Tải bản đầy đủ (.pdf) (49 trang)

Phép tính vi phân hàm một biến

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (302.53 KB, 49 trang )

Chu
.
o
.
ng 8
Ph´ep t´ınh vi phˆan h`am mˆo
.
t
biˆe
´
n
8.1 D
-
a
.
oh`am..................... 61
8.1.1 D
-
a
.
o h`am cˆa
´
p1................ 61
8.1.2 D
-
a
.
o h`am cˆa
´
pcao............... 62
8.2 Viphˆan ..................... 75


8.2.1 Vi phˆan cˆa
´
p1................. 75
8.2.2 Vi phˆan cˆa
´
pcao ............... 77
8.3 C´ac d
i
.
nh l´y co
.
ba

nvˆe
`
h`am kha

vi. Quy
t˘a
´
c l’Hospital. Cˆong th´u
.
c Taylor . . . . . . 84
8.3.1 C´ac d
i
.
nh l´y co
.
ba


nvˆe
`
h`am kha

vi ..... 84
8.3.2 Khu
.

c´ac da
.
ng vˆo d
i
.
nh. Quy t˘a
´
c Lˆopitan
(L’Hospitale) . . . . . . . . . . . . . . . . . 88
8.3.3 Cˆong th´u
.
cTaylor............... 96
8.1. D
-
a
.
o h`am 61
8.1 D
-
a
.
oh`am

8.1.1 D
-
a
.
o h`am cˆa
´
p1
Gia

su
.

h`am y = f(x)x´acd
i
.
nh trong δ-lˆan cˆa
.
ncu

adiˆe

m x
0
(U(x
0
; δ)=
{x ∈ R : |x − x
0
| <δ)v`a∆f(x
0

)=f(x
0
+∆x) − f(x
0
) l`a sˆo
´
gia cu

a
n´o ta
.
id
iˆe

m x
0
tu
.
o
.
ng ´u
.
ng v´o
.
isˆo
´
gia ∆x = x − x
0
cu


adˆo
´
isˆo
´
.
Theo d
i
.
nh ngh˜ıa: Nˆe
´
utˆo
`
nta
.
i gi´o
.
iha
.
nh˜u
.
uha
.
n
lim
∆x→0
f(x
0
+∆x) − f(x
0
)

∆x
khi ∆x → 0 th`ı gi´o
.
iha
.
nd
´odu
.
o
.
.
cgo
.
il`ad
a
.
o h`am cu

a h`am f(x)ta
.
i
d
iˆe

m x
0
v`a du
.
o
.

.
cchı

bo
.

imˆo
.
t trong c´ac k´yhiˆe
.
u:
lim
∆x→0
f(x
0
+∆x) − f(x
0
)
∆x

dy
dx

d
dx
f(x) ≡ f

(x) ≡ y

.

D
a
.
ilu
.
o
.
.
ng
f

+
(x
0
)=f

(x
0
+ 0) = lim
∆x→0
∆x>0
∆y
∆x
= lim
∆x→0+0
∆y
∆x
v`a
f



(x
0
)=f

(x
0
− 0) = lim
∆x→0
∆x<0
∆y
∆x
= lim
∆x→0−0
∆y
∆x
d
u
.
o
.
.
cgo
.
il`ad
a
.
oh`ambˆen pha

i v`a da

.
oh`ambˆen tr´ai cu

a h`am y = f(x)
ta
.
id
iˆe

m x
0
nˆe
´
u c´ac gi´o
.
iha
.
nd
˜a n ˆe u t ˆo
`
nta
.
i.
Su
.

du
.
ng kh´ai niˆe
.

m gi´o
.
iha
.
nmˆo
.
tph´ıa ta c´o:
D
-
i
.
nh l´y 8.1.1. H`am y = f(x) c´o d
a
.
o h`am ta
.
idiˆe

m x khi v`a chı

khi
c´ac d
a
.
o h`am mˆo
.
tph´ıa tˆo
`
nta
.

iv`ab˘a
`
ng nhau:
f

(x +0)=f

(x − 0) = f

(x).
H`am f(x) kha

vi nˆe
´
un´oc´od
a
.
o h`am f

(x)h˜u
.
uha
.
n. H`am f(x) kha

vi liˆen tu
.
c nˆe
´
ud

a
.
o h`am f

(x)tˆo
`
nta
.
i v`a liˆen tu
.
c. Nˆe
´
u h`am f(x) kha

vi th`ı n´o liˆen tu
.
c. D
iˆe
`
u kh˘a

ng di
.
nh ngu
.
o
.
.
cla
.

i l`a khˆong d
´ung.
62 Chu
.
o
.
ng 8. Ph´ep t´ınh vi phˆan h`am mˆo
.
tbiˆe
´
n
8.1.2 D
-
a
.
o h`am cˆa
´
p cao
Da
.
o h`am f

(x)du
.
o
.
.
cgo
.
il`ad

a
.
o h`am cˆa
´
p1(hay da
.
o h`am bˆa
.
c nhˆa
´
t).
D
a
.
o h`am cu

a f

(x)du
.
o
.
.
cgo
.
il`ad
a
.
o h`am cˆa
´

p hai (hay da
.
o h`am th´u
.
hai)cu

a h`am f(x)v`ad
u
.
o
.
.
ck´yhiˆe
.
ul`ay

hay f

(x). Da
.
o h`am cu

a
f

(x)du
.
o
.
.

