ♣D, F q và trong trường hợp F

✏ C, để đơn giản ta viết

H ✽ ♣Dq thay cho H ✽ ♣D, Cq. Không gian các hàm chỉnh hình từ D vào F và bị

chặn trên tất cả các tập bị chặn trong D được ký hiệu là HB ♣D, F q và khi F

ta viết HB ♣Dq thay cho HB ♣D, Cq.

✏C

Ñ F, ta ký hiệu Ω♣f q là tập các điểm z thuộc D sao cho f
chỉnh hình tại z. Tập hợp S ♣f q :✏ D③Ω♣f q được gọi là tập kỳ dị của f.
Với mỗi hàm f : D

Định nghĩa 1.2.5 ([40]). Cho X là một miền Riemann trên Cn và M là tập con

⑨ X thì D③M là liên thông và trù mật trong
D. Cho ❍ ✘ F ⑨ H ♣X ③M, F q. Ta nói điểm a € M là không kỳ dị đối với họ F (và
viết a € Mns F ) nếu tồn tại một lân cận U của a sao cho mỗi hàm f € F tồn tại
fr € H ♣U, F q sao cho fr ✏ f trên U ③M.
Nếu a € Ms,F :✏ M ③Mns,F thì ta nói a là kỳ dị đối với họ F .
Nếu Mns,F ✏ ❍ hay Ms,F ✏ M thì ta nói M là kỳ dị đối với họ F .
Đặc biệt, nếu F ✏ H ♣U ③M, F q thì ta nói M là kỳ dị.
đóng của X sao cho với mọi miền D

Ví dụ 1.2.6. Cho f là ✦
hàm
chỉnh hình khác 0 trên X


1
Khi đó M kỳ dị đối với f .
13

⑨ Cn và đặt M ✏ f ✁1♣0q.


1.2.2

Khái niệm hàm phân hình

Định nghĩa 1.2.7. Cho E, F là các không gian lồi địa phương và D0 là tập con
mở trù mật của tập mở D trong E. Ta nói hàm f : D0
D nếu với mọi z
hUz : Uz

Ñ F , σU

€D

z

: Uz

ÑF

là phân hình trên

tồn tại lân cận Uz của z trong E và các hàm chỉnh hình


Ñ C sao cho


f ✞Uz ❳D0

✏ hσU

z

Uz




Uz ❳D0 .

hUz
được gọi là biểu diễn địa phương của hàm f tại z và các hàm hUz và
σUz
tương ứng được gọi là tử và mẫu của biểu diễn địa phương tại z của hàm f.

Khi đó
σUz

Năm 1982, Khuê [48] đã chứng minh nếu D là một đa tạp Stein, F là không gian
h
lồi địa phương đầy đủ theo dãy thì biểu diễn trên là toàn cục, nghĩa là f ✏ ,
σ
trong đó h € H ♣D, F q và σ € H ♣Dq.

Ta ký hiệu
M ♣D, F q ✏ tf : D

Ñ F phân hình trên D✉ và

M ♣Dq ✏ M ♣D, Cq.

Ta sử dụng
P ♣f q ✏ tz

€ D : tồn tại một biểu diễn địa phương hσU

I ♣f q ✏ tz

€ D : với mọi biểu diễn địa phương hσU

z

Uz

z

Uz

sao cho hUz ♣z q ✘ 0, σUz ♣z q ✏ 0✉;

thì hUz ♣z q ✏ 0, σUz ♣z q ✏ 0✉

để ký hiệu là tập cực và tập bất định của f. Trong [48], Khuê đã chỉ ra rằng P ♣f q
và I ♣f q là các tập giải tích trong D, hơn nữa codim P ♣f q ➙ 1 và codim I ♣f q ➙ 2.


1.2.3
1.2.3.1

Các tập đa cực, đa chính quy, hàm cực trị tương đối
Các tập đa cực

Cho E là một không gian véctơ tôpô và D là một tập mở trong E. Hàm nửa
liên tục trên ϕ : D
b € E thì hàm

Ñ r✁✽,  ✽q được gọi là đa điều hòa dưới nếu với mọi a € D và
λ ÞÑ ϕ♣a   λbq

là hàm điều hòa dưới trên một lân cận của 0 € C.
Tập hợp tất cả các hàm đa điều hòa dưới trên Ω được ký hiệu là P SH ♣Ωq.
14


Ví dụ 1.2.8. Cho E là không gian lồi địa phương, D
không gian véctơ với nửa chuẩn
z

⑥ ☎ ⑥. Nếu f

:D

ÞÑ log ⑥f ♣z q⑥ là đa điều hòa dưới trên D.

