Tải bản đầy đủ (.doc) (7 trang)

tong hop cac dang toan ve giai tich 12 co loi giai

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (97.47 KB, 7 trang )

+ Bài toán về tiếp tuyến với đường cong:
Cách 1: Dùng tọa độ tiếp điểm
Phương trình tiếp tuyến có dạng:
( ) ( )
0 0 0
' .y f x x x y= − +
1. Lập phương trình tiếp tuyến với đường cong tại điểm
( )
0 0
;M x y
thuộc đồ thò hàm số
(tức là tiếp tuyến duy nhất nhận
( )
0 0
;M x y
làm tiếp điểm).
Phương trình tiếp tuyến với hàm số
( ) ( )
: C y f x=
tại điểm
( ) ( )
0 0
;M x y C∈

( hoặc tại
0
x x=
) có dạng:
( ) ( )
0 0 0
' .y f x x x y= − +


2. Lập phương trình tiếp tuyến
( )
d
với đường cong đi qua điểm
( )
;
A A
A x y
cho trước, kể
cả điểm thuộc đồ thò hàm số (tức là mọi tiếp tuyến đi qua điểm
( )
;
A A
A x y
)
Cho hàm số
( ) ( )
: C y f x=
. Gỉa sử tiếp điểm là
( )
0 0
;M x y
, khi đó phương trình tiếp
tuyến có dạng:
( ) ( ) ( )
0 0 0
' . y f x x x y d= − +
.
Điểm
( ) ( )

;
A A
A x y d∈
, ta được:
( ) ( )
0 0 0 0
' .
A A
y f x x x y x= − + ⇒
.
Từ đó lập được phương trình tiếp tuyến
( )
d
.
3. Lập phương trình tiếp tuyến
( )
d
với đường cong biết hệ số góc
k
Cho hàm số
( ) ( )
: C y f x=
. Gỉa sử tiếp điểm là
( )
0 0
;M x y
, khi đó phương trình tiếp
tuyến có dạng:
( ) ( ) ( )
0 0 0

' . y f x x x y d= − +
.
Hoành độ tiếp điểm của tiếp tuyến
( )
d
là nghiệm của phương trình:

( )
0 0
'f x k x= ⇒
, thay
0
x
vào hàm số ta được
( )
0 0
y f x=
Ta lập được phương trình tiếp tuyến
( ) ( ) ( )
0 0 0
' . y f x x x y d= − +
Cách 2: Dùng điều kiện tiếp xúc
Phương trình đường thẳng đi qua một điểm
( )
0 0
;M x y
có hệ số góc
k
có dạng:


( ) ( ) ( )
0 0
. y g x k x x y d= = − +
Điều kiện để đường thẳng
( )
y g x=
tiếp xúc với đồ thò hàm số
( )
y f x=

là hệ phương trình sau có nghiệm:
( ) ( )
( ) ( )
' '
f x g x
f x g x

=


=


.
Từ đó lập được phương trình tiếp tuyến
( )
d
.
6/ Cho hàm số
( )

3 2
3 2 y x x C= − +
.
a/ Lập phương trình các tiếp tuyến kẻ đến đồ thò
( )
C
, từ điểm
23
; 2
9
M
 

 ÷
 
.
b/ Lập phương trình tiếp tuyến của đồ thò
( )
C
, biết rằng tiếp tuyến vuông góc với đường
thẳng
( )
: 3 5 4 0x y∆ − − =
.
Giải:
a/ Gỉa sử tiếp điểm là
( )
0 0
;M x y
, khi đó phương trình tiếp tuyến có dạng:


( ) ( ) ( ) ( )
( )
( ) ( )
2 3 2
0 0 0 0 0 0 0 0
: ' : 3 6 3 2 1d y y x x x y d y x x x x x x= − + ⇔ = − − + − +
Điểm
23
; 2
9
M
 

 ÷
 
thuộc
( )
d
, ta được:
( )
( )
2 3 2 2
0 0 0 0 0 0 0 0 0 0 0
23 20 1
2 3 6 3 2 2 2 2 0 2 3
9 3 3
x x x x x x x x x x x
   
− = − − + − + ⇔ − − + − = ⇔ = ∨ = ∨ =

 ÷  ÷
   
Với
0
2x =
thay vào
( )
1
ta được tiếp tuyến
( )
1 1
: 2d y = −

Với
0
3x =
thay vào
( )
1
ta được tiếp tuyến
( )
2
: 9 25d y x= −

Với
0
1
3
x =
thay vào

( )
1
ta được tiếp tuyến
( )
3
5 61
:
3 27
d y x= − +

b/ Đường thẳng
( )
: 3 5 4 0x y∆ − − =
có hệ số góc
3
5
. Từ giả thiết , ta có:
( )
3
' . 1
5
y x = −
2 2
1 2
5 1 5
3 6 9 18 5 0
3 3 3
x x x x x x⇔ − = − ⇔ − + = ⇔ = ∨ =
. Hệ số góc tiếp tuyến là
5