cgo
.
il`ad
a
.
o h`am cˆa
´
p3(hay da
.
o h`am th´u
.
ba)cu

a h`am f(x)
v`a d
u
.
o
.
.
ck´yhiˆe
.
u y

hay f

(x) (hay y
(3)
, f
(3)

(x) v.v...
Ta c´o ba

ng d
a
.
o h`am cu

a c´ac h`am so
.
cˆa
´
pco
.
ba

n
f(x) f

(x) f
(n)
(x)
x
a
ax
a−1
a(a− 1)(a− 2)···(a− n +1)x
a−n
,
x>0

e
x
e
x
e
x
a
x
a
x
lnaa
x
(lna)
n
lnx
1
x
(−1)
n−1
(n − 1)!
1
x
n
, x>0
log
a
x
1
xlna
(−1)

n−1
(n − 1)!
1
x
n
lna
, x>0
sin x cos x sin

x +

2

8.1. D
-
a
.
o h`am 63
f(x) f

(x) f
(n)
(x)
cos x − sin x cos

x +

2

tgx

1
cos
2
x
cotgx −
1
sin
2
x
arc sin x
1

1 − x
2
, |x| < 1
arccosx −
1

1 − x
2
, |x| < 1
arctgx
1
1+x
2
arccotgx −
1
1+x
2
Viˆe

.
c t´ınh da
.
o h`am du
.
o
.
.
cdu
.
.
a trˆen c´ac quy t˘a
´
c sau d
ˆay.
1
+
d
dx
[u + v]=
d
dx
u +
d
dx
v.
2
+
d
dx

(αu)=α
du
dx
, α ∈ R.
3
+
d
dx
(uv)=v
du
dx
+ u
dv
dx
.
4
+
d
dx

u
v

=
1
v
2

v
du

dx
− u
dv
dx

, v =0.
5
+
d
dx
f[u(x)] =
df
du
·
du
dx
(d
a
.
o h`am cu

a h`am ho
.
.
p).
6
+
Nˆe
´
u h`am y = y(x) c´o h`am ngu

.
o
.
.
c x = x(y)v`a
dy
dx
≡ y

x
=0th`ı
dx
dy
≡ x

y
=
1
y

x
·
64 Chu
.
o
.
ng 8. Ph´ep t´ınh vi phˆan h`am mˆo
.
tbiˆe
´

n
7
+
Nˆe
´
u h`am y = y(x)du
.
o
.
.
c cho du
.
´o
.
ida
.
ng ˆa

nbo
.

ihˆe
.
th´u
.
c kha

vi
F (x, y)=0v`aF


y
=0th`ı
dy
dx
= −
F

x
F

y
trong d´o F

x
v`a F

y
l`a da
.
o h`am theo biˆe
´
ntu
.
o
.
ng ´u
.
ng cu

a h`am F (x, y)

khi xem biˆe
´
n kia khˆong d
ˆo

i.
8
+
Nˆe
´
u h`am y = y(x)du
.
o
.
.
cchodu
.
´o
.
ida
.
ng tham sˆo
´
x = x(t),
y = y(t)(x

(t) = 0) th`ı
dy
dx
=

y

(t)
x

(t)
·
9
+
d
n
dx
n
(αu + βv)=α
d
n
u
dx
n
+ β
d
n
v
dx
n
;
d
n
dx
n

uv =
n

k=0
C
k
n
d
n−k
dx
n−k
u
d
k
dx
k
v (quy t˘a
´
c Leibniz).
Nhˆa
.
nx´et. 1) Khi t´ınh d
a
.
o h`am cu

amˆo
.
tbiˆe


uth´u
.
cd
˜a cho ta c´o thˆe

biˆe
´
nd
ˆo

iso
.
bˆo
.
biˆe

uth´u
.
cd
´o sao cho qu´a tr`ınh t´ınh da
.
oh`amdo
.
n gia

n
ho
.
n. Ch˘a


ng ha
.
nnˆe
´
ubiˆe

uth´u
.
cd
´o l`a logarit th`ı c´o thˆe

su
.

du
.
ng c´ac
t´ınh chˆa
´
tcu

a logarit d
ˆe

biˆe
´
ndˆo

i... rˆo
`

it´ınhda
.
o h`am. Trong nhiˆe
`
u
tru
.
`o
.
ng ho
.
.
p khi t´ınh d
a
.
o h`am ta nˆen lˆa
´
y logarit h`am d˜a cho rˆo
`
i´ap
du
.
ng cˆong th´u
.
cd
a
.
o h`am loga
d
dx

lny(x)=
y

(x)
y(x)
·
2) Nˆe
´
u h`am kha

vi trˆen mˆo
.
t khoa

ng d
u
.
o
.
.
cchobo
.

iphu
.
o
.
ng tr`ınh
F (x, y)=0th`ıd
a

.
o h`am y

(x) c´o thˆe

t`ım t `u
.
phu
.
o
.
ng tr`ınh
d
dx
F (x, y)=0.
C
´
AC V
´
IDU
.
8.1. D
-
a
.
o h`am 65
V´ı du
.
1. T´ınh da
.