ÑF


⑨ E là tập con mở và F



là hàm chỉnh hình thì hàm

⑨ D được gọi là đa cực trong D nếu tồn tại một
hàm đa điều hòa dưới ϕ trên D sao cho ϕ ✙ ✁✽ trên bất kỳ thành phần liên thông

nào của D và ϕ✞B ✏ ✁✽.
Định nghĩa 1.2.9. Tập con B

Ta nhận xét rằng hợp hữu hạn các tập đa cực là một tập đa cực. Hơn nữa,
trong Cn , hợp đếm được các tập đa cực là một tập đa cực. Tuy nhiên, điều này
không đúng trong trường hợp không gian Fréchet vô hạn chiều (xem [18, Exercise
6.35]). Năm 1968, Lelong chứng minh trong không gian H ♣Cn q thì mọi tập bị chặn
đều đa cực. Trong trường hợp không gian hữu hạn chiều, tập E được gọi là đa cực
toàn cục nếu tồn tại ϕ

€ P SH ♣Cnq, ϕ ✘ ✁✽ sao cho E ⑨ tz € Cn

: ϕ♣z q

✏ ✽✉.

Năm 1978, Josefson ( [49, Theorem 4.7.4]) đã chứng tỏ rằng các khái niệm tập đa
cực và tập đa cực toàn cục là trùng nhau trên Cn .
1.2.3.2


Hàm cực trị tương đối và tập đa chính quy

Định nghĩa 1.2.10 ([43]). Cho K

⑨ Ω với Ω là tập mở trong không gian phức

X. Đặt



U ♣K, Ωq

✏ tu € P SH ♣Ωq : u✞K ↕ 0; u ↕ 1✉.
Ký hiệu hK,Ω là hàm của cặp ♣K, Ωq được xác định bởi
hK,Ω ♣z q ✏ suptu♣z q : u € U ♣K, Ωq✉.
Đặt ω ♣☎, K, Ωq :✏ h✝K,Ω là chính quy hóa nửa liên tục trên của hK,Ω
ω ♣z, K, Ωq ✏ lim sup hK,Ω ♣z ✶ q, z
Ω◗z ✶ Ñz

€Ω

và được gọi là hàm cực trị tương đối của K tương ứng với Ω.
Nhận xét 1.2.11.
(ii) P

(i) P

⑨ Ω ⑨ Cn là tập đa cực nếu và chỉ nếu h✝P,Ω ✑ 1.

✏ tz € K : hK,Ω♣z q ➔ h✝K,Ω♣z q✉ là tập đa cực.


(iii) Nếu K

⑨ Cn và K không đa cực thì h✝K,C ✑ 0.
n

15


Định nghĩa 1.2.12 ([93]). Cho K
x0

€ Ω.

⑨ Ω với Ω là tập mở trong đa tạp phức X và

(i) K được gọi là L-chính quy tại x0 nếu ω ♣x0 , K, Ωq ✏ 0.
(ii) K được gọi là L-chính quy địa phương tại x0 nếu U

❳ K là L-chính quy tại

x0 với mọi lân cận U của x0 .
(iii) K được gọi là đa chính quy (tương ứng, đa chính quy địa phương) nếu K là
L-chính quy (tương ứng, L-chính quy địa phương) tại mọi điểm a € K.
Ký hiệu K ✝ là tập tất cả các điểm đa chính quy địa phương của K (trong Ω).
Nhận xét 1.2.13.

(i) Nếu K là tập đa cực thì K ✝

✏ ❍.


(ii) Nếu K không đa cực thì K ✝ không đa cực và K ③K ✝ là tập đa cực.
(iii) Nếu K là tập đa chính quy địa phương và P

⑨ K là tập đa cực thì K ③P



tập đa chính quy địa phương.
(iv) Mọi tập mở trong không gian hữu hạn chiều là đa chính quy địa phương.