3
k = −
.
Với
1
1
3
x =
ta được tiếp tuyến
( ) ( )
1 1
5 1 1 5 61
: :
3 3 3 3 27
d y x y d y x
   
= − − + ⇒ = − +
 ÷  ÷
   

Với
2
5
3
x =
ta được tiếp tuyến
( ) ( )
2 2
5 5 5 5 29
: :

3 3 3 3 27
d y x y d y x
   
= − − + ⇒ = − +
 ÷  ÷
   
7/ Cho hàm số
( )
4 2
y x x C= −
.
Chứng tỏ rằng qua điểm
( )
1;0A −
có thể kẽ được ba tiếp tuyến đến
( )
C
. Lập phương trình
các tiếp tuyến đó.
Giải:
Gỉa sử tiếp điểm là
( )
0 0
;M x y
. Khi đó phương trình tiếp tuyến có dạng:

( ) ( ) ( ) ( )
( )
( ) ( )
3 4 2

0 0 0 0 0 0 0 0
: ' . : 4 2 . 1d y f x x x y d y x x x x x x= − + ⇔ = − − + −
Điểm
( )
1;0A −
thuộc
( )
d
, ta có:
( )
( ) ( )
( )
3 4 2 2
0 0 0 0 0 0 0 0 0 0 0 0
2
0 4 2 1 . 1 3 2 0 1 0
3
x x x x x x x x x x x x= − − − + − ⇔ + + − = ⇔ = − ∨ = ∨ =
Với
0
1x = −
thay vào
( )
1
ta được tiếp tuyến
( )
1
: 2 2d y x= − −

Với

0
0x =
thay vào
( )
1
ta được tiếp tuyến
( )
2
: 0d y =

Với
0
2
3
x =
thay vào
( )
1
ta được tiếp tuyến
( )
3
4 4
:
27 27
d y x= − −
Chọn Lọc Các Bài Toán Thường Gặp Về Đồø Thò trong kỳ thi Tuyển Sinh Đại Học, Cao
Đẳng các năm gần đây
Bài 1 Cho hàm số
( )
2

1
2 3
x
y
x
+
=
+
a/ Khảo sát sự biến thiên và vẽ đồ thò hàm số
( )
1
.
b/ Viết phương trình tiếp tuyến của đồ thò hàm số
( )
1
, biết tiếp tuyến đó cắt trục hoành, trục
tung lần lượt tại hai điểm phân biệt
, A B
và tam giác
OAB
cân tại gốc tọa độ
O
.
(Đại Học Khối A năm 2009)
Đáp số:
2y x= − −
.
Bài 2 Cho hàm số
( )
4 2

2 4 y x x C= −
.
a/ Khảo sát vẽ đồ thò
( )
C
.
b/ Với các giá trò nào của
m
, phương trình
2 2
2x x m− =
có đúng 6 nghiệm phân biệt?
(Đại Học Khối B năm 2009)
Đáp số:
( )
0; 1m∈
Bài 3 Cho hàm số
( ) ( )
4 2
3 2 3
m
y x m x m C= − + +
,
m
là tham số.
a/ Khảo sát vẽ đồ thò hàm số khi
0m =
.
b/ Tìm
m

để đường thẳng
1y = −
cắt đồ thò
( )
m
C
tại 4 điểm phân biệt đều có hoành độ nhỏ
hơn 2.
(Đại Học Khối D năm 2009)
Đáp số:
1
; 1 ; 0
3
m m
 
∈ − ≠
 ÷
 
.
Bài 4 Tìm các giá trò của tham số
m
để đường thẳng
y x m
= − +
cắt đồ thò hàm số
2
1

x
y

x

=
tại hai điểm phân biệt
, A B
sao cho
4AB =
.
(Đại Học Khối B năm 2009)
Đáp số:
2 6; 2 6m m= = −
Bài 5 Tìm các giá trò của tham số
m
để đường thẳng
2y x m= − +
cắt đồ thò hàm số

2
1

x x
y
x
+ −
=
tại hai điểm phân biệt
, A B
sao cho trung điểm của đoạn thẳng
AB
thuộc

trục tung.
(Đại Học Khối D năm 2009)
Đáp số:
1m =
.
Bài 6 Cho hàm số
( )
3 2
4 6 +1 1y x x= −
.
a/ Khảo sát vẽ đồ thò hàm số
( )
1
.
b/ Viết phương trình tiếp tuyến của đồ thò hàm số
( )
1
, biết rằng tiếp tuyến đó đi qua
điểm
( )
1; 9M − −
.
(Đại Học Khối B năm 2008)
Đáp số: Các tiếp tuyến cần tìm là:
15 21
24 15;
4 4
y x y x= + = −
Bài 7 Cho hàm số
( )