o h`am y

nˆe
´
u:
1) y =ln
3

e
x
1 + cos x
; x = π(2n + 1), n ∈ N
2) y =
1+x
2
3

x
4
sin
7
x
, x = πn, n ∈ N.
Gia

i. 1) Tru
.
´o
.
chˆe

´
ttad
o
.
n gia

nbiˆe

uth´u
.
ccu

a h`am y b˘a
`
ng c´ach
du
.
.
a v`ao c´ac t´ınh chˆa
´
tcu

a logarit. Ta c´o
y =
1
3
lne
x

1

3
ln(1 + cos x)=
x
3

1
3
ln(1 + cos x).
Do d
´o
y

=
1
3

1
3
(cos x)

1 + cos x
=
1
3
+
1
3
sin x
1+cosx
=

1+tg
x
2
3
·
2) O
.

d
ˆay tiˆe
.
nlo
.
.
iho
.
nca

l`a x´et h`am z =ln|y|.Tac´o
dz
dx
=
dz
dy
·
dy
dx
=
1
y

dy
dx

dy
dx
= y
dz
dx
· (*)
Viˆe
´
t h`am z du
.
´o
.
ida
.
ng
x =ln|y| = ln(1 + x
2
) −
4
3
ln|x|−7ln| sin x|

dz
dx
=
2x
1+x

2

4
3x
− 7
cos x
sin x
·
Thˆe
´
biˆe

uth´u
.
cv`u
.
athud
u
.
o
.
.
cv`ao(∗) ta c´o
dy
dx
=
1+x
2
3


x
4
sin
7
x

2x
1+x
2

4
3x
− 7
cos x
sin x

. 
V´ı d u
.
2. T´ınh d
a
.
o h`am y

nˆe
´
u: 1) y = (2+cos x)
x
, x ∈ R;2)y = x
2

x
,
x>0.
Gia

i. 1) Theo d
i
.
nh ngh˜ıa ta c´o
y = e
xln(2+cosx)
.
66 Chu
.
o
.
ng 8. Ph´ep t´ınh vi phˆan h`am mˆo
.
tbiˆe
´
n
T`u
.
d
´o
y

= e
xln(2+cosx)


xln(2 + cos x)


= e
xln(2+cosx)

ln(2 + cos x)− x
sin x
2 + cos x

,x∈ R.
2) V`ı y = e
2
x
lnx
nˆen v´o
.
i x>0 ta c´o
y

= e
2
x
lnx
[2
x
lnx]

= e
2

x
lnx

1
x
2
x
+2
x
ln2 · lnx

=2
x
x
2
x

1
x
+ln2· lnx

. 
V´ı du
.
3. T´ınh d
a
.
o h`am cˆa
´
p2cu


a h`am ngu
.
o
.
.
cv´o
.
i h`am y = x + x
5
,
x ∈ R.
Gia

i. H`am d
˜a cho liˆen tu
.
cv`ado
.
nd
iˆe
.
u kh˘a
´
pno
.
i, d
a
.
o h`am y


=
1+5x
4
khˆong triˆe
.
t tiˆeu ta
.
ibˆa
´
tc´u
.
d
iˆe

m n`ao. Do d´o
x

y
=
1
y

x
=
1
1+5x
4
·
Lˆa

´
yd
a
.
o h`am d˘a

ng th´u
.
c n`ay theo y ta thu d
u
.
o
.
.
c
x

yy
=

1
1+5x
4


x
· x

y
=

−20x
3
(1 + 5x
4
)
3
· 
V´ı d u
.
4. Gia

su
.

h`am y = f(x)d
u
.
o
.
.
cchodu
.
´o
.
ida
.
ng tham sˆo
´
bo
.


i c´ac
cˆong th´u
.
c x = x(t), y = y(t), t ∈ (a; b) v`a gia

su
.

x(t), y(t) kha

vi cˆa
´
p
2v`ax

(t) =0t ∈ (a, b). T`ım y

xx
.
Gia

i. Ta c´o
dy
dx
=
dy
dt
dx
dt

=
y

t
x

t
⇒ y

x
=
y

t
x

t
·
Lˆa
´
yd
a
.
o h`am hai vˆe
´
cu

ad˘a

ng th´u

.
c n`ay ta c´o
y

xx
=

y

t
x

t


t
· t

x
=

y

t
x

t


t

·
1
x

t
=
x

t
y

tt
− y

t
x

tt
x

t
3
· 
8.1. D
-
a
.
o h`am 67
V´ı du
.

5. Gia

su
.

y = y(x), |x| >al`a h`am gi´a tri
.
du
.
o
.
ng cho du
.
´o
.
i
da
.
ng ˆa

nbo
.