1.2.4

Các hàm chỉnh hình, phân hình trên các tập chữ thập

Định nghĩa 1.2.14 ([43]). Cho N
trong đó Dj là các miền, j

€ N, N ➙ 2 và ∅ ✘ Aj ⑨ Dj ⑨ Ck , kj € N,
j

✏ 1, . . . , N. Tập hợp

X :✏ X♣A1 , . . . , AN ; D1 , . . . , DN q



N

j ✏1


A1 ✂ ☎ ☎ ☎ ✂ Aj ✁1 ✂ Dj

✂ Aj 1 ✂ ☎ ☎ ☎ ✂ AN ⑨ Ck  ☎☎☎ k
1

N

được gọi là tập chữ thập N -lá liên kết với N cặp ♣Aj , Dj q, . . . , ♣AN , DN q.

€ N, N ➙ 2 và ∅ ✘ Aj ⑨ Dj ⑨ Ck , kj € N,
✏ 1, . . . , N và cho X :✏ X♣A1, . . . , AN ; D1, . . . , DN q.

Định nghĩa 1.2.15 ([43]). Cho N
trong đó Dj là các miền, j
Đặt
♣ :✏
X





j

♣z1, . . . , zN q € D1 ✂ ☎ ☎ ☎ ✂ DN :
16

N


j ✏1




ω ♣zj , Aj , Dj q ➔ 1 .



€ N, N ➙ 2 và
∅ ✘ Aj ⑨ Dj ⑨ Ck , kj € N, trong đó Dj là các miền. Hơn nữa, cho Sj ⑨ A✶j ✂ A✷j ,
j ✏ 1, . . . , N, trong đó A✶j ✏ A1 ✂ ☎ ☎ ☎ ✂ Aj ✁1 và A✷j ✏ Aj  1 ✂ ☎ ☎ ☎ ✂ AN . Tập hợp
Định nghĩa 1.2.16 ([43] Tập chữ thập N -lá tổng quát). Cho N
j

T :✏ T♣A1 , . . . , AN ; D1 , . . . , DN ; S1 , . . . , SN q
:✏

N


t♣z ✶, zj , z ✷q € A✶j ✂ Dj ✂ A✶j : ♣z ✶, z ✷q ❘ Sj ✉

j ✏1

được gọi là tập chữ thập N -lá tổng quát liên kết với N bộ ba ♣Aj , Dj , Sj q. Trong
đó, z ✶

✏ ♣z1, . . . , zj✁1q € A✶j và z ✷ ✏ ♣zj 1, . . . , zN q € A✷j .


Nhận xét 1.2.17.
(ii) X

(i) Rõ ràng T

⑨ X.

✏ X♣A1, . . . , AN ; D1, . . . , DN q ✏ T♣A1, . . . , AN ; D1, . . . , DN ; ∅, . . . , ∅q.

(iii) Nếu N

✏ 2 thì T♣A1, A2; D1, D2; S1, S2q ✏ X♣A1③S2, A2③S1; D1, D2q. Cho nên

mọi tập chữ thập 2-lá tổng quát là tập chữ thập 2-lá.
♣ là tập mở giả lồi trong Cn . Ở
(iv) Nếu D1 , D2 , . . . , Dn là các tập giả lồi thì X

đây, ta nhắc lại, tập D

⑨ Cn là tập giả lồi nếu với mỗi tập con compact K


trong D thì bao đa điều hòa dưới K
P SH ♣Dq là compact tương đối.

(v) Nếu A1 , A2 , . . . , An là các tập đa chính quy địa phương thì X

⑨ X♣

♣ là

và X

tập liên thông.

Mệnh đề sau đây cho ta tính chất của tập X.

€ N, N ➙ 2 và ∅ ✘ Aj ⑨ Dj ⑨ Ck , kj € N, trong
đó Dj là các miền, Aj ⑨ Dj là các tập đa chính quy địa phương, j ✏ 1, . . . , N và
cho X :✏ X♣A1 , . . . , AN ; D1 , . . . , DN q. Đặt
Mệnh đề 1.2.18 ([43]). Cho N

♣ :✏
X





j

♣z1, . . . , zN q € D1 ✂ ☎ ☎ ☎ ✂ DN :

N

j ✏1




ω ♣zj , Aj , Dj q ➔ 1 .



Khi đó
ω ♣z, A1 ✂ ☎ ☎ ☎ ✂


AN , X

q✏

N

j ✏1

ω ♣zj , Aj , Dj q,

17

z


✏ ♣zj , z2, . . . , zN q € X.