3 2
3 +4 1y x x= −
.
a/ Khảo sát vẽ đồ thò hàm số
( )
1
.
b/ Chứng minh rằng mọi đường thẳng đi qua điểm
( )
1; 2I
với hệ số góc
( )
3k k > −
đều
cắt đồ thò của hàm số
( )
1
tại ba điểm phân biệt
, , I A B
đồng thời
I
là trung điểm của đoạn
thẳng
AB
.
(Đại Học Khối D năm 2008)
Bài 8 Cho hàm số
( )
2


1
x
y C
x
=
+
a/ Khảo sát sự biến thiên và vẽ đồ thò hàm số
( )
C
.
b/ Tìm tọa độ điểm
M
thuộc
( )
C
, biết tiếp tuyến của
( )
C
cắt 2 trục
, Ox Oy
tại
, A B
và tam giác
OAB
có diện tích bằng
1
4
.
(Đại Học Khối D năm 2007)
Đáp số:

( )
1 2
1
; -2 ; 1; 1 ;
2
M M
 

 ÷
 
.
Bài 9 Cho hàm số
( )
3 2
2 9 12 4 y x x x C= − + −
a/ Khảo sát vẽ đồ thò
( )
C
.
b/ Với các giá trò nào của
m
, phương trình sau có 6 nghiệm phân biệt:
3
2
2 9 12 4x x x m− + − =
. (Đại Học Khối A năm 2006)
Đáp số:
( )
4; 5m∈
Bài 10 Cho hàm số

( )
3
3 2 y x x C= − +
a/ Khảo sát vẽ đồ thò
( )
C
b/ Gọi
( )
d
là đường thẳng đi qua điểm
( )
3; 20A
và có hệ số góc là
m
. Tìm
m
để
đường thẳng
( )
d
cắt đồ thò
( )
C
tại 3 điểm phân biệt.
(Đại Học, Cao Đẳng Khối D năm 2006)
Đáp số:
15
4
24
m

m

>





Bài 11 Cho hàm số
( )
2
1

2
x x
y C
x
+ −
=
+
Viết phương trình tiếp tuyến của đồ thò
( )
C
, biết tiếp tuyến đó vuông góc với tiệm cận
xiên của
( )
C
?
(Đại Học, Cao Đẳng Khối B năm 2006)
Đáp số: Phương trình 2 tiếp tuyến cần tìm là:

2 2 5; 2 2 5.y x y x= − + − = − − −
Bài 12 Cho hàm số
( )
2
1

1
x x
y C
x
+ −
=

Tìm các điểm trên đồ thò
( )
C
mà tiếp tuyến tại mỗi điểm ấy với đồ thò
( )
C
vuông góc
với đường thẳng đi qua hai điểm cực đại, cực tiểu của
( )
C
?
(Cao Đẳng Y Tế I năm 2006)
Đáp số:
1 2
2 5 2 5
1 ;3 ; 1 ;3
3 3

6 6
M M
   
− − + +
 ÷  ÷
 ÷  ÷
   
Bài 13 Cho hàm số
( )
1
2
2
y x C
x
= + +
+
Tìm các giá trò
m
để đường thẳng
y m=
cắt đồ thò
( )
C
tại hai điểm sao cho khoảng
cách giữa chúng bằng
12
?
(Cao Đẳng Sư Phạm Hải Dương năm 2006)
Đáp số:
4; 4m m= = −

Bài 14 Cho hàm số
( )
3 2
2 3 1 y x x C= − −
a/ Khảo sát vẽ đồ thò
( )
C
b/ Tìm
m
để đường thẳng
1y mx= −
,
m
là tham số cắt đồ thò
( )
C
tại 3 điểm phân
biệt, trong đó có hai điểm có hoành độ dương.
(Cao Đẳng Sư Phạm Trà Vinh năm 2006)
Đáp số:
9
; 0
8
m
 
∈ −
 ÷
 
Bài 15 Cho hàm số
( )

3 2
1 1

3 2 3
m
m
y x x C= − +
a/ Khảo sát vẽ đồ thò khi
2m =
.
b/ Gọi
M
là điểm thuộc
( )
m
C
có hoành độ bằng
1−
. Tìm
m
để tiếp tuyến của
( )
m
C
tại
điểm
M
song song với đường thẳng
5 0x y− =
.

(Đại Học, Cao Đẳng Khối D năm 2005)
Đáp số:
4m =
Bài 16 Cho hàm số
( )
3

2
x
y C
x
+
=
+
Chứng minh rằng đường thẳng
1
2
y x m= −
luôn cắt
( )
C
tại hai điểm phân biệt
, A B
.
Xác đònh
m
sao cho độ dài
AB
là nhỏ nhất?
(Cao Đẳng Kinh Tế Kỷ Thuật I năm 2005)

Đáp số:
2m = −
Bài 17 Cho hàm số
( )
3
3 2 y x x C= − + +
a/ Khảo sát vẽ đồ thò
( )
C
b/ Tìm
m
để phương trình
3
3 2 6 0
m
x x− + − =
có 3 nghiệm phân biệt.

×