iphu
.
o
.
ng tr`ınh
x
2

a
2

y
2
b
2
=1.
T´ınh y

xx
.
Gia

i. D
ˆe

t`ım y

ta ´ap du
.
ng cˆong th´u
.
c
d
dx
F (x, y)=0.
Trong tru
.
`o

.
ng ho
.
.
p n`ay ta c´o
d
dx

x
2
a
2

y
2
b
2
− 1

=0.
Lˆa
´
yd
a
.
o h`am ta c´o
2x
a
2


2y
b
2
y

x
=0, (8.1)
⇒y

x
=
b
2
x
a
2
y
, |x| > 0,y >0. (8.2)
Lˆa
´
yd
a
.
o h`am (8.1) theo x ta thu du
.
o
.
.
c
1

a
2

1
b
2

y

x

2

y
b
2
y

xx
=0
v`a t`u
.
(8.2) ta thu d
u
.
o
.
.
c y


x
:
y

xx
=
1
y

b
2
a
2


y

x

2

=
1
y

b
2
a
2


b
4
a
4
x
2
y
2

= −
b
4
a
2
y
3

x
2
a
2

y
2
b
2

= −
b
4

a
2
y
3
,y>0. 
V´ı du
.
6. T´ınh y
(n)
nˆe
´
u: 1) y =
1
x
2
− 4
;2)y = x
2
cos 2x.
Gia

i. 1) Biˆe

udiˆe
˜
nh`amd
˜achodu
.
´o
.

ida
.
ng tˆo

ng c´ac phˆan th´u
.
cco
.
ba

n
1
x
2
− 4
=
1
4

1
x − 2

1
x +2

68 Chu
.
o
.
ng 8. Ph´ep t´ınh vi phˆan h`am mˆo

.
tbiˆe
´
n
v`a khi d´o

1
x
2
− 4

(n)
=
1
4

1
x− 2

(n)


1
x +2

(n)

.
Do


1
x ± 2

(n)
=(−1)(−2)···(−1 − n + 1)(x ± 2)
−1−n
=(−1)
n
n!
1
(x± 2)
n+1
nˆen

1
x
2
− 4

(n)
=
(−1)
n
n!
4

1
(x − 2)
n+1


1
(x +2)
n+1

.
2) Ta ´ap du
.
ng cˆong th´u
.
c Leibniz d
ˆo
´
iv´o
.
id
a
.
o h`am cu

at´ıch
(x
2
cos 2x)=C
0
n
x
2
(cos 2x)
(n)
+ C

1
n
(x
2
)

(cos 2x)
n−1
+ C
2
n
(x
2
)

(cos 2x)
n−2
.
C´ac sˆo
´
ha
.
ng c`on la
.
id
ˆe
`
u=0v`ı

x

2

(k)
=0 ∀ k>2.
´
Ap du
.
ng cˆong th´u
.
c
(cos 2x)
(n)
=2
n
cos

2x +

2

ta thu d
u
.
o
.
.
c
(x
2
cos 2x)

(n)
=2
n

x
2

n(n − 1)
4

cos

2x +

2

+2
n
nx sin

2x +

2

. 
V´ı d u
.
7. V´o
.
i gi´a tri

.
n`ao cu

a a v`a b th`ı h`am
f(x)=



e
x
,x 0,
x
2
+ ax + b, x > 0
8.1. D
-
a
.
o h`am 69
c´o da
.
o h`am trˆen to`an tru
.
csˆo
´
.
Gia

i. R˜o r`ang l`a h`am f(x)c´od
a

.
o h`am ∀ x>0v`a∀ x<0. Ta chı

cˆa
`
nx´etd
iˆe

m x
0
=0.
V`ı h`am f(x) pha

i liˆen tu
.
cta
.
id
iˆe

m x
0
=0nˆen
lim
x→0+0
f(x) = lim
x→0−0
f(x) = lim
x→0
f(x)

t´u
.
cl`a
lim
x→0+0
(x
2
+ ax + b)=b = e
0
=1⇒ b =1.
Tiˆe
´
pd
´o, f

+
(0) = (x

+ ax + b)



x
0
=0
= a v`a f


(0) = e
x



x
0
=0
=1.
Do d
´o f

(0) tˆo
`
nta
.
inˆe
´
u a =1v`ab = 1. Nhu
.
vˆa
.
yv´o
.
i a =1,b =1
h`am d
˜a cho c´o da
.
o h`am ∀ x ∈ R. 
B
`
AI T
ˆ

A
.
P
T´ınh d
a
.
o h`am y

cu

a h`am y = f(x)nˆe
´
u:
1. y =
4

x
3
+
5
x
2

3
x
3
+ 2. (DS.
3
4
4


x

10
x
3
+
9
x
4
)
2. y = log
2
x + 3log
3
x.(DS.
ln24
xln2 · ln3
)
3. y =5
x
+6
x
+

1
7

x
.(DS. 5

x
ln5 + 6
x
ln6 − 7
−x
ln7)
4. y = ln(x +1+

x
2
+2x + 3). (DS.
1

x
2
+2x +3
)
5. y = tg5x.(D
S.
10
sin 10x
)
6. y = ln(ln

x). (DS.
1
2xln

x
)

7. y =ln

1+2x
1 − 2x
.(D
S.
2
1 − 4x
2
)
70 Chu
.
o
.
ng 8. Ph´ep t´ınh vi phˆan h`am mˆo
.
tbiˆe
´
n
8. y = xarctg

2x − 1 −

2x − 1
2
.(D
S. arctg

2x − 1)
9. y = sin

2
x
3
.(DS. 3x
2
sin 2x
3
)
10. y = sin
4
x + cos
4
x.(DS. − sin 4x)
11. y =

xe

x
.(DS.
e

x
(1 +

x)
2

x
)
12. y = e

1
cos x
.(D
S. e
1
cos x
sin x
cos
2
x
)
13. y = e
1
lnx
.(D
S.
−e
1
lnx
xln
2
x
)
14. y =ln

e
2x
+

e

4x
+1. (DS.
2e
2x

e
4x
+1
)
15. y =ln

e
4x
e
4x
+1
.(D
S.
2
e
4x
+1
)
16. y = log
5
cos 7x.(DS. −
7tg7x
ln5
)
17. y = log