€ N, N ➙ 2 và ∅ ✘ Dj ⑨ Ck là các miền, kj € N,
j ✏ 1, . . . , N. Cho U là tập con mở của D1 ✂ ☎ ☎ ☎ ✂ DN và M ⑨ U là tập đóng tương
đối. Với ♣a1 , . . . , aN q € ♣D1 ✂☎ ☎ ☎✂ DN q❳ U và j ✏ 1, . . . , N ta định nghĩa thớ (fiber)
của M và thớ của U trên ♣a✶j , ☎, a✷j q là
Định nghĩa 1.2.19. Cho N


j

€ Dj : ♣a✶j , zj , a✷j q € M ✉,
U♣a✶ ,☎,a✷ q :✏ tzj € Dj : ♣a✶j , zj , a✷j q € U ✉.

M♣a✶j ,☎,a✷j q :✏ tzj
j

j

€ N, N ➙ 2, và ∅ ✘ Dj ⑨ Ck là các miền, kj € N,
j ✏ 1, . . . , N. Cho U là tập con mở của D1 ✂ . . . ✂ DN và M ⑨ U là tập đóng
tương đối. Khi đó M♣a✶ ,z ,a✷ q là tập đóng trong U♣a✶ ,☎,a✷ q với mọi ♣a1 , . . . , aN q €
♣D1 ✂ . . . ✂ DN q ❳ U và j ✏ 1, . . . , N.

Nhận xét 1.2.20. Cho N

j

j

j

j

j

j

Định nghĩa 1.2.21 (Hàm chỉnh hình tách biến trên tập chữ thập N -lá tổng quát).


€ N, N ➙ 2 và ∅ ✘ Aj ⑨ Dj ⑨ Ck , kj € N, trong đó Dj là các miền, cho
Sj ⑨ A✶j ✂ A✷j , j ✏ 1, . . . , N và T :✏ T♣A1 , . . . , AN ; D1 , . . . , DN ; S1 , . . . , SN q là tập
Cho N

j

chữ thập N -lá tổng quát, F là một không gian lồi địa phương.

ÑF

Ta nói hàm f : T

là chỉnh hình tách biến nếu với mỗi j

♣a✶j , a✷j q € ♣A✶j ✂ A✷j q③Sj thì hàm f ♣a✶j , ☎, a✷j q chỉnh hình trên Dj . Đặt
Hs ♣T, F q ✏ tf : T

€ t1, . . . , N ✉ và

Ñ F chỉnh hình tách biến trên T ✉.

Định nghĩa 1.2.22 (Hàm chỉnh hình tách biến trên X ③M ). Cho N
và ∅ ✘ Aj

€ N, N ➙ 2

⑨ Dj ⑨ Ck , kj € N, trong đó Dj là các miền và X :✏ X♣A1, . . . , AN ; D1,
. . . , DN q. Hơn nữa, cho U là một lân cận mở của X và cho M ⑨ U sao cho với mọi
♣a1, . . . aN q € A1 ✂ ☎ ☎ ☎ ✂ AN và j € t1, ☎ ☎ ☎ , N ✉ thì thớ M♣a✶ ,☎,a✷q là tập đóng tương

j

j

j

đối trong Dj , F là một không gian lồi địa phương.
Ta nói hàm f : X ③M

Ñ F là chỉnh hình tách biến (f € Hs♣X ③M, F q) nếu với
mỗi ♣a1 , . . . aN q € A1 ✂ ☎ ☎ ☎ ✂ AN và j € t1, . . . , N ✉ thì hàm f ♣a✶j , ☎, a✷j q chỉnh hình
trên tập mở Dj ③M♣a✶ ,☎,a✷ q . Đặt
j

j

Hs ♣X ③M, F q ✏ tf : X ③M

Ñ F chỉnh hình tách biến trên X ③M ✉.

Định nghĩa 1.2.23 (Hàm phân hình tách biến trên T ③M ). Cho N

€ N, N ➙ 2, và
∅ ✘ Aj ⑨ Dj ⑨ Ck , kj € N, trong đó Dj là các miền và Sj ⑨ A✶j ✂ A✷j , j ✏ 1, . . . , N .
Cho T :✏ T♣A1 , . . . , AN ; D1 , . . . , DN ; S1 , . . . , SN q là tập chữ thập N -lá tổng quát.
Cho M ⑨ T, S ⑨ T ③M là tập đóng tương đối, F là một không gian lồi địa phương.
j

18



×