7
cos

1+x.(DS. −
tg

1+x
2

1+xln7
)
18. y = arccos

e

x
2
2

.(D
S.
xe

x
2
2

1 − e
−x
2

)
19. y = tg sin cos x.(D
S.
− sin cos(cos x)
cos
2
(sin cos x)
)
20. y = e
x
2
cotg3x
.(DS.
xe
c
2
cotg3x
sin
2
3x
(sin 6x − 3x))
21. y = e

1+lnx
.(DS.
e

1+lnx
2x


1+lnx
)
22. y = x
1
x
.(DS. x
1
x
−2
(1 − lnx))
23. y = e
x
.(DS. x
x
(1 + lnx))
8.1. D
-
a
.
o h`am 71
24. y = x
sin x
.(DS. x
sin x
cos x · lnx + x
sin x−1
sin x)
25. y = (tgx)
sin x
.(DS. (tgx)

sin x

cos xlntgx +
1
cos x

)
26. y = x
sin x
.(DS. x
sin x

sin x
x
+lnx· cos x

)
27. y = x
x
2
.(DS. x
x
2
+1
(1 + 2lnx))
28. y = x
e
x
.(DS. e
x

x
e
x

1
x
+lnx))
29. y = log
x
7. (DS. −
1
xlnxlog
7
x
)
30. y =
1
2a
ln



x − a
x + a



.(D
S.
1

x
2
− a
2
)
31. y = sin ln|x|.(D
S.
cos ln|x|
x
)
32. y =ln| sin x|.(D
S. cotgx)
33. y =ln|x +

x
2
+1|.(DS.
1

x
2
+1
).
Trong c´ac b`ai to´an sau d
ˆay (34-40) t´ınh da
.
o h`am cu

a h`am y du
.

o
.
.
c
cho du
.
´o
.
ida
.
ng tham sˆo
´
.
34. x = a cos t, a sin t, t ∈ (0,π). y

xx
?(DS. −
1
a sin
3
t
)
35. x = t
3
, y = t
2
. y

xx
?(DS. −

2
9t
4
)
36. x =1+e
at
, y = at + e
−at
. y

xx
?(DS. 2e
−3at
− e
−2at
)
37. x = a cos
3
t, y = a sin
3
t. y

xx
?(DS.
1
3a sin t cos
4
t
)
38. x = e

t
cos t, y = e
t
sin t. y

xx
?(DS.
2
e
t
(cos t − sin t)
3
)
39. x = t − sin t, y =1− cos t. y

xx
?(DS. −
1
4 sin
4
t
2
)
40. x = t
2
+2t, y = ln(1 + t). y

xx
?(DS.
−1

4(1 + t)
4
).
72 Chu
.
o
.
ng 8. Ph´ep t´ınh vi phˆan h`am mˆo
.
tbiˆe
´
n
Trong c´ac b`ai to´an sau dˆay (41-47) t´ınh da
.
o h`am y

ho˘a
.
c y

cu

a
h`am ˆa

nd
u
.
o
.

.
c x´ac d
i
.
nh bo
.

i c´ac phu
.
o
.
ng tr`ınh d
˜acho
41. x +

xy + y = a. y

?(DS.
2a − 2x − y
x +2y − a
)
42. arctg
y
x
=ln

x
2
+ y
2

. y

?(DS.
x + y
x − y
)
43. e
x
sin y − e
−y
cos x =0. y

?(DS. −
e
x
sin y + e
−y
sin x
e
x
cos y + e
−y
cos x
)
44. x
2
y + arctg

y
x


=0. y

?(DS.
−2x
3
y − 2xy
3
+ y
x
4
+ x
2
y
2
+ x
)
45. e
x
− e
y
= y − x. y

?(DS.
(e
y
− e
x
)(e
x+y

− 1)
(e
y
+1)
3
)
46. x + y = e
x−y
. y

?(DS.
4(x + y)
(x + y +1)
3
)
47. y = x + arctgy. y

?(DS.
−(2y
2
+2)
y
5
).
Trong c´ac b`ai to´an sau d
ˆay (48-52) t´ınh da
.
o h`am cu

a h`am ngu

.
o
.
.
c
v´o
.
ih`amd
˜a cho.
48. y = x + x
3
, x ∈ R. x

y
?(DS. x

y
=
1
1+3x
2
)
49. y = x +lnx, x>0. x

y
?(DS. x

y
=
x

x +1
, y>0)
50. y = x + e
x
. x

y
?(DS. x

y
=
1
1+y − x
, y ∈ R)
51. y =chx, x>0. x

y
?(DS. x

y
=
1

y
2
− 1
)
52. y =
x
2

1+x
2
, x<0. x

y
?(DS. x

y
=
x
3
2y
2
, y ∈ (0, 1)).
53. V´o
.
i gi´a tri
.
n`ao cu

a a v`a b th`ı h`am
f(x)=



x
3
nˆe
´
u x  x

0
,
ax + b nˆe
´
u x>x
0
8.1. D
-
a
.
o h`am 73
liˆen tu
.
c v`a kha

vi ta
.
idiˆe

m x = x
0
?
(D
S. a =3x
2
0
, b = −2x
3
0
).

54. X´ac d
i
.
nh α v`a β dˆe

c´ac h`am sau: a) liˆen tu
.
c kh˘a
´
pno
.
i; b) kha

vi
kh˘a
´
pno
.
inˆe
´
u
1) f(x)=



αx + β nˆe
´
u x  1
x
2

nˆe
´
u x>1
2) f(x)=





α + βx
2
nˆe
´
u |x| < 1,
1
|x|
nˆe
´
u |x|  1.
(D
S. 1) a) α + β = 1, b) α =2,β = −1; 2) a) α + β = 1, b)
α =
3
2
,β = −
1
2
).
55. Gia


su
.

h`am y = f(x) x´ac d
i
.
nh trˆen tia (−∞,x
0
) v`a kha

vi bˆen
tr´ai ta
.
id
iˆe

m x = x
0
.V´o
.
i gi´a tri
.
n`ao cu

a a v`a b th`ı h`am
f(x)=



f(x)nˆe

´
u x  x
0
,
ax
2
+ b nˆe
´
u x>x
0
kha

vi ta
.
idiˆe

m x = x
0
(x
0
=0)?
(D
S. a =
f

(x
0
− 0)
2x
0

, b = f(x
0
) −
x
0
2
f

(x
0
− 0)).
Trong c´ac b`ai to´an (56-62) t´ınh d
a
.
o h`am y

nˆe
´
u
56. y = e
−x
2
.(DS. 2e
−x
2
(2x
2
− 1))
57. y =tgx.(D
S.

2 sin x
cos
3
x
)
58. y =

1+x
2
.(DS.
1
(1 + x
2
)
3/2
)
59. y = arcsin
x
2
.(D
S.
x
(4 − x
2
)
3/2
)
60. y = arctg
1
x

.(D
S.
2x
(1 + x
2
)
2
)
74 Chu
.
o
.
ng 8. Ph´ep t´ınh vi phˆan h`am mˆo
.
tbiˆe
´
n
61. y = x arcsinx.(DS.
2 − x
2
(1 − x
2
)

1 − x
2
)
62. y = f(e
x
). (DS. e

x
f

(e
x
)+e
2x
f

(e
x
)).
Trong c´ac b`ai to´an (63-69) t´ınh d
a
.
o h`am cˆa
´
p3cu

a y nˆe
´
u:
63. y = arctg
x
2
.(D
S.
4(3x − 4)
(4 + x
2

)
3
)
64. y = xe
−x
.(DS. e
−x
(3 − x))
65. y = e
x
cos x.(DS. −2e
x
(cos x + sin x))
66. y = x
2
sin x.(DS. −2e
x
(cos x + sin x))
67. y = x
3
2
x
.(DS. 2
x
(x
3
ln
3
2+9x
2

ln
2
x +18xln2 + 6))
68. y = x
2
sin 2x.(DS. −4(2x
2
cos 2x +6x sin 2x − 3 cos 2x))
69. y =(f(x
2
). (DS. 12xf

(x
2
)+8x
3
f

(x
2
)).
Trong c´ac b`ai to´an (70-84) t´ınh d
a
.
o h`am y
(n)
nˆe
´
u
70. y = sin 3x.(D

S. 3
n
sin

3x +

2

)
72. y = e
x
2
.(DS. e
x
2

1
2

n
)
73. y =2
3x
.(DS. 2
3x
(3ln2)
n
)
74. y = cos
2

x.(DS. 2
n−1
cos

2x + n ·
π
2

)
75. y =(4x +1)
n
.(DS. 4
n
n!)
76. y =ln(ax + b). (D
S. (−1)
n−1
(n − 1)!
a
n
(ax + b)
n
)
77. y = sin
4
x + cos
4
x.(DS. 4
n−1
cos


4x +

2

)
Chı

dˆa
˜
n. Ch´u
.
ng minh r˘a
`
ng sin
4
x + cos
4
x =
3
4
+
1
4
cos 4x.
78. y = sin
3
x.(DS.
3
4

sin

x +

2


3
n
4
sin

3x + n ·
π
2

)
Chı

dˆa
˜
n. D`ung cˆong th´u
.
c sin 3x = 3 sin x − 4 sin
3
x.
8.2. Vi phˆan 75
79. y = sin αx sin βx.
(D
S.

1
2
(α− β)
n
cos[(α− β)x + n
π
2
]−
1
2
(α + β)
n
cos[(α + β)x + n
π
2
])
Chı

dˆa
˜
n. Biˆe
´
nd
ˆo

i t´ıch th`anh tˆo

ng.
80. y = e
αx

sin βx.
(D
S. e
αx

sin βx

α
n

n(n − 1)
1 · 2
α
n−2
β
2
+ ...

+
+ cos βx


n−1
β −
n(n − 1)(n − 2)
1 · 2 · 3
α
n−3
β
3

+ ...

)
Chı

dˆa
˜
n. D`ung quy t˘a
´
c Leibniz.
81. y = e
x
(3x
2
− 4). (DS. e
x
[3x
2
+6nx +3n(n − 1) − 4])
82. y =ln
ax + b
ax− b

ax + b
ax− b
> 0

(D
S. (−1)
n−1

a
n
(n − 1)!

1
(ax + b)
n

1
ax − b)
n

)
83. y =
x
x
2
− 4x − 12
.(D
S.
(−1)
n
n!
4

3
(x − 6)
n+1
+
1

(x − 2)
n+1

)
84. y =
3 − 2x
2
2x
2
+3x − 2
.(D
S. (−1)
n
n!

2
n
(2x − 1)
n+1
+
1
(x +2)
n+1

)
Chı

dˆa
˜
n. D

ˆe

gia

i b`ai 83 v`a 84 cˆa
`
nbiˆe

udiˆe
˜
nh`amd˜a cho du
.
´o
.
ida
.
ng
tˆo

ng c´ac phˆan th´u
.
cd
o
.
n gia

n.
8.2 Vi phˆan
8.2.1 Vi phˆan cˆa
´

p1
Gia

su
.

h`am y = f(x) x´ac d
i
.
nh trong lˆan cˆa
.
n n`ao d´ocu

adiˆe

m x
0
v`a
∆x = x− x
0
l`a sˆo
´
gia cu

abiˆe
´
ndˆo
.
clˆa
.

p. H`am y = f(x)c´ovi phˆan cˆa
´
p
1 (vi phˆan th´u
.
nhˆa
´
t)ta
.
id
iˆe

m x
0
nˆe
´
u khi dˆo
´
isˆo
´
di
.
ch chuyˆe

nt`u
.
gi´a tri
.
x = x
0

dˆe
´
n gi´a tri
.
x = x
0
+∆x sˆo
´
gia tu
.
o
.
ng ´u
.
ng cu

a h`am f(x) c´o thˆe

76 Chu
.
o
.
ng 8. Ph´ep t´ınh vi phˆan h`am mˆo
.
tbiˆe
´
n
biˆe

udiˆe

˜
ndu
.
´o
.
ida
.
ng
∆f(x
0
) ≡ f(x
0
+∆x) − f(x
0
)=D(x
0
)∆x + o(∆x) (8.3)
trong d
´o D(x
0
) khˆong phu
.
thuˆo
.
c ∆x v`a
o(∆x)
∆x
→ 0 khi ∆x → 0. T´ıch
D(x
0

)∆x du
.
o
.
.
cgo
.
il`avi phˆan cˆa
´
p1cu

a h`am f(x)ta
.
id
iˆe

m x
0
v`a du
.
o
.
.
c
k´yhiˆe
.
u
dy ≡ df ≡
dy
dx

dx.
Sˆo
´
gia ∆x cu

abiˆe
´
nd
ˆo
.
clˆa
.
p x du
.
o
.
.
cgo
.
il`avi phˆan cu

abiˆe
´
nd
ˆo
.
clˆa
.
p,
t´u

.
c l`a theo d
i
.
nh ngh˜ıa: dx =∆x.
D
-
i
.
nh l´y 8.2.1. H`am y = f(x) c´o vi phˆan cˆa
´
p1ta
.
id
iˆe

m x
0
khi v`a
chı

khi h`am d
´oc´oda
.
oh`amh˜u
.
uha
.
nta
.

id
´ov`aD(x
0
)=f

(x
0
).
Vi phˆan df (x
0
)cu

a h`am f ta
.
idiˆe

m x
0
biˆe

udiˆe
˜
nquada
.
o h`am f

(x
0
)
bo

.

i cˆong th´u
.
c
df (x
0
)=f

(x
0
)dx (8.4)
Cˆong th´u
.
c (8.4) cho ph´ep t´ınh vi phˆan cu

a c´ac h`am, nˆe
´
ubiˆe
´
td
a
.
o h`am
cu

ach´ung.
T`u
.
(8.3) suy ra

y(x
0
+∆x)=y(x
0
)+df (x
0
)+o(dx),dx→ 0.
Nˆe
´
u df (x
0
) =0th`ıdˆe

t´ınh gi´a tri
.
gˆa
`
nd´ung cu

a h`am f(x)ta
.
idiˆe

m
x
0
+∆x ta c´o thˆe

´ap du
.

ng cˆong th´u
.
c
y(x
0
+∆x) ≈ y(x
0
)+df (x
0
) (8.5)
Vi phˆan cˆa
´
p 1 c´o c´ac t´ınh chˆa
´
t sau.
1
+
d(αu + βv)=αdu + βdv,
d(uv)=udv + vdu,
d

u
v

=
vdu− udv
v
2
,v=0.
8.2. Vi phˆan 77

2
+
Cˆong th´u
.
c vi phˆan dy = f

(x)dx luˆon luˆon tho

a m˜an bˆa
´
t luˆa
.
n
x l`a biˆe
´
nd
ˆo
.
clˆa
.
p hay l`a h`am cu

abiˆe
´
ndˆo
.
clˆa
.
p kh´ac. T´ınh chˆa
´

t n`ay
d
u
.
o
.
.
cgo
.
il`at´ınh bˆa
´
tbiˆe
´
nvˆe
`
da
.
ng cu

a vi phˆan cˆa
´
p1.
8.2.2 Vi phˆan cˆa
´
p cao
Gia

su
.


x l`a biˆe
´
nd
ˆo
.
clˆa
.
p v`a h`am y = f(x) kha

vi trong lˆan cˆa
.
n n`ao
d
´o c u

adiˆe

m x
0
. Vi phˆan th´u
.
nhˆa
´
t df = f

(x)dx l`a h`am cu

a hai biˆe
´
n

x v`a dx, trong d
´o dx l`a sˆo
´
t`uy ´y khˆong phu
.
thuˆo
.
c v`ao x v`a do d´o
(dx)

=0.
Vi phˆan cˆa
´
p hai (hay vi phˆan th´u
.
hai) d
2
f cu

a h`am f(x)ta
.
idiˆe

m
x
0
du
.
o
.

.
cd
i
.
nh ngh˜ıa nhu
.
l`a vi phˆan cu

a h`am df = f

(x)dx ta
.
idiˆe

m x
0
v´o
.
i c´ac d
iˆe
`
ukiˆe
.
n sau dˆay:
1) df pha

id
u
.
o

.
.
c xem l`a h`am cu

achı

mˆo
.
tbiˆe
´
nd
ˆo
.
clˆa
.
p x (n´oi c´ach
kh´ac: khi t´ınh vi phˆan cu

a f

(x)dx ta cˆa
`
n t´ınh vi phˆan cu

a f

(x), c`on
dx d
u
.

o
.
.
c xem l`a h˘a
`
ng sˆo
´
);
2) Sˆo
´
gia cu

abiˆe
´
nd
ˆo
.
clˆa
.
p x xuˆa
´
thiˆe
.
n khi t´ınh vi phˆan cu

a f

(x)
d
u

.
o
.
.
c xem l`a b˘a
`
ng sˆo
´
gia d
ˆa
`
u tiˆen, t´u
.
c l`a b˘a
`
ng dx.
Nhu
.
vˆa
.
y theo d
i
.
nh ngh˜ıa ta c´o
d
2
f = d(df )=d(f

(x)dx)=(df


(x))dx = f

(x)dxdx
= f

(x)(dx)
2
hay l`a
d
2
f = f

(x)dx
2
,dx
2
=(dx)
2
. (8.6)
B˘a
`
ng phu
.
o
.
ng ph´ap quy na
.
p, d
ˆo
´

iv´o
.
i vi phˆan cˆa
´
p n ta thu d
u
.
o
.
.
c
cˆong th´u
.
c
d
n
f = f
(n)
(x)dx
n
(8.7)
78 Chu
.
o
.
ng 8. Ph´ep t´ınh vi phˆan h`am mˆo
.
tbiˆe
´
n

Vi phˆan cˆa
´
p n (n>1) cu

abiˆe
´
ndˆo
.
clˆa
.
p x du
.
o
.
.
c xem l`a b˘a
`
ng 0, t´u
.
c
l`a
d
n
x =0 v´o
.
i n>1. (8.8)
Nˆe
´
u ∃ d
n

f v`a ∃ d
n
g v`a α, β ∈ R th`ı
d
n
(αf + βg)=αd
n
f + βd
n
g (8.9)
d
n
fg =
n

k=0
C
k
n
d
n−k
f · d
k
g. (8.10)
Ch´u´y. 1) Khi n>1, c´ac cˆong th´u
.
c (8.6) v`a (8.7) chı

d
´ung khi x

l`a biˆe
´
nd
ˆo
.
clˆa
.
p. Dˆo
´
iv´o
.
i h`am ho
.
.
p y = y(x(t)) cˆong th´u
.
c (8.6) d
u
.
o
.
.
c
kh´ai qu´at nhu
.
sau:
d
2
y = d(dy)=d(y


x
dx)=d(y

x
)dx + y

x
d(dx)
v`a do d
´o
d
2
y = y

xx
dx
2
+ y

x
d
2
x. (8.11)
Trong tru
.
`o
.
ng ho
.
.

p khi x l`a biˆe
´
nd
ˆo
.
clˆa
.
pth`ıd
2
x = 0 (xem (8.8)) v`a
cˆong th´u
.
c (8.11) tr`ung v´o
.
i (8.6).
2) Khi t´ınh vi phˆan cˆa
´
p n ta c´o thˆe

biˆe
´
nd
ˆo

iso
.
bˆo
.
h`am d
˜a cho.

Ch˘a

ng ha
.
nnˆe
´
u f(x) l`a h`am h˜u
.
uty

th`ı cˆa
`
n khai triˆe

n n´o th`anh tˆo

ng
h˜u
.
uha
.
n c´ac phˆan th´u
.
ch˜u
.
uty

co
.
ba


n; nˆe
´
u f(x) l`a h`am lu
.
o
.
.
ng gi´ac
th`ı cˆa
`
nha
.
bˆa
.
c nh`o
.
c´ac cˆong th´u
.
cha
.
bˆa
.
c,...
3) T`u
.
cˆong th´u
.
c (8.7) suy ra r˘a
`

ng
f
(n)
(x)=
d
n
f
dx
n
t´u
.
cl`ad
a
.
o h`am cˆa
´
p n cu

a h`am y = f(x)ta
.
imˆo
.
tdiˆe

m n`ao d´ob˘a
`
ng ty

sˆo
´

gi˜u
.
a vi phˆan cˆa
´
p n cu

a h`am f(x) chia cho l˜uy th`u
.
abˆa
.
c n cu

avi
phˆan cu

ad
ˆo
´
isˆo
´
.